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Abstract 

Metric multidimensional unfolding is a statistical estimation problem where the data structure is a set of 
measures that are monotonic functions of Euclidean distances between a number of observers and targets 
in a multidimensional space. The new method presented in this paper deals with estimating the target 
locations and the observer positions when the observations are functions of the squared distances between 
observers and targets observed with an additive random error in a two dimensional space. The method is 
based on the work of Cahoon (1976), Cahoon, Hinich and Ordeshook (1978) and Hinich (1978). The 
Cahoon-Hinich (C-H) method is a statistical metric multidimensional unfolding method that is based on the 
multidimensional spatial theory of electoral competition originally developed by Davis and Hinich (1966). The 
main result in this paper is a significant modification of the Cahoon-Hinich method that yields much robust 
estimates of the target locations in a two dimensional space for the parametric structure of the data 
generating model presented in the paper. The modification also yields more accurate estimates of the mean 
and variances of the observer locations than the original method. The data is transformed so that the 
nonlinearity due to the squared observer locations is removed. The sampling properties of the estimates are 
derived from the asymptotic variances of the additive errors of a maximum likelihood factor analysis of the 
sample covariance matrix of the transformed data augmented with bootstrapping. The robustness of the new 
method is tested using artificial data. The method is applied to a 2001 survey data set from Turkey to 
provide a real data example. 

Keywords: Spatial theory, metric multidimensional unfolding, maximum likelihood factor analysis, 
least squares 

1. INTRODUCTION 

The various multidimensional unfolding techniques that have been 

mainly developed by measurement psychologists originated in the work 

by Coombs (1964). Unfolding theory uses a geometric model for 

preferences and choice that posits that an individual will choice the 

alternative in the a multidimensional choice set that is closest to that 

person’s ideal point in the space (De Leeuw, 2005). If the distance metric 

is either Euclidean distance or squared Euclidean distance then the 

unfolding theory is identical to the model of political choice introduced by 

Davis and Hinich (1966) in their theory of political competition. 
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Metric multidimensional unfolding is a statistical estimation problem 

where the data structure is a set of measures that are monotonic 

functions of Euclidean distances between a number of observers located 

at positions ix  and targets at locations mπ . The first approach to locating 

the targets and the observers is given by Schonemann (1970). 

Metric multidimensional unfolding is related to metric multidimensional 

scaling methods but the scaling methods developed from the approach 

originated by Torgerson (1952, 1958) is based on measures of distance 

between the targets as reported by the observers rather than the 

distances to the targets. Multidimensional scaling and unfolding has 

been applied in marketing, anthropology, psychology, and sociology 

(Weller and Romney, 1990), political science (Poole and Rosenthal, 1984, 

1991, 1997) and Poole (2000), and in engineering signal processing 

(Cahoon and Hinich, 1976). 

The critical issues of the sampling properties of parameter estimates for 

this statistical problem have been obscured by the dominance of this 

literature by the seminal work of measurement psychologists and 

psychometricians. A survey of the mathematics behind Schonemann’s 

method is given by Sibson (1978). Schonemann’s approach to metric 

unfolding based on squared distances does not formally treat the effects 

of random errors in the observations. 

The new method presented in this paper deals with estimating the 

target locations and the observer positions when the observations are 

functions of the squared distances between observers and targets 

observed with an additive random error in a two dimensional space. The 

method is based on the work of Cahoon (1976) , Cahoon, Hinich and 

Ordeshook (1978) and Hinich (1978) . The Cahoon-Hinich (C-H) method 

is a statistical metric multidimensional unfolding method that is based 

on the multidimensional spatial theory of electoral competition originally 

developed by Davis and Hinich (1966). For a review of this theory and its 
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extensions see Davis, Hinich and Ordeshook (1970) and Enelow and 

Hinich (1984). 

The C-H method provides a method for using political survey data to 

make predictions about how candidates can adopt positions on critical 

issues in order to position themselves in the political space to maximize 

their vote in an upcoming election. The method has even been referenced 

in a study of strategic hospital planning by Drain and Godkin (1996). 

The main result in this paper is a significant modification of the C-H 

method that yields much more robust estimates of the target locations 

given the parametric model presented next. The modification also yields 

more accurate estimates of the mean and variance of the observer 

locations ix  than the original method. The statistical problem will be 

presented in terms of squared distances between a set of observers and 

targets. The method can switch between a straight distance model and 

squared distance model. For ease of exposition consider the squared 

distance model when the Euclidean space is two dimensional. The 

method is easily extended to Euclidean spaces whose dimension is larger 

than two but in applications to determine the nature of political spaces a 

variety of methods show that the spaces are almost always either one or 

two dimensional. 

2 A STATISTICAL QUADRATIC DISTANCE MODEL 

Suppose that there are N observers and 1M +  targets. Each observer 

at position ( )1 2,i i ix x ′=x  on a two dimensional surface reports the squared 

Euclidean distances ( ),m iS π x  to the targets 0,1, ,m M=  at 

locations ( )1 2,m m mπ π ′=π . Each reported distance has an additive stochastic 

error ime  with mean mvβ  and variance 2
mψ . The mv  are assumed to be 

known but the scale parameter β  has to be estimated. Thus 
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(0.1) ( ) ( ) ( ), 2m i m i m i im m m m i i i imS e e′ ′ ′ ′= − − + = − + +π x π x π x π π π x x x  

Assuming that there are no missing distance reports there are ( )1M N+  

observations to estimate ( )2 1M N+ +  observer and target positions. The 

parameter estimates will be derived from the ( ),m iS π x  using a procedure 

that will be presented in the next section. There are enough observations 

and structure in the model to estimate all its parameters. The ability to 

incorporate the bias terms mvβ  in the unfolding problem is a unique 

feature of this method. 

Before proceeding with this covariance based approach, consider the 

estimation of the target locations using the distances. If the errors are 

independently and normally distributed over observers and targets then 

the maximum likelihood parameter estimates ( )ˆ ˆ,m iπ x  would be the least-

squares solution of the sum of the squares ( ) ( )( )2ˆ ˆ, ,m i m iS S−π x π x  for 

1, ,i N=  and 0,1, ,m M= . This least-squares problem is nonlinear and 

the high dimensionality of the problem makes it computationally 

unfeasible. 

The C-H method reduces the dimensionality of the problem by 

separating the estimation of the target positions from the estimation of 

the observer positions. The quadratic terms i i
′x x  are removed by 

subtracting the distances to one target, say target 0m =  from the 

distances to the other targets and then computing the sample MxM  

covariance matrix of the differences ( ) ( ) ( )0, , ,m i m i iD S S= −π x π x π x . The 

target whose distances are subtracted from the others is called the 

reference target. The importance of removing the quadratic terms will 

become clarified as the method is presented. 

Since the origin of the space is not identified from the distance data and 

thus is arbitrary, the algebra is simplified by setting 0 0=π . Then 
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(0.2) ( ) 0, 2m i m m m i im iD e e′ ′= − + −π x π π π x  

The positions of the targets and the other parameters of the model are 

estimated from the sample covariance matrix of the M differences 

( ),m iD π x ’s. 

Assume that the errors me  are independently and identically distributed 

and that they are independent of the observer positions ix . Assume that 

1ix  and 2ix  are uncorrelated random variables whose variances are denote 

2
1xσ  and 2

2xσ . Then the MxM  covariance matrix of the ( ),m iD π x ’s is 

(0.3) 2
04D x ψ′= + +Σ Π Σ  Π Ψ 1  

where ( )1, , M′ =Π π π  is a 2xM  matrix of target positions, Ψ  is an MxM  

diagonal matrix whose diagonal elements are the variances ( )2 2
m imE eψ =  of 

the errors, 2
0ψ  is the variance of the error 0ie , 1  is an MxM  matrix of 

ones, and 
2
1

2
2

0
0
x

x
x

σ
σ

 
=  
 

Σ  is the 2 2x  diagonal covariance matrix of the 

( )1 2,i i ix x ′=x . 

If the sample covariance matrix of the scores were used to estimate the 

model then there would be third and fourth order moments of the ix  in 

the expected value of the scores covariances. For most application the 

observer locations will not have a symmetric distribution. A maximum 

likelihood factor analysis based on equation (2.3) is presented in the next 

section. 
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3 ESTIMATING THE TARGET LOCATIONS 

To illustrate how maximum likelihood factor analysis can be applied to 

(2.3) assume for a while that 0ψ  is known. Then 2
0 4D xψ ′ ′− = +Σ 1 1 Π Σ  Π Ψ  

is the MxM  covariance matrix of the 2m m m i ime′ ′− +π π π x . This is a standard 

factor analysis model where the factor loading matrix is the 2Mx  matrix 
1/ 22 x=Λ ΠΣ  and Ψ  is the MxM  diagonal matrix of additive error variances 

(Lawley and Maxwell, 1971). 

The unbiased sample covariance matrix of the observation vectors 

( ) ( )( )1, , , ,i i M iD D ′=D π x π x  is 

(0.4) ( )( )
1

1 N

i i
iN =

′= − −∑S D D D D  

where ( ) ( )( )1 , , MD D ′=D π π  and ( ) ( )1

1 ,N
k k ii

D D
N =

= ∑π π x  is the sample 

mean of observations of the target k. Let ( )0
ˆ ψΛ  denote the maximum 

likelihood estimate of 1/ 22 x=Λ ΠΣ . If the observations are bounded then 

the asymptotic results of Anderson and Amemiya (1988) apply to the 

matrix 2
0ψ ′−S 11  and thus ( ) ( )0 0

ˆN ψ ψ − Λ Λ  is asymptotically normal as 

N →∞ . Since the orientation of the two dimensional coordinate system is 

not identified from the model the estimated 2Mx  factor loading matrix 

obtained from a maximum likelihood factor analysis of 2
0ψ ′−S 11  is 

( ) 1/ 2
0

ˆ 2 xψ = +Λ ΠΣ R ε  where the matrix 
cos  sin
sin       sin

δ δ
δ δ

− 
=  
 

R   is a δ  angle 

orthogonal rotation of the coordinate system and ε  is  the error matrix of 

the estimate. 
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Joreskog (1967) shows that maximizing the likelihood is equivalent to 

minimizing the function ( ) ( )
3

log 1
M

k k
k

f θ θ
=

= − −∑Ψ  where 1 Mθ θ> >  are the 

ordered eigenvalues of the matrix ( ) 1/ 2 1/ 2A − −=Ψ Ψ SΨ . This minimum is 

attained by finding the kkψ  that makes the 2M −  smallest eigenvalues kθ  

as close as possible to one using the least squares metric. Cahoon (1975) 

programmed the maximum likelihood algorithm of Clarke (1970) and I 

modified the algorithm to obtain the maximum likelihood estimates Λ̂  of 
1/ 22 x=Λ ΠΣ R , and the error variances 2 2 2

0 1, ,..., Mψ ψ ψ . 

This new approach to the target estimation problem is implemented in a 

FORTRAN 90 program that I call MAP. The complicated three 

dimensional rotations used in the C-H method is now eliminated as is 

the need for the first least squares fit. 

The rotation angle δ , the elements of the mean ideal point ( )x iE=µ x , 

and the variances 2
1xσ  and 2

2xσ  are not identified from the structure in 

expression (2.3). These parameters are not estimable using any method 

that is only a function of the sample covariance. They are estimable 

using the vector of the sample means ( ) ( )( )1 , , MD D ′=D π π , as is shown 

next. Once these parameters are estimated then the estimate of the 

target location matrix is 1/ 21 ˆˆ ˆ ˆ
2 x

−′=Π R ΛΣ  where 
2
1

2
2

ˆ 0ˆ
ˆ0

x
x

x

σ
σ

 
=  
 

Σ  is the 

estimated covariance matrix and R̂  is the estimated rotation. 

4 ESTIMATING THE REMAINING PARAMETERS 

If the covariance matrix xΣ  of the observer locations ix  is diagonal with 

diagonal elements 2 2
1 2x xσ σ≠  then the north-south orientation of the axes 

are identified up to 180o  rotations since the covariance matrix xΣ  is no 
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longer diagonal if the axes are rotated. To formalize this assertion note 

that from expression (2.2) it follows that the expected value of each 

difference is ( )[ , ] 2m i m m m x mE D vβ′ ′= − +π x π π π µ  where ( )x iE=µ x  and mv  is 

the bias of the stochastic error. 

Let ( )0,0, ,1,0 0m
′=u  where the one is at the thm  position in the M 

dimensional vector. Since 1/ 21
2 x

− ′=Π Σ R  because 1− ′=R R  then 

1/ 24 m m m x m
−′ ′ ′=π π u ΛR Σ RΛu . Thus 

(0.5) ( )22 21
1 1

1
4m m xi mk iki k

rσ λ−
= =

′ = ∑ ∑π π  

where mkλ  and mkr  are the thmk  elements of the matrices Λ  and R . 

Similarly 

(0.6) ( )22 21
1 1

1
2m x xi xi mk iki k

rσ µ λ−
= =

′ = ∑ ∑π µ  

and thus it follows that 

(0.7) ( ) 2 2
1 1 2 2 3 1 2 4 1 5 2,m i m m m m m m mE D vα λ α λ α λ λ α λ α λ β= − − − + + +  π x  

where  

(0.8) 
( )

2 2 2 2

1 2 32 2 2 2 2 2
1 2 1 2 2 1

1 2 1 2
4 5

1 2 1 2

cos sin sin cos 1 1          sin 2

cos sin sin cos2           2

x x x x x x

x x x x

x x x x

δ δ δ δα α α δ
σ σ σ σ σ σ

µ δ µ δ µ δ µ δα α
σ σ σ σ

 
= + = + = − 

 
   

= + = − +   
   

 

The rotation angle δ , the population mean ideal point xµ , the variances 

2
1xσ  and 2

2xσ  and the bias scale parameter β  are estimated from an 
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errors-in variables least squares fit of the ( )mD π  to the estimates ˆ
mkλ  of 

the 2Mx  elements mkλ  of the matrix Λ  and the mv using the plug-in model 

(0.9) ( ) 2 2
1 1 2 2 3 1 2 4 1 5 2

ˆ ˆ ˆ ˆ ˆ ˆ,m i m m m m m m mD vα λ α λ α λ λ α λ α λ β= − − − + + +π x  

The parameter estimates are 

(0.10) ( ) ( )
( ) ( )

1 2 23 3 3
1 1 2 2 1 2

2 1

1 2
1 4 5 2 4 5

ˆ ˆ ˆ1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆtan        
ˆ ˆˆ ˆ2 2 2sin 2 sin 2

ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆcos sin         sin cos
2 2

x x

x x

α α αδ σ α α σ α α
α α δ δ

σ σµ α δ α δ µ α δ α δ

−
        = = + − = + +     −     

= − = +

 

Note that that these estimates are nonlinear functions of the least 

squares estimates ( )1 2 3 4 5ˆ ˆ ˆ ˆ ˆ, , , ,α α α α α  obtained from the errors-in-variables 

regression (4.5). These estimates are biased and the biases propagate 

through the nonlinear transformations. 

The ˆ
mkλ  are maximum likelihood estimates of the mkλ  but the estimates 

in expression (4.6) are subtly biased for both finite N  and asymptotically 

due to the errors-in-variables. The errors go to zero as N  goes to infinity 

but the covariance matrix of the estimates is not diagonal and thus the 

errors in the right hand side of (4.5) propagate in a complicated manner 

to the ( )1 2 3 4 5ˆ ˆ ˆ ˆ ˆ, , , ,α α α α α  which then propagates to the estimates of the 

remaining parameters. 

The parameter estimates are bootstrapped by resampling the data with 

replacement one hundred times. The mean and standard error of each 

parameter estimate are computed from the one hundred resampled 

estimates. 

The simulation results presented next show that there is a bias in the 

target map even for large samples due to the errors-in-variables in the 
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least square fit of (4.5). This method takes as much advantage of the 

statistical squared distance model as can be achieved. The means and 

the standard errors of this method will be demonstrated next using 

simulations. 

5 SAMPLING STATISTICS FROM SIMULATIONS 

I wrote a FORTRAN 90 program to produce artificial data to feed the 

MAP program that implements the estimates that I just described. The 

results that are presented next are for a configuration of 25 targets that 

are displayed in Figure 1. The additive errors are a set of scaled 

pseudorandom independent normal variates and the observer positions 

are another set of pseudorandom independent normal variates. These 

pseudorandom normals were generated by a call to a subroutine that I 

wrote that uses a good congruential generator to return a vector of 

pseudorandom independent uniform (0, 1) variates. The standard 

deviations of the observer positions are 1 5xσ =  and 2 2xσ = . The error 

variances were set equal. 

To keep the experiment manageable only two values of the sample size 

are used: 200N = and 200,000N = . The two values of the error standard 

deviation 0 Mψ ψ ψ= = =  are 0.1ψ =  and 1.ψ =  The measure of goodness 

of fit is the root-mean square error (RMSE) of the estimated target 

locations with respect to the true positions in Figure 1. The best results 

are obtained by using the target at the origin as the reference target. 

Consider the case when all the scale parameter β  is zero. For 200N =  

the RMSE is 2.85 for 0.1ψ =  and 2.74 for 1ψ = . The maximum absolute 

errors are 14.27 and 13.72 respectively. Since the bootstrapped standard 

error of the rotation is 1.68 and 1.23 for 0.1ψ =  and 1ψ =  respectively, 

the differences between the RMSE values are not statistically significant 

at the 5% level. The error in the rotation is about 4.1 for both error 
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variances and this error is the main source for the error of the estimated 

target map. 

For 200,000N =  the RMSE is 2.70 for both 0.1ψ =  and for 1ψ = . The 

maximum absolute errors are 13.48 for both. The larger sample size did 

not yield a significantly better fit as compared with 200N = . 

For 200N =  the errors of the estimates of the coordinates of the mean 

observer positions are 1 1ˆ 0.26x xµ µ− = −  and 2 2ˆ 0.25x xµ µ− =  for 0.1ψ = , and 

1 1ˆ 0.25x xµ µ− = −  and 2 2ˆ 0.24x xµ µ− =  for 1ψ = . The bootstrapped means are 

very similar to the true estimates. The bootstrapped standard errors are 

0.07 for 1ˆ xµ  and 0.06 for 2ˆ xµ  for both error variances. Thus the errors of 

1ˆ xµ  and 2ˆ xµ  are not statistically significant for both error variances at the 

0.1% level. 

For 200,000N =  the errors are 1 1ˆ 0.08x xµ µ− = −  and 2 2ˆ 0.05x xµ µ− =  for both 

error variances. The bootstrapped standard errors are 0.008 for 1ˆ xµ  and 

0.003 for 2ˆ xµ  and thus the errors are statistically significant at the 0.1% 

level. The larger sample size improved the accuracy of the estimate of the 

mean ideal point but the bias is more statistically significant. 

For 200N =  the errors of the ideal point standard deviations are 

1 1ˆ 0.05x xσ σ− =  and 2 2ˆ 0.15x xσ σ− = −  for both error variances. The 

bootstrapped standard errors are 0.27 and 0.09 for both error variances. 

Thus the errors are not statistically significant at the 5% level. The errors 

are 1 1ˆ 0.01x xσ σ− =  and 2 2ˆ 0.00x xσ σ− =  for both error variances and 

200,000N = . The bootstrapped standard errors are 0.008 and 0.003 for 

both error variances. Once again the errors are not statistically 

significant. 

Now consider the results when 1β =  and the mv  values of the errors 

have a pseudorandom normal distribution with a zero mean and unit 

variance. For 200N =  the RMSE is 2.91 for 0.1ψ =  and 2.85 for 1ψ = . The 
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maximum absolute errors are 14.56 and 14.24 respectively. These 

results are statistically the same as when 0β = . The same holds for the 

other parameter estimates for all the cases, which is not surprising since 

the addition of one independent variable that is almost uncorrelated with 

the other five variables will not significantly change the other five 

estimates. 

The error for the estimate of the scale parameter for 200N =  is 

ˆ 0.18β β− =  for 0.1ψ =  and ˆ 0.06β β− =  for 1ψ = . The bootstrapped 

standard errors are 0.01 and 0.12 respectively. The error in β̂  for 1ψ =  is 

not statistically significant at the 5% level but it is statistically significant 

at the 0.1% for 0.1ψ = . 

The errors become much larger if the reference target is not near the 

origin. If the reference target is the point (11.55, -4.01)aT =  in Figure 1 

and 0β = . Then the RMSE is 34.8 for 200N =  and 0.1ψ =  rather than 

2.85 for the origin reference target. The maximum absolute error is 

174.0. The errors of the estimates of the coordinates of the mean 

observer positions are 1 1ˆ 4.5x xµ µ− =  and 2 2ˆ 5.72x xµ µ− =  for 0.1ψ = , which 

are more than ten times the errors when the origin is the reference 

target. The reason for the larger differences between the true positions of 

the targets and their estimates is the increased error in the least squares 

estimates of 4α  and 5α . The estimates for the zero reference are 4ˆ 0.88α =  

and 5ˆ 0.71α =  whereas the estimates for the aT  reference are 4ˆ 4.57α =  and 

5ˆ 5.65α = . The first three estimates are the same for both reference 

targets. 

When the reference target is ( )-0.19, 8.77bT =  the errors of the estimates 

of the coordinates of the mean observer positions are 1 1ˆ 1.79x xµ µ− =  and 

2 2ˆ 8.85x xµ µ− =  for 0.1ψ = . The RMSE is 27.77 and the maximum absolute 

error is 138.86. The estimates for fourth and fifth least squares estimates 
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are 4ˆ =-0.33α  and 5ˆ 11.2α = . The fourth estimate has the wrong sign and 

the fifth is much larger than the estimate when the origin is the 

reference. There is no way to eliminate the errors since these parameters 

are identified using the equations in (4.5) and both the independent and 

dependent variables have stochastic error components. 

6 ESTIMATING THE OBSERVER LOCATIONS 

The thi  observer location is estimated by a least squares fit of the linear 

system 

(0.11) ( ) ˆ ˆ ˆ2m m m m iD ′ ′= −π π π π x  

which is a sample version of expression (2.2). This fit is also an errors-in-

variables least squares and so the estimates are biased. To test the 

accuracy of the estimation the simulation program calculated the percent 

of the true ix ’s and the estimated ˆ ix ’s that are closest to each target. For 

200N =  and 0.1ψ =  the largest true percent was 28% for target 22 and 

the percentage for the estimates was 20% yielding an 8% error. The 

second largest true percentage was 16.5% for target 21 and the 

percentage for the estimates was 9% yielding a 7.5% error. The target at 

the origin, the reference target, had a true percentage of 15% and so did 

the estimates. The errors for the other percentages were smaller than 

7.5%. The results for 1ψ =  were surprisingly slightly better than for the 

smaller error variance. 

The differences for 200,000N =  were smaller. For 1ψ =  the percentage 

for the target with the largest true percentage was 22.5% yielding a 5.5% 

error. The percentage for the reference target was 19.7% yielding an error 

of 4.2%. For 0.1ψ =  the maximum error was 3.5% and the rest were 

about 1%. 
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7 A TURKISH POLITICS EXAMPLE 

The Cahoon-Hinich (C-H) method is used to estimate the positions of 

the voters and the candidates or parties in a latent political space 

depending on the political system of the democracy in question using a 

set of survey questions. 

The application of the method to the spatial theory of politics requires a 

set of assumptions relating the data to a spatial model. First, the scores 

given to each party is assumed to be a monotonically decreasing function 

of the Euclidian distance between the position of the party in the space 

and the most preferred ideological position of the respondent. This 

position is called the ideal point. The respondent is not required to 

articulate that position but rather it is a latent position in the latent 

space. Second, the constellation of the party positions in the latent space 

is assumed to be the same across all respondents. The only thing that 

differs from respondent to respondent is their personal ideal points. The 

method is then applied to these scores that we get from the respondents. 

The method was applied to a data set from a public opinion survey 

taken in 2001. For a complete description of the survey and the analysis 

see Çarkoğlu and Hinich (2003). Our data comes from a nation-wide 

representative survey of urban population conducted during the chaotic 

weeks of the second economic crisis of February 2001. A total of 1201 

face-to-face interviews were conducted in 12 of the 81 provinces. The 

questionnaires were administered between February 20 and March 16 

2001 using a “random sampling” method with an objective to represent 

the nation-wide voting age urban population living within municipality 

borders, in which the urban population figures of 1997 census data were 

taken as the basis. 

Each respondent was asked to grade the seven major parties in terms of 

how well that party would impact on the respondent’s family is the party 

were to receive a majority of the seats in the parliament. These parties 
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obtained 94.8 percent of the urban vote in 1999 elections. However as of 

February-March 2001 these parties comprise only the preferences of 42.3 

percent of our urban sample. Similar to opinion poll results reported in 

the media, our findings also indicate that while 6 percent of the 

respondents report that they will not cast their vote and about 5 percent 

are undecided as to which party to vote for. More significantly nearly 33 

percent of the respondents indicate that they will not cast their vote for 

any one of the existing parties. Given the continual crisis atmosphere in 

the country, the erosion of electoral support for the coalition partners, 

which amounts to a total of about 39 percentage points in the urban 

areas, is not surprising. Among the opposition only the left leaning CHP 

party and pro-Kurdish HADEP party maintained their urban 

constituencies. The rest of the opposition parties have lost their 

supporters. 

The results of a two-dimensional latent ideological spatial map of these 

parties together with the estimated respondents’ ideal points are 

presented in the Figure 2. The horizontal axis appears to posit the pro-

Islamist FP in one extreme as opposed to the secularist left leaning CHP. 

The relative positions of the rest of the parties fit our expectations about 

the religious cleavage in Turkish politics. The nationalist MHP turns out 

to be the closest one to the position of the pro-Islamist FP on this axis. 

Among the centrist parties DYP is slightly closer to the pro-Islamist end. 

DSP and CHP are clustered together on the opposing end of this 

dimension placed to the left of ANAP’s centrist position. It is noticeable 

that HADEP’s position on this dimension is closer in the perceptions of 

our respondents to the secularist left of DSP and CHP.  

The vertical axis has the Kurdish HADEP on one extreme and the 

nationalist MHP and DSP on the other. While ANAP, CHP and FP’s 

positions come close to the center on this dimension, DYP is placed 

closer to the nationalist MHP and DSP’s opposing end. It has been 
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suggested that FP’s strong showing in the East and Southeastern 

provinces where the bulk of Kurdish population lives is evidence of FP’s 

appeal to the Kurdish electorate. Similarly the religiously conservative 

Kurdish constituency was seen by many Turkish politics scholars as a 

cause for ideological closeness of HADEP and FP. Our spatial map clearly 

shows that in the perceptions of the urban population, HADEP is 

nowhere close to the position of FP on the two-dimensional political 

space we induce from the data using MAP. 
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Figure 1   25 Test Targets
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Figure 1. Estimated ideal points and party positions, full sample
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