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FREQUENCY-DOMAIN TEST OF
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We introduce a frequency-domain test of time reversibility, the REVERSE test. It is
based on the bispectrum. We analytically establish the asymptotic distribution of the test
and also explore its finite-sample properties through Monte-Carlo simulation. Following
other researchers who demonstrated that the problem of business-cycle asymmetry can be
stated as whether macroeconomic fluctuations are time irreversible, we use the REVERSE
test as a frequency-domain test of business-cycle asymmetry. Our empirical results show
that time irreversibility is the rule rather than the exception for a representative set
of macroeconomic time series for five OECD countries.
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1. INTRODUCTION

Economists have long been interested in the problem of business-cycle asymme-
try, especially since the pioneering work by Burns and Mitchell (1946). Through
informal statistical analysis, these authors documented that many U.S. economic
time series appear to exhibit periods of expansion that are longer and slower than
their subsequent contractionary phases. The modern empirical literature on this
problem was opened by Neftci (1984), who studied the time-symmetry proper-
ties of the U.S. aggregate unemployment rate. In the many papers that followed,
various asymmetry metrics were introduced and analyzed.

Recently, Ramsey and Rothman (1996) showed that the question of business-
cycle asymmetry can be restated as whether the dynamic behavior of key macroe-
conomic variables is time reversible. If the probabilistic structure of a time series
going forward is identical to that in reverse, the series is said to be time reversible.
If the series is not time reversible, it is said to be time irreversible. Having estab-
lished the connection between time reversibility and business-cycle asymmetry,
Ramsey and Rothman (1996) developed and applied a time-domain test of time
reversibility called the Time Reversibility (TR) test.
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We introduce a frequency-domain test of time reversibility, based on the bis-
pectrum and called the REVERSE test. This test is new to the statistical time-
series literature and exploits a property of higher-order spectra for time-reversible
processes, i.e., the imaginary part of all polyspectra is zero for time-reversible
stochastic processes. The REVERSE test is related to Hinich’s (1982) Gaussianity
test. In particular, it checks whether the breakdown of Gaussianity is due to time
irreversibility.

The REVERSE test complements the time-domain TR test of Ramsey and
Rothman (1996). Both the REVERSE and TR tests examine the behavior of es-
timated third-order moments to check for departures from time reversibility. The
REVERSE test, however, explores more of the third-order moment structure and,
as a result, may have higher power than the TR test against important time-
irreversible alternatives. Further, the analysis of the variance of the REVERSE
test statistic is arguably more complete than the analogous analysis for the TR
test.

The hypothesis that we wish to falsify is that the time series is a realization from
a stationary random time-reversible process with finite moments. This hypothesis
implies that the bicovariance function is symmetric, which in turn implies that
the imaginary part of the bispectrum is zero. There is another null hypothesis that
implies a similar result, namely, that the process is linear with innovations drawn
from a symmetric distribution. Such a linear process will have zero bicovariances,
and thus zero bispectrum.

The issue of time reversibility is most important for nonlinear processes, because
most interesting nonlinear stochastic processes are not time reversible. Thus, the
detection of time reversibility is part of the general research program of detect-
ing and identifying a nonlinear process using time-series analysis. For example,
evolutionary processes are path dependent and do not return to the initial position
with certainty.

Following the argument of Ramsey and Rothman (1996), as a test of time
reversibility the REVERSE test also serves as a frequency-domain test of business-
cycle asymmetry. We apply the REVERSE test to monthly data, from the early
1960’s to the mid-1990’s, for representative macroeconomic time series for five
Organization for Economic Cooperation and Development (OECD) countries. Our
results provide ubiquitous evidence that business-cycle fluctuations over the past 35
years are time irreversible, establishing asymmetry of business-cycle movements
as a stylized fact for several of the world’s largest economies.

The paper proceeds as follows. Section 2 provides a formal definition of time
reversibility and introduces the REVERSE test. We establish the asymptotic
distribution of the REVERSE test statistic in that section. Small sample prop-
erties of the test are analyzed in Section 3. In Section 4, we discuss the re-
lationship between business-cycle asymmetry and time reversibility. We apply
the REVERSE test to our international data set in Section 5. We conclude in
Section 6.
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2. TIME REVERSIBILITY AND THE REVERSE TEST

2.1. Time-Reversible Time Series

A formal statistical definition of time reversibility follows.

DEFINITION. A time series{x(t)} is time reversible if for every positive
integer n,every t1, t2, . . ., tn ∈ R,and all n∈ N, the vectors[x(t1), x(t2), . . . , x(tn)]
and[x(−t1), x(−t2), . . . , x(−tn)] have the same joint probability distributions.

Under this definition, one can show that time reversibility implies stationarity.
Likewise, nonstationarity implies time irreversibility. In what follows, we abstract
from problems of nonstationarity-induced time irreversibility and restrict ourselves
solely to stationary time-irreversible stochastic processes.

Clearly,{x(t)} is time reversible when{x(t)} is independently and identically
distributed (i.i.d.). The result that stationary Gaussian processes are time reversible
appeared as Theorem 1 in Weiss (1975, p. 831). In the same paper, Weiss proved the
converse within the context of discrete-time ARMA models. Hallin et al. (1988)
extended this result to the case of general linear processes.

It is straightforward to show that time irreversibility can stem from two sources:
(1) The underlying model may be nonlinear even though the innovations are sym-
metrically (perhaps normally) distributed; or (2) the underlying innovations may
be drawn from a non-Gaussian probability distribution while the model is linear.
Nonlinearity does not imply time irreversibility; there exist stationary nonlinear
time processes that are time reversible. A test for time irreversibility, then, is not
equivalent to a test for nonlinearity.1

2.2. REVERSE Test

Let {x(t)} be a real-valued mean-zero third-order stationary time series. The gen-
eral third-order momentscx(s, r ) are defined as follows:

cx(r, s) = E[x(t + r )x(t + s)x(t)], s ≤ r, r = 0, 1, 2, . . .. (1)

The bispectrum is the double Fourier transform of the third-order cumulant
function. More specifically, the bispectrum is defined for frequenciesf1 and f2 in
the domain

Ä = {( f1, f2) : 0< f1 < 0.5, f2 < f1, 2 f1+ f2 < 1}, as

Bx( f1, f2) =
∞∑

t1=−∞

∞∑
t2=−∞

cx(r, s) exp[−i 2π( f1r + f2s)]. (2)

If {x(t)} is time reversible, then

cx(r, s) = cx(−r,−s), (3)

so that the imaginary part of the bispectrumBx( f1, f2) is zero if {x(t)} is time
reversible. The result that the imaginary part of the bispectrum is zero for time-
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reversible processes follows from Brillinger and Rosenblatt’s (1967) discussion of
the relationship between time reversibility and polyspectra.

The skewness function0( f1, f2) is defined in terms of the bispectrum as follows:

02( f1, f2) = |Bx( f1, f2)|2
/

[Sx( f1)Sx( f2)Sx( f1+ f2)], (4)

whereSx( f ) is the spectrum of{x(t)} at frequencyf . If {x(t)} is time reversible,
then the imaginary part of0( f1, f2) is zero at all bifrequencies.

Time reversibility can be tested using a sample estimator of the skewness func-
tion 0( f1, f2). We next outline the procedure that we use to estimate the bispec-
trum.

Divide the sample{x(0), x(1), . . . , x(N − 1)} into non-overlapping frames of
length L and define the discrete Fourier frequencies asfk = k/L. If N is not
divisible by L, whereN is the sample size, the last incomplete frame’s data are
not used. Thus, the number of frames used,P, is given byP = (N/L], where
the brackets denote integer division. The resolution bandwidth,δ, is defined as
δ = 1/L. For thepth frame of lengthL , p = 0, 1, . . . , P − 1, calculate

Y
(

fk1, fk2

) = X
(

fk1

)
X
(

fk2

)
X∗
(

fk1 + fk2

)
, (5)

where

X( fk) =
L−1∑
t=0

x[t + (p · L)] exp{−i 2π fk[t + (p · L)]}. (6)

Let 〈Bx( fk1, fk2)〉 denote a smoothed estimator ofBx( f1, f2); 〈Bx( fk1, fk2)〉
is obtained by averaging over the values ofY( fk1, fk2)/L across theP frames.
Theorem A.3 of the Appendix shows that this is a consistent and asymptotically
complex normal estimator of the bispectrum,Bx( f1, f2), if the sequence( fk1, fk2)

converges to( f1, f2). The large sample variance of〈Bx( fk1, fk2)〉 is
Var= [1/(δ2N)]

〈
Sx
(

fk1

)〉〈
Sx
(

fk2

)〉〈
Sx
(

fk1 + fk2

)〉
, (7)

where〈Sx( f )〉 is defined as a consistent and asymptotically normal estimator of the
power spectrum at frequencyf andδ is the resolution bandwidth set in calculating
〈Bx( fk1, fk2)〉.

The normalized estimated bispectrum is

A
(

fk1, fk2

) =√P/L
〈
Bx
(

fk1, fk2

)〉/
Var1/2. (8)

Let Im A( fk1, fk2) denote the imaginary part ofA( fk1, fk2). The REVERSE test
statistic is defined as

REVERSE=
∑∑
(k1,k2)∈D

∣∣Im A
(

fk1, fk2

)∣∣2, where

D = {(k1, k2) :
(

fk1, fk2

) ∈ Ä}. (9)

Under the null hypothesis of time reversibility, so that ImBx( f1, f2) = 0 for
all bifrequencies, Theorem A.4 of the Appendix shows that the REVERSE test
statistic is distributed central chi squared withM = [L2/16] degrees of freedom.
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TABLE 1. Estimated sizes of the REVERSE test statistic at 5% and 1%
nominal sizea

Estimated size at

Simulated series 5% nominal size 1% nominal size

A. Independently and identically distributed processes
Standard normal distribution 0.051 0.009
Uniform distribution on the unit interval 0.011 0.001

B. Gaussian AR models fitted to industrial production index growth rates for:
Canada 0.051 0.011
Germany 0.053 0.013
Japan 0.066 0.015
United Kingdom 0.049 0.010
United States 0.067 0.017

C. Gaussian AR models fitted to inflation rates for:
Canada 0.056 0.012
Germany 0.051 0.010
Japan 0.049 0.010
United Kingdom 0.053 0.011
United States 0.062 0.015

D. Gaussian AR models fitted to first differences of unemployment rates for:
Canada 0.055 0.012
Germany 0.073 0.019
Japan 0.053 0.012
United Kingdom 0.076 0.019
United States 0.054 0.012

a Results are based on Monte-Carlo simulations with 10,000 iterations. In each iteration, a realization of
sample size 414 of the stochastic process was generated and the REVERSE test statistic was calculated;
414 is the representative sample size of the OECD time series analyzed in Tables 2, 3, and 4. The
estimated sizes were calculated as the fraction of rejections across the 10,000 iterations at both the 5%
and 1% nominal size levels.

The same theorem also establishes the consistency of the test if ImBx(k1, k2) 6= 0,
if P/L →∞ asP→∞.

3. FINITE-SAMPLE PROPERTIES

Table 1 reports Monte-Carlo results on the small-sample properties of the RE-
VERSE test statistic. These results were obtained through simulations run with
10,000 iterations. In each iteration, a series of sample size 414 of the particular
stochastic process was generated and the REVERSE test statistic was calculated;
414 is the representative sample size of the OECD macroeconomic time series an-
alyzed in Section 5. The estimated sizes in each simulation were calculated as the
fraction of rejections across the 10,000 iterations at both the 5% and 1% nominal
size levels.

Table 1A reports estimated sizes for two i.i.d. cases: (1) the standard normal
distribution; and (2) the uniform distribution on the unit interval. For the standard
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normal distribution, the REVERSE test statistic has converged to its asymptotic
distribution at the sample size considered. In the uniform case, however, the RE-
VERSE test is conservative at this sample size; e.g., with 5% nominal size, the test
rejects only 1.1% of the time.

To further explore the small-sample behavior of the REVERSE test, we esti-
mated the size of the test for a set of finite-order autoregressive (AR) models. Given
our interest in testing for evidence of business-cycle asymmetry with monthly
OECD data, we designed the experiment as follows. For each OECD time series,
we identified an AR model with the Akaike information criterion (AIC). Using
Gaussian innovations, so that the stochastic process is time reversible, for each
AIC-identified AR model, we ran a simulation to estimate the size of the RE-
VERSE test. Our results appear in panels B, C, and D of Table 1, which report
the estimated sizes for AR models fitted to the monthly OECD industrial pro-
duction growth rates, inflation rates, and first differenced unemployment rates,
respectively.

In most cases the estimated sizes match the nominal sizes very closely for these
Gaussian AR models. The strongest size distortions occur for the AR models fitted
to the first-differenced unemployment rates for Germany and the United Kingdom.
For these two AR processes, however, the size distortion is nonetheless relatively
modest; e.g., at the 5% nominal size level, the REVERSE test rejects slightly
greater than 7% of the time. Our Monte-Carlo simulations thus establish that the
REVERSE test is well behaved at the sample size considered in our application.
Thus, chances are remote that rejections obtained with our test are spurious.

4. BUSINESS-CYCLE ASYMMETRY AND TIME IRREVERSIBILITY

The fundamental question addressed in the business-cycle asymmetry literature
is whether macroeconomic fluctuations shift across business-cycle phases in a
manner that is inconsistent with conventional theoretical and empirical models.
DeLong and Summers (1986, p. 167) note that “statistical models of the sort used
in economics. . . are entirely unable to capture cyclical asymmetries. If, as Keynes,
Mitchell, and others believed, cyclical asymmetries are of fundamental importance,
then standard statistical techniques are seriously deficient.” Standard time-series
tools used by macroeconomists assume, for example, that impulse response func-
tions are invariant with respect to the stage of the business cycle. However, the
reaction of macroeconomic time series to shocks during an expansionary phase
may be significantly different than during a contractionary phase.2

Building on Sichel’s (1993) analysis, Ramsey and Rothman (1996) introduced
the notion of longitudinal asymmetry. Longitudinal asymmetry captures the idea
of temporal asymmetric behavior in the direction of the business cycle. Such
asymmetry is depicted in the plot of the slow-up and fast-down time series found
in Figure 1 and captures what Sichel (1993) identified as steepness asymmetry.

Various approaches have been followed in the literature to detect such asym-
metric behavior. In each, the major theme has been to identify a feature of the data
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FIGURE 1. Time-series plot of slow up-fast down steep asymmetric cycle.

that shows that business-cycle expansions are not symmetric with contractions.
Ramsey and Rothman (1996) argued that the concepts of time reversibility and its
inverse, time irreversibility, provide a unified framework for the current alterna-
tive definitions of business-cycle asymmetry. The central issue with the detection
of time irreversibility in an economic time series is the implication for modeling
the series. Time reversibility implies certain symmetries in the formulation of the
dynamical equations of motion that are broken in time-irreversible systems. If the
nature of time irreversibility can be characterized in parametric terms, this can
serve as a guide in how to model the system to meet the dynamical constraints
indicated by the presence or absence of time reversibility.

5. TESTING BUSINESS-CYCLE SYMMETRY WITH THE REVERSE TEST

We applied the REVERSE test to a set of three postwar representative monthly
macroeconomic time series from the OECD Main Economic Indicators database
for five countries: Canada, Germany, Japan, the United States, and the United
Kingdom. For each country, we examined the following three business-cycle in-
dicators: the index of industrial production, the consumer price index (CPI), and
the aggregate unemployment rate. The sample period for each time series was
roughly 1960:01 to 1994:07; a couple series began one year later. We took growth
rates of the industrial production and CPI series and raw first differences of the
unemployment-rate series before calculating the REVERSE test statistics. The
standard tests indicate that these transformations eliminate all evidence of unit
root nonstationarity from the original time series.
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TABLE 2. Summary statistics and REVERSE test results for growth rates of indus-
trial production indexes

Country

Statistic Canada Germany Japan United States United Kingdom

Sample 1961:02– 1960:02– 1960:02– 1960:02– 1960:02–
period 1994:06 1994:06 1994:07 1994:07 1994:06

Number of 401 413 414 414 413
observations

Mean 0.295 0.223 0.506 0.274 0.149
Standard 1.180 1.818 1.420 0.844 1.560

deviation
Skewness −0.277 0.035 −0.142 −0.696 −0.213
Kurtosis 0.579 7.260 −0.118 2.880 7.630
p-value of 0.122 0.000 0.010 0.006 0.000

REVERSE
test statistic

TABLE 3. Summary statistics and REVERSE test results for inflation rates

Country

Statistic Canada Germany Japan United States United Kingdom

Sample 1960:02– 1960:02– 1960:02– 1960:02– 1960:02–
period 1994:07 1994:07 1994:07 1994:07 1994:07

Number of 414 414 414 414 414
observations

Mean 0.433 0.305 0.430 0.405 0.597
Standard 0.427 0.404 0.862 0.355 0.706

deviation
Skewness 0.431 0.159 0.617 0.457 1.380
Kurtosis 1.510 4.210 1.490 1.100 4.440
p-value of 0.045 0.007 0.283 0.004 0.013

REVERSE
test statistic

Summary statistics andp-values for the REVERSE test statistics for these trans-
formed series are reported in Tables 2, 3, and 4. For all countries except Canada,
time reversibility of the industrial production growth rates is rejected at the 1%
significance level, with the strongest rejections occurring for Germany and the
United Kingdom. Time reversibility of the CPI inflation rates is rejected at the
5% significance level and lower for all countries except Japan. Likewise, the first-
differenced unemployment rates for all countries except Japan appear to be strongly
time irreversible.
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TABLE 4. Summary statistics and REVERSE test results for first differences of
unemployment rates

Country

Statistic Canada Germany Japan United States United Kingdom

Sample 1960:02– 1962:02– 1960:02– 1960:02– 1960:02–
period 1994:07 1994:06 1994:07 1993:12 1994:07

Number of 414 389 414 407 414
observations

Mean 0.010 0.023 0.002 0.003 0.108
Standard 0.236 0.107 0.096 0.193 0.116

deviation
Skewness 0.677 0.595 0.247 0.576 0.128
Kurtosis 0.218 0.585 1.270 1.700 2.420
p-value of 0.027 0.020 0.258 0.010 0.033

REVERSE
test statistic

The evidence in favor of time irreversibility for these macroeconomic indicators
is consistent with longitudinal business-cycle asymmetry as defined by Ramsey
and Rothman (1996). The postwar industrial production asymmetry results are
particularly interesting, given that DeLong and Summers (1986), Falk (1986), and
Verbrugge (1996) failed to find significant asymmetric effects in the dynamical be-
havior of the output growth rates they examined. This suggests that the REVERSE
test may have greater power than alternative tests of business-cycle asymmetry
considered in the literature.

6. CONCLUSIONS

We introduce and analyze and REVERSE test, a frequency-domain test of time re-
versibility. This is the first frequency-domain test of time reversibility available in
the statistical time-series literature. Related to Hinich’s (1982) bispectrum-based
Gaussianity test, our test examines whether the imaginary part of the estimated
bispectrum is equal to zero. The REVERSE test signals whether rejection of Gaus-
sianity is due to time irreversibility. Note that non-Gaussian i.i.d. processes lead
to rejections of Hinich’s Gaussianity test but fail to reject the null hypothesis of
the REVERSE test, because all i.i.d. processes are time reversible.

We establish the asymptotic distribution of the REVERSE test statistic. Through
Monte-Carlo simulations, we also explore the finite-sample properties of the test.
This analysis shows that the test is well behaved for the sample size considered.
Thus, it is highly unlikely that rejections of time reversibility are due to size
distortions of the test.
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In our application of the REVERSE test to the question of business-cycle asym-
metry, we established that asymmetry is the rule rather than the exception for
a representative set of international monthly macroeconomic time series. The
evidence in favor of business-cycle asymmetry is very strong for Germany, the
United States, and the United Kingdom, slightly weaker for Canada, and weakest
for Japan. The REVERSE test, then, appears to have greater power against time-
irreversible, and therefore asymmetric, alternatives than some previous approaches
applied in the business-cycle asymmetry literature.

NOTES

1. For example, Lewis et al. (1989) showed that the nonlinear random-coefficient gamma MA(1)
process is time reversible because its bivariate characteristic function is symmetric.

2. See Potter (1995) and Koop et al. (1996) for analysis of state-dependent impulse response
functions.
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APPENDIX

The proof uses the properties of the joint cumulants of the vector of discrete Fourier
transform (DFT) of a section of a sampled time series{x(t) : t = 0, 1, . . . , L − 1}. The
DFT of this data segment for thekth Fourier frequencyfk = k/L is

X(k) =
L−1∑
t=0

x(t) exp(−i 2π fkt). (A.1)

Because thex(t)’s are real,X(k) = X∗(−k) for eachk.
Because cumulants are unfamiliar to most users of statistical theory and methods, let

us start with an introduction to cumulants and their relationships with moments. Although
most of the results in this Appendix are in the text or exercises in Brillinger (1975) or in
papers in the mathematical statistics literature, they are presented here as simply as possible
to open the results to people who have a basic understanding of mathematics but who are
not able or willing to assemble the pieces on their own with no manual.

Let X denote a random variable whose density function has finite moments of all order,
i.e.,µn = E(Xn) exists for all integersn. Themoment generating function(m.g.f) of X is
gx(s) = E[exp(sX)]. Although the generating function is superscripted byx, the notation
in this Appendix is simplified if the moments are only subscripted by the order of the
moment. The moments and cumulants are subscripted by their random variables when it is
necessary to avoid ambiguity.

The natural log ofgx(s) plays an important role in proofs of central limit theorems. The
coefficient ofsn/n! in the Taylor-series expansion ln[gx(s)] is called thenth cumulantof
X, and is usually denotedκn. An equivalent definition is thatκn is thenth derivative of
ln[gx(s)] at s= 0. The Taylor-series expansion is

ln[gx(s)] =
ν∑

n=1

κn(s
n/n!)+ o(|s|ν). (A.2)

From the first two derivatives of ln[gx(s)] evaluated ats= 0, it can be shown thatκ1 = µ1 =
E(X) andκ2 = µ2 − µ2

1. For example, ifX has an exponential density exp(−x), x ≥ 0,
thenκn = (n− 1)!.

Note that thenth-order cumulant ofX+ c is alsoκn for n > 1. We then can simplify the
exposition of cumulants if we setE(X) = 0 from now on. Thenκ2 = µ2 = σ 2 (the variance
of X), κ3 = µ3, andκ4 = µ4 − 3σ 4. Thus the variance ofX2 is E(X4)− σ 4 = κ4 + 2σ 4.

The generating function of a vector ofl zero-mean random variablesX = (X1, . . . , Xl)
′ is

gx(s) = E[exp(s′X)], wheres= (s1, . . . , sl)
′. For any set of nonnegative integersn1, . . . ,nl

which sum ton, let κ[xn1
1 xn2

2 · · · xnl
l

] denote the(n1, . . . ,nl)nth order joint cumulantof
(Xn1

1 , Xn2
2 , . . . , X

nl
l
). This cumulant is the coefficient of(sn1

1 · · · snl
l
)/(n1! · · ·nl!) in the

Taylor-series expansion of ln[gx(s)]. This definition implies that forn = n1 + · · · + nl,

κ
[
xn1

1 xn2
2 · · · xnl

l

] = ∂n ln[gx(s)]
(∂s1)n1(∂s2)n2 · · · (∂sl)

nl
, (A.3)

where the joint partial derivative is evaluated ats= 0. The lowercasex’s in the cumulant
notation should not be confused with the observationsx(t) of the time series.
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If X is a complex random variable, then its generating function is defined as the bivariate
generating function ofX andX∗, the complex conjugate ofX. In symbols, the generating
function of complexX is

gx(t1, t2) = E
[
exp
(
t1X + t2X∗

)]
for realt1 andt2. (A.4)

This definition of the generating functions of complex variates preserves the algebraic
relationships between moments and cumulants that we apply in this paper. The second
cumulant of a complexX is κ[x2] = E(X2). The joint cumulant of(X, X∗) is κ[xx∗] =
E(|X|2), which is defined as thevarianceVar(X) of X.

If X = (ReX, Im X), where the real(ReX) and imaginary(Im X) terms are independent
normal variates whose variance is1

2, thenX is called a standard complex normal variate.
Thus if X is standard complex normal, then (ReX)2 and (ImX)2 are independentχ2 (chi
square) variates with one degree of freedom. It follows from the definition of cumulants
that the third- and higher-order cumulants ofX are all zero.

The generating function for a vector of complex random variables is
gx(t ′1X + t ′2X

∗), whereX∗ is the vector of conjugates of theXk’s. For two complex vari-
ates, the joint cumulantκ[x1x∗2] = E(X1, X∗2) is defined as thecovarianceCov(X1, X2) of
(X1, X2).

Note that ifnl = 0, s
nl
l
= 1 and thus in our notation,κ[xn1

1 · · · x
nl−1
l−1 ] is the (n1, . . . ,

nl−1)nth order joint cumulant of(Xn1
1 · · · X

nl−1
l−1 ). This implies that thenth cumulant of

X1 is κx(xn
1) in our joint cumulant notation. If theXk’s are identically distributed, then

κx[xn] = κn.
To simplify notation, we now letκ(x1 · · · xl) denote the(1, . . . ,1) l th-order joint cumu-

lant of the subset(X1, . . . , Xl) of X. When all exponents of theX’s are equal to one, the
joint cumulant of theX’s is calledsimplebut the term simple usually is omitted. The third
joint cumulant of(X1, X2, X3) is κ[x1 x2 x3] = E(X1, X2, X3).

For four or more real variates, the relationships between joint moments and cumulant
are complicated. For example, the fourth-order joint momentE(X1, X2, X3, X4) is

κ[x1 x2 x3 x4] + κ[x1 x2]κ[x3 x4] + κ[x1 x3]κ[x2 x4] + κ[x1 x4]κ[x2 x3].

The following four results are obtained by a methodical application of the definition of
the joint cumulant [see Brillinger (1975, p. 19)].

(1) The n1, . . . ,nl joint cumulant of the permutation (Xn2
2 , Xn1

1 , Xn3
3 , . . . , X

nl
l
) is

κ[xn2
2 xn1

1 xn3
3 · · · xnl

l
]. Thus the simple cumulant of any permutation of(X1, . . . , Xl)

is κ[x1 · · · xl].
(2) For any constantsa1, . . . ,al, κ[x1 + a1 · · · xl + al] = κ[x1 · · · xl].
(3) κ[cx1 · · · cxl] = clκ[x1 · · · xl] for anyc.
(4) If any subset of(X1, . . . , Xl) is independent of the otherX’s, thenκ[xn1

1 · · · xnl
l

] = 0.

We now turn to a theorem that is used to develop the joint cumulants of the DFT values
X(k) in terms of the joint cumulantsκ[x(t1) · · · x(tl)] of the l observations of the time
series.

THEOREM A.1. LetV = AX where A is a K× l matrix whose k, t element is denoted
akt. The nth order joint cumulant of(Vk1, . . . ,Vkl

) is

κ
[
vk1 · · · vkn

] = l∑
t1=1

l∑
t2=1

· · ·
l∑

tn=1

ak1t1ak2t2 · · ·akntnκ[x(t1)x(t2) · · · x(tn)].
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Proof. To simplify notation, the proof is presented for the case of reala’s and Xk’s,
but the proof holds for complex variates. The m.g.f ofV is gv(s) = E[exp(s′V)] =
E[exp(s′AX)] = gx(u1, . . . ,ul), whereu = A′s. Because∂ut/∂sk = akt, ∂ ln[gv/sk] =
ak1 (∂ ln[gx]/∂s1)+ · · · + akl (∂ ln[gx]/∂sl) by the chain rule. Thus,∂2 ln[gv]/(∂sk1∂sk2) =∑

t1

∑
t2

ak1ak2t2(∂
2 ln[gx]/∂st1∂st2). The result follows by continuing the chain rule for

partial differentiation, settings= 0, and applying (A.3).

Let akt = exp(−i 2π fkt), wheret = 0, 1, . . . , L − 1. Then, from Theorem A.1 and
equation (A.1), the joint cumulant of [X( f1), . . . , X( fn)] is

κ[x(k1) · · · x(kn)] =
L−1∑
t1=0

· · ·
L−1∑
tn=0

exp[−i 2π( f1t1 + · · · + fntn)]κ[x(t1) · · · x(tn)] (A.5)

Assume that the time series is strictly stationary. Then, with no loss of generality, assume
thatµx = 0, which implies thatE[X(k)] = 0 for eachx. In addition, the joint cumulant
κ[x(t1) · · · x(tn)] is a function of the(n− 1) lagsτm = tm − tn (m= 1, . . . ,n− 1), which
we denote asκ[τ1, . . . , τn−1].

Assume that the(n−1)th-fold sum of|κ[τ1, . . . , τn−1]| is finite for eachn. Thenth-fold
sum on the right-hand side of expression (A.5) can be written as sums of the(n−1)τ ’s and
approximated by

L

∫ ∞
−∞
· · ·
∫ ∞
−∞

WL(g1 + · · · + gn)Sx( f1 − g1, . . . , fn−1 − gn−1)dg1 · · ·dgn, (A.6a)

where

SX( f n−1) =
∞∑

τ1=−∞
· · ·

∞∑
τn1=−∞

exp[−i 2π( f1τ1 + · · · + fn−1τn−1)κ(τ1, . . . , τn−1)] (A.6b)

for the vectorf n−1 of (n−1) Fourier frequenciesf1 = k1/L , . . . , fn−1 = kn−1/L. Equation
(A.6b) is called the (n− 1)th-orderpolyspectrum[Brillinger (1965)]. The kernel function

WL( f n−1) =
sin2(πL f1) · · · sin2(πL fn−1)

Ln−1 sin2(π f1) · · · sin2(π fn−1)
(A.6c)

is the(n−1)th-fold product ofWL( f ) = L−1 sin−2(π f ) sin2(πL f ), which is called aFejer
function in Fourier approximation theory. For largeL, the integral (A.6a) is approximately
Lδ( f1+ · · · + fn−1)Sx( f n−1) with an error ofO(1) which is proportional toSx, where
δ(k)= 1 if k= 0 andδ(k)= 0 if k 6= 0. Thespectrum Sx( f ) is the first-order polyspec-
trum, thebispectrum Sx( f1, f2)= Bx( f1, f2) is the second-order polyspectrum, and the
trispectrum Sx( f1, f2, f3)= Tx( f1, f2, f3) is the third-order polyspectrum.

Suppose that the observed time-series segment{x(1), . . . , x(N)} of lengthN = L P is
divided into P non-overlapping frames{x[(p − 1)L + 1], . . . , x(pL)} of length L. The
following theorem is used to obtain the sampling properties for the statistics used in this
paper.

THEOREM A.2. Let Xp(k) =
∑

n x[(p − 1)L + n] exp(−i 2πnk/L) denote the kth
value of the DFT of the pth frame. Assume that{x(t)} is strictly stationary and has the
following finite memory property: There is a time shift T≤ L such that x(t) and x(t + T)
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are independent for each t. Define Yp(k1, k2) = Xp(k1)Xp(k2)Xp(−k1 − k2) for each p
and(k1, k2) in the isosceles triangle IT= {k1, k2 : 0< k2 < k1, k1 + k2 < L/2}. There are
M = L2/16− L/2+ 1(k1, k2) in IT if L is divisible by4, approximately M= L2/16 for
large L.

The frame averaged estimate of the bispectrum at Bx( fk1, fk2) is〈Y(k1, k2)〉/L, where〈Y〉
denotes the arithmetic average of P Yp’s. Thel th-order joint cumulant of[〈Y(k11, k12)〉, . . . ,
〈Y(kl1, kl 2)〉] is P−l+1κ[y(k11, k12) · · · y(kl1, kl 2)][1 +O(L−1)].

Proof. Given the finite memory property, a use of Fourier theory similar to that used to
obtain the approximation (A.6a) shows that the joint cumulants of any set ofXp(km) and
Xp+1(kn) is approximatelyO(L) if the n integerk’s sum to zero, and areO(1) otherwise.
For example, the covariance ofXp(km) andXp+1(kn) is cx(1) exp(ι2πk/L)+ · · · + (T −
1)cx(T − 1) exp[ι2π(T − 1)/L] = O(1). The joint cumulants ofXp(km) and Xp+q(kn)

are zero forq > 1 because they span two or more frames. The theorem follows from these
results and Theorem A.1.

The proof of the next theorem uses the major joint cumulants ofY(k1, k2) = X(k1)

X(k2)X(−k1,−k2) for variousk1 andk2.

THEOREM A.3. Let Z(k1, k2) = P1/2L−3/2〈Y(k1, k2)〉. To simplify notation, suppose
that the{x(t)} has been prewhitened so that Sx( f ) = σ 2

x for all f , and setσ 2
x = 1. The ex-

pected value and variance of Z(k1, k2) is (P/L)1/2Bx( f1, f2)[1+O(L−1)] and1+O(L−1).
The second-order joint cumulant of Z(k1, k2) and Z(k3, k4) is O(L−1) if k1 = −k3 and
k2 6= k4, or k1 6= −k3 and k2 = −k4, and isO(L−2) otherwise. Then, the distribution of
each Z(k1, k2) is approximately a standard complex normal variate in the sense that the
mean and variance match the standard normal with an error ofO(L−1) and thel th-order
joint cumulants of the Z’s are, at most,O(Pl/2+1)[1+O(L−1)].

Proof. The joint cumulant of a product of variates can be related to the joint cumulants
of the variates, but the relationship is complicated. To begin, the combinatorial relationships
between the joint cumulants ofXp(k1)Xp(k2)Xp(k3) for various values ofk’s are developed
for a fixed p. The dependence onp is suppressed until needed. The relationships rest on a
definition of indecomposable partitions of two-dimensional tables of subscripts of thek’s
[see Leonov and Shiryaev (1959) and Brillinger (1975, Sec. 2.3)].

Consider the followingl × 3 table ofkj1, kj2, kj3, wherekj3 = −kj1 − kj2( j = 1, l ):

k11 k12 k13

· · ·
· · ·
· · ·

kl1 kl2 kl3.

(A.7)

Letν = ν1∪· · ·∪νM denote a partition of thekji in this table intoM sets, wherej = 1, . . . , l

andi = 1, 2, 3. There are many partitions of thel × 3 times from the single set of all the
elements tol × 3 sets of one element.

The mth set in the partitionν is denotedνm = (kj1(m) i1(m) , . . . , kj℘(m) i℘(m) ) where℘(m)
is the number of elements in the set. The cumulant ofX[kj1(m) i1(m) ), . . ., X(kj℘(m) i℘(m) )] is
κ[x(kj1(m)i1(m)

) · · · x(kj℘(m) i℘(m) )]; κ[νm] is used for this joint cumulant.
If no two ji are equal for a setνm, then νm is called achain. A partition is called

indecomposableif there is a set with at least one chain going through each row of the table
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(all rows are chained together). A partition isdecomposableif one set or a union of some
sets inν equals a subset of the rows of the table.

Consider, for example, the following 2× 3 table:

k11 k12 k13

k21 k22 k23.

The decomposable partitions are(k11, k12, k13) ∪ (k21, k22, k23), which is the union of the
two rows and all of its subpartitions. Three indecomposable partitions of this 2× 3 table
are(k11, k21)∪ (k12, k22)∪ (k13, k23), (k11, k22)∪ (k12, k21)∪ (k13, k23), (k11, k21, k12, k22)∪
(k13, k23). Each pair in these three partitions is a chain.

Let νr = ν1 ∪ · · · ∪ νMr denote ther th indecomposable partition of table (A.7) intoMr

sets. The joint cumulant of [X(k11)X(k12)X(k13), . . . , X(k℘1)X(k℘2)X(k℘3)] is the sum
overr of the products of theMr cumulantsκ[νm] of theνm in each indecomposableνr .

Recall thatκ[x(kj1i1) · · · x(kj℘ i℘ )] = O(1), unlesskji i1+· · ·+kj℘ i℘ = 0, when it isO(L).
By an enumeration of each of the cumulants of the sets in the indecomposable partitions of
table (A.7) most of the products of cumulants areO(1) unless the partition consists of sets
all of whose indices sum to zero.

The simplest case is for the 2× 3 table [l = 2 for table (A.7)]. The major second-order
joint cumulant ofY(k11, k12) andY(k21, k22) for 0< k12 < k11 and 0< k21 < k22 in terms
of L is

κ[x(k1)x(k2)x(−k1 − k2)x(−k1)x(−k2)x(k1 + k2)] = L3[1+O(1−1)], (A.8)

for the partition into three chains(k1,−k1) ∪ (k2,−k2) ∪ (−k1 − k2, k1 + k2). This is the
variance ofYp(k1, k2).

Unlessk21 = −k11, k22 = −k12 in (k11, k21)∪ (k12, k22)∪ (k13, k23), the product is, at
most,O(L). For example, the product for the partition(k11,−k11)∪ (k12,−k22)∪ (−k11−
k12, k11+ k22) whenk22 6= −k12 isO(L), which is the joint cumulantκ[y(k11, k12)y∗(k11,

k12)].
The product for the partition(k1,−k1, k2,−k2) ∪ (−k1 − k2, k1 + k2) is

L2{Tx( f1,− f1, f2)[1 + O(L−1)]} and similarly for the other partitions into one set of
fours and one chain pair where the indices sum to zero.

The cumulant of the whole set isL[1+O(L−1)]. All other products are, at most,O(1).
The second-order cumulants of theZ’s are as in the theorem using result 3 and these results.

To obtain the third-order cumulants of theYp, one needs to identify the indecomposable
partitions of the 3× 3 table [l = 3 for table (A.7)] wherekj 3 = −kj 1 − kj 2( j = 1, 3):

k11 k12 k13

k21 k22 k23

k31 k32 k33,

which has the major product of cumulants in terms ofL. The major product of cumulants
holds for the following type of indecomposable partition:(k11, k21)∪(k12, k22)∪(k23, k33)∪
(k31, k32, k13). If (1) k21 = −k11, (2) k22 = −k12, (3) k33 = −k23, then the major term of
κ[|y(k11, k12)|2y∗(k31, k32)] is the productL4Bx( f31, f32)[1+O(L−1)].

If one of the equalities does not hold, then the product isO(L3). There are six indecom-
posable partitions of the 3× 3 table into four pairs and one triple which has a product of
cumulants ofO(L4). The other partitions have products that areO(L j ) for j = 1, 2, 3.
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An understanding of the even higher-order joint cumulants of theYp is needed to prove
the asymptotic properties. The general form can be deduced from the fourth-order case by
enumerating the sets in the indecomposable partitions of the 4× 3 table [l = 4 for table
(A.7)].

Consider the following indecomposable partition:

(k11, k21) ∪ (k12, k22) ∪ (k13, k43) ∪ (k23, k33) ∪ (k31, k41) ∪ (k32, k42).

If (1) k21 = −k11, (2) k22 = −k12, (3) k43 = −k13, (4) k33 = −k23, (5) k41 = −k31, (6)
k42 = −k32, then the product of the cumulants isL6[1+O(L−1)]. Because the integers on
each row sum to zero, the cumulantκ[|y(k11, k12)|2|y(k21, k22)|2] is O(L6).

Note that the six equalities reduce the degrees of freedom of the integers in table (A.7)
from eight to four. If any of the equalities are broken, then the joint cumulant ofY’s is of
lower order inL. Products of indecomposable partitions of the table into six pairs whose
k’s sum to zero are allO(L6).

The pattern forl > 4 is as follows: Ifl = 2n, the major joint cumulant is of the form
κ[|y(k11, k12)|2 · · · |y(kn1, kn2)|2] where the hidden index iskj 3 = −kj 1 − kj 2 for each
j = 1, . . . ,n. Suppose that for eitheri = 1, 2, or 3,k1i = k2i = · · · = kni , which constrains
the(k11, k12, . . . , kn1, kn2) to anO(Ln+1) dimensional subspace of theO(L2n) lattice. Then,
the major cumulant isO(L3n). For example,κ[|y(k11, k12)|2 · · · |y(k11, kn2|2) isO(L3n) if
k12 6= kj 2 for all j = 1, . . . ,n.

If this constraint does not hold for the table, the cumulant isO(L3n−1) or smaller. For
example,κ[|y(k11, k12)|2(n−1)|y(kn1, kn2)|2] is O(L3n−1) if k11 6= kn1 andk12 6= kn2. The
variance of〈Yp(k1, k2)〉 is P−1L−3[1+O(L−1)] from (A.8), Theorem A.2 and result 3. The
variance ofZ(k1, k2) is then 1+O(L−1).

Applying these results, forl = 2n the maximum of the joint cumulantsκ[|z(k11,
k12)|2 · · · |z(kn1, kn2)|2] is κ[|z(k11, k12)|2 · · · |z(k11, kn2)|2] which isO(P−n+1)[1+O(L−1)]
if k12 6= kj 2 for all j = 1, . . . ,n.

If l = 2n + 1, the major joint cumulantκ[|y(k11, k12)|2· · · |y(kn1, kn2)|2y(kl1,kl 2)] is
O(L3n+1), which implies thatκ[|z(k11, k12)|2· · · |z(kn1, kn2)|2y(kl1, kl 2)] isO(L−1/2P−n+1/2)

[1 +O(L−1)]. Thus the maximum of thel th-order cumulants ofZ(k1, k2) isO(P−l/2+1).

This result is used in Theorem A.4, which establishes the approximate sampling distri-
bution of our test statistic. Letk = (k1, k2) index the two coordinates of theM Z’s in IT.
The imaginary part ofZ(k) is Im Z(k) = [Z(k)− Z∗(k)]/ i 2 wherei = (−1)1/2.

THEOREM A.4. The distribution of2S where S =
∑

k∈ IT [Im Z(k)] is approximately
χ2(λ) with M = L2/16 degrees of freedom and noncentrality parameterλ = (P/L)1/2∑

k∈IT [Im Bx(k)]2. For the null hypothesis H0: Im Bx(k) = 0 for all k in IT, then S is
approximately a central chi-square variate with M degrees-of-freedom for large L. A test
of sizeα is to reject H0 when S> Th whereα = Pr(S> Th). If Im Bx(k1, k2) 6= 0 for
some(k1, k2), then the test is consistent if P/L →∞ as P→∞.

Proof. Recall that 2[ImZ(k)]2 = |Z(k)|2 − Re[Z2(k)] and Z(k) = P1/2L−3/2

〈Y(k)〉. Im Z(k) is a normal variate with mean(P/L)1/2 Im Bx(k) [1+O(L−1)] and variance
1/2+O(L−1).

The major term of thenth joint cumulant of [ImZ(k1)]2, . . . , [Im Z(kn)]2 depends
on L−3nκ[|y(k1)|2 · · · |y(kn)|2]. Enumerating the indecomposable partitions ofn × 2 ta-
bles of indices ofY(k j )Y∗(k j ), whereY(k j ) = X(kj1)X(kj2)X

∗(kj1 + kj2), the major
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term of this cumulant is the productL−3nκ[(y(k11, k12)y(k11, k22)]κ[y(k31, k32)y(k31,
k42)] · · · κ[y(k(n−1)1, kn2)]. This term isO(L−n) because the cumulant isO(L2n). Note
that the indices lie on anLn+1 dimensional subspace.

The major term of thenth cumulant of [ImZ(k)]2 depends onL−3nκ[|y(k)|2n]. There
are(n− 1)! indecomposable partitions inton pairs of then× 2 table of indices, where the
cumulant of the pair isκ[y(k)y∗(k)]. The major term of the product of these dyad cumulants
is (n− 1)!κ2n[|y(k)|2], which is(n− 1)![1 +O(L−1)].

If 2S is χ2 with M degrees-of-freedom, then thenth cumulant ofS is M [(n − 1)!].
It now is shown that thenth cumulant ofS is M [(n − 1)!] + O(L−1). The nth cu-
mulant of S is Mκ{[Im z(k)]2} plus the sum of thenth-order joint cumulants of the
[Im(k1)]2, . . . , [Im(kn)]2, where the indices differ. The first term is [(n−1)!] M [1+O(L−1)]
from the result in the preceding paragraph, and the maximum of the second term is a sum
ofO(Ln+1) of terms ofO(L−n). Thus, this second term isO(L). BecauseM isO(L2), the
error in thenth cumulant isO(L−1).


