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ABSTRACT 
 

We develop in this paper a test of the null hypothesis that an observed time series is a realisation of a 
strictly stationary random process.  Our test is based on the result that the kth value of the discrete 
Fourier transform of a sample frame has a zero mean under the null hypothesis. The test that we 
develop will have considerable power against an important form of nonstationarity hitherto not 
considered in the mainstream econometric time series literature - namely where the mean of a time 
series is periodic with random variation in its periodic structure.  The size and power properties of the 
test are investigated and its applicability to real world problems is demonstrated by application to three 
economic data sets. 
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1.  INTRODUCTION 

We present a test of the null hypothesis that an observed time series is a realisation 

of a strictly stationary random process ( ){ }x t . The test statistic is a simple function of 

complex valued Fourier transforms of non-overlapping sections of the observed time 

series. The statistical properties of the test statistic under the null is well behaved 

assuming a set of basic properties for the stochastic process. The test statistic is 

designed to detect hidden periodicities in the data with random amplitude modulation. 

The alternative process is defined as defined in section 2. 

To ensure the statistical properties we need, we limit attention to stationary linear 

processes which include AR, MA and ARMA models as special cases (Priestley 

(1981, p. 141)). If the stationary linear process is also invertible, we can subsequently 

model the process as a stable AR(p) process, which constitutes a large subset of all 

strictly stationary random processes which have absolutely summable covariances 

(Priestley (1981, p. 144)). The invertiblility condition also ensures that there is a 

unique set of coefficients which correspond to any given form of autocovariance 

function (Priestley (1981, p. 145)). 

The definition of strict stationarity is that the joint distribution of ( ) ( ){ }x t x tn1 , ...,  

for any set of times ( )t tn1, ...,  is invariant to a shift of the time origin. The term 

nonstationarity has become equated with linear or polynomial trends, partially as a 

result of the great success of the time series modelling strategy presented by Box and 

Jenkins (Box and Jenkins (1970)). Polynomial trends are simple forms of 

nonstationarity. A time series which is a polynomial trend plus stationary noise can be 

transformed into a stationary process by successive differencing. For example, if the 

trend is linear the first difference renders the time series stationary. However if the 
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time series is a polynomial trend plus a general linear process, then the correct de-

trending method would involve modelling the trend by polynomial regression on time 

and then subtracting this estimate of the trend from the original time series. 

Differencing in this case is inappropriate because while it will render the time series 

stationary, it will also introduce unit roots into the MA part of the linear process, 

making the process noninvertible (Hamilton (1994, p. 444)). It will also introduce 

spurious positive autocorrelations at the first few lags in the autocorrelation function 

of the residuals, thereby generating spurious periodicities in the power spectrum in the 

form of exaggerated power at low frequencies and attentuated power at high 

frequencies, thus leading to artificially dominant low frequency cycles (see Chan, 

Hayya and Ord (1977, p. 741-742), Nelson and Kang (1981, p. 742), and Nelson and 

Plosser (1982, p. 140)).   

Another commonly held interpretation of nonstationarity is related to shifts in the 

mean and/or variance of a time series.1 In the latter circumstance, a more appropriate 

spectral technique might be the concept of evolutionary (or time-varying) spectra 

introduced by Priestley, see Priestley (1965,1981,1988).2 

In the econometrics literature, the majority of tests for stationarity are either tests for 

trend stationarity against an alternative of a unit root with or without drift, for 

example, see Kwiatkowski, Phillips, Schmidt, and Shin (1992), Bierens (1993) and 

Bierens and Guo (1993), or alternatively, tests of a unit root with or without drift 

against an alternative of trend stationarity, for example, see Dickey and Fuller 

(1979,1981), Phillips (1987), and Phillips and Perron (1988). The distribution theory 

for these tests is nonstandard and is based primarily upon continuous time models of 

                                                           
1  Consult Priestley (1988, p. 174), for a survey of this literature. 
2  Also consult Cohen (1989), Artis, Bladen-Hovell and Nachane (1992), and Foster and Wild (1995). 
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Brownian motion. Moreover, because unit root behaviour implies long memory 

dependence, the absolute integrable condition required for the existence of the 

spectral density function is not satisfied (see Priestley (1981, pp. 213-214, 218-219) 

and Hidalgo (1996)). 

In this paper, the alternative hypothesis we adopt is that the observed time series is a 

sum of a pure noise process (independent and identically distributed) and a periodic 

process with random variation in its amplitude, phase, and frequency. This type of 

process was defined in Hinich (1997) as a randomly modulated periodic process and 

may be created by some nonlinear physical or social mechanism which has a more or 

less stable inherent periodicity.  The rationale for this type of process is the 

proposition that both nature and society do not generate perfectly periodic processes. 

There is always some variation in the periodic structure (waveform) over time 

generating nonstationarity. 

As an example, suppose that x t( )  represents a time series of aggregate monthly toy 

purchases in the U.S. which has a seasonal of 12 months with the main peak occurring 

before Christmas.  Although the calendar has no random variation, toy buying and 

other consumer behaviour depends on the existing and expected economic conditions 

as well as weather conditions. The peak and troughs of the toy series will vary from 

year to year and some of that variation may not be well fitted using a covariate such 

as per capita disposable income. 

Another example is the seasonal effect that weather has on crop price and output.  

The periodic structure will reflect seasonal influences attributable to the effect that 

variations in weather can exert upon crop sowing, growth, and harvesting, and 

through this, on crop output and price. Our test should have good power in detecting 
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seasonal fluctuations which are likely to be present in such data. Our interest in 

detecting seasonality follows from the fact that it can be viewed as closely 

approximating the type of non-stationarity mentioned above - namely, it could be 

conceived as representing a periodic process with random variation.   

The type of nonstationarity that we are dealing with in this paper is different in 

conception from the conventional types of nonstationarity mentioned above, and 

constitutes an additional type of nonstationarity. In particular, it is not related to unit 

root behaviour because the distribution theory we use is standard and is predicated 

upon the existence of the spectral density function. This, in turn, means that the 

dependence structure is short memory and not long memory. Therefore we are 

effectively assuming that any trend, whether deterministic or stochastic, has been 

removed before we apply our test.   

The central issue addressed in this paper - that of testing for randomly varying 

periodic structure - is of fundamental importance to the question of determining 

whether it is necessary to employ a modelling framework which essentially fixes the 

periodic structure of the process, on the one hand, or which permits the periodic 

structure to evolve over time, on the other.3  In economics, the above considerations 

extend quite generally to all economic processes with well defined periodic structure, 

and in macroeconomic/econometric context, would include the modelling of 

seasonality as well as phenonena with "regular" cycles, such as business cycles.   

The structure of this paper is as follows. The stationarity test is outlined in section 2. 

Simulation results are presented in section 3. We then demonstrate the test’s 

applicability to three economic data sets.  The first application is undertaken in 

                                                           
3   The latter category of model would include the evolving models outlined in Harvey (1989, pp. 39, 
42-43) and Priestley (1981, p. 600, 1988), for example.  Also consult Harvey (1997, p. 198). 
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section 4 and entails applying the test to an AR model of United Kingdom (U.K.) 

average Barley and Wheat price indices for the period August 1965 to June 1995.  We 

then apply our test to the seasonally adjusted and unadjusted U.S. Currency 

Component of the Money Stock for the period January 1947 to November 1997 in 

section 5. 

2. TESTING THE STATIONARITY OF THE INNOVATIONS 

Using standard time series notational convention, the time unit is set to one and t  is 

an integer time index with the start of the sample set at t = 0.  Let ( ) ( )x x N0 1,..., −  

denote a sample from a time series ( ){ }x t .  Then ( )X k x t
t

N

=
=

−

∑ ( )
0

1

exp ( )−i f tk2π  is the 

complex value for frequency f k Nk = /  of the discrete Fourier transform of a sample 

frame of the process ( ){ }x t  for t N= −0 1,..., . 

The null hypothesis is that ( ){ }x t  is a stationary invertible general linear process. 

We can then represent the process as an unspecified AR(p) process whose innovations 

are pure noise (see Priestley (1981, pp. 141-147)). Our test is based on the result that 

the expected value of ( )X k  is zero under the null hypothesis (Brillinger (1981, p. 

95)). 

As mentioned in the introduction, the alternative hypothesis is that the observed 

time series is a sum of a pure noise process and a periodic process with random 

variation in its amplitude and phase. A formal definition of such a “varying” periodic 

process, called a randomly modulated periodic process with period L is presented in 

Hinich (1997), and can be defined as: 
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Definition: A process ( ){ }w t  is called a randomly modulated periodic process with 

period L , if it has the form 

[ ]w t K u t i f tk k
k K

K

k( ) ( ) exp( )
/

/

= +−

=−
∑1

2

2

2µ π  for f k Lk = /                                               (1) 

where µ µ−
∗=k k , u t u tk k−

∗=( ) ( ) , and Eu tk ( ) = 0  for each k , E  is the expectation 

operator and the symbol "*" denotes the complex conjugate. In terms of real values 

coefficient, K w(t) is of the form 

Kw t u t u t f t u t f tk k k k k k
k

K

( ) Re cos Im sin
/

= + + + − +
=
∑µ µ π µ π0 0

1

2

2 2b g b gc h b g b gc h b g   (2). 

The K/2+1 { }u tk ( )  are jointly dependent random processes with finite moments 

which satisfy two conditions: 

1) Periodic block stationarity: The joint distribution of { }u t u tk k nr1 1( ),... , ( )   is the 

same as the joint density of { }u t L u t Lk k nr1 1( ),..., ( )+ +   for all k kr1 ,... ,   and 

  t tn1 ,...,  such that 0 < <t Lm .  Note that L  is assumed to be the fundamental period 

of the process. 

2) Finite dependence: { }u s u sk k mr1 1( ),... , ( )  and { }u t u tk k nr1 1( ),..., ( )  are independent 

if   s D tm + < 1 for some D  and any set of k k s sr m1 1, ..., ... ,  < <  and   t tn1 < <... . 

The process outlined in (1) can be written as w t s t u t( ) ( ) ( )= +  where 

s t K i f tk k
k K

K
( ) exp( )

/

/
= −

=−
∑1

2

2
2µ π  and u t K u t i f tk k

k K

K
( ) ( ) exp( )

/

/
= −

=−
∑1

2

2
2π .                           (3) 

The periodic component ( )s t  is the mean of ( )w t . The zero mean stochastic term ( )u t  

is a real valued process which may be nonstationary. 
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Condition 1) implies that c t t Eu t L u t L Eu t u tu ( , ) ( ) ( ) ( ) ( )1 2 1 2 1 2= + + =  if 

t t L1 2− <  but the equality does not necessarily hold when t t L1 2− > . 

If the ( )u tk  are all covariance stationary then ( )u t  is stationary and the model 

simplifies to a periodic process in covariance stationary noise. 

Condition 2) ensures that ( )u t  has finite dependence of gap length D . It then 

follows that all the joint cumulants of ( )u t  are D  dependent. 

If we take the discrete Fourier transform of the process ( )w t  defined in (1), we 

obtain 

( ) ( )[ ] ( ) ( )X k K u t i f t i f tk k k k
k K

K

t

L

= + −−

=−=

−

∑∑ 1

2

2

0

1

2 2µ π πexp exp
/

/

 

            ( ) ( )= +S k U k ,                                                                                             (4) 

where 

( ) ( ) ( )S k s t i f tk
t

L

= −
=

−

∑ exp 2
0

1

π  and ( ) ( ) ( )U k u t i f tk
t

L

= −
=

−

∑ exp 2
0

1

π , with ( )s t  and ( )u t  being 

defined in (2). 

The character of the variation of ( )X k  about its mean ( )S k  will depend upon the 

variance of ( )U k , termed ( )σ u k2  say. The explicit form of this variance is derived 

fully in Hinich (1997). Equation (3), in principle, permits the derivation of three types 

of processes. The first two can be regarded as polar cases. The first polar case is when 

( )S k  does not equal zero but ( )σ u k2  does. Then the kth Fourier component of the time 

series is a sine wave with fixed amplitude and phase. The second polar case follows 

when ( )S k  is equal to zero but ( )σ u k2  does not equal zero. If this case holds for all 

frequencies, the process is random with no periodic structure, which is the case for 

each component of a stationary random process satisfying any of the conventional 
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mixing conditions (see Hinich (1997) and Brillinger (1981, p.95)). This process 

corresponds to the null hypothesis being employed in this paper. 

The remaining category of process corresponds to the definition of a randomly 

modulated periodic process mentioned earlier in the paper which constitutes a more 

realistic alternative to the pure periodic plus noise model that is conventionally 

assumed. In this case, both ( )S k  and ( )σ u k2  do not equal zero and there is random 

variation in the kth component of the waveform over time. Furthermore, the larger is 

the value of ( )σ u k2 , the larger will be the amount of random variation. 

The test procedure will involve four steps. The first step entails removing any trend 

present in the data, irrespective of whether it is a deterministic or stochastic trend. If a 

deterministic trend is present, one would use regression techniques involving a time 

trend to de-trend the data. If a stochastic trend is present, one would have to determine 

the order of integration of the time series and then appropriately difference the time 

series. 

The second step involves pre-whitening the de-trended data series. This is 

accomplished by fitting an AR(p) model. using least squares or the Yule Walker 

equations. Assuming that N  is much larger than p, the mean, covariances and 3rd and 

4th order joint cumulants of the residuals ( ) ( )e e N0 1,..., −  of a least squares fit of the 

model will be approximately equal to the respective joint cumulants of the unobserved 

innovations with an approximation error of order ( )O N1 / . This error will be assumed 

sufficiently small so that we can treat the residuals as if they are pure noise variates. 

Fitting an AR(p) model to the data without eliminating insignificant terms is a simple 

prewhitening operation which will yield pure noise residuals which are approximately 

identically distributed. 
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The third step involves centring the data to remove any mean periodic variation 

( )S k  which might be present. This is performed by dividing the residuals from the 

AR(p) fit in step two into P  frames of length L . Discard the last partially filled frame 

if N  is not divisible by L . The nth observation in the pth frame is e tpn( )  where 

t p L npn = − +( )1  for n L= −0 1,..., . The frame length L  is chosen by the user to be 

the hypothetical period of the periodic component with random variation which the 

investigator believes to be the most probable alternative to the null hypothesis. If the 

frame length used is not an integer multiple of the true period then the test will lose 

power. Cycles in economic time series are either related to calendar based seasonal 

variation or are cycles “detected” by looking at a plot of the time series. 

To centre the data compute the mean ( )e tpn

_
 of the P  values of e tpn( )  for each 

n L= −0 1,..., . Then subtract ( )e t pn

_
 from e tpn( )  yielding a residual which we denote 

by y tpn( ) .  If the periodicity is purely deterministic - that is, if ( )S k  does not equal 

zero but ( )σ u k2  equals zero, then there will be no periodicity left in the residuals after 

the centring operation. Note that in the context of a seasonal periodicity the centring 

operation would have the same effect as time domain seasonal adjustment methods. 

Specifically, if the generating process is a deterministic seasonal plus stationary and 

ergodic noise, then the Fourier transform of the seasonal component will have a fixed 

amplitude and phase. The centring operation will remove the deterministic periodicity 

(with fixed amplitude and phase) completely, leaving residuals which are pure noise 

innovations.  If the generating process is a randomly modulated periodic process, on 

the other hand, then the centring operation will purge the series of the mean periodic 

variation but some periodic structure will remain in the residuals. This situation arises 
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because ( )σ u k2  does not equal zero which means that some variation in the periodic 

structure about ( )S k  will remain, reflecting variation in the phase and amplitude of 

the spectral density at frequency k . 

The final step is to compute and apply the test statistic which will now be presented. 

For each k compute the average ( )Y k
_

 of the kth discrete Fourier transform ( )Y kp  for 

the P  frames where 

( ) ( )Y k
L

y tp pn
n

L

=
=

−

∑1
0

1

exp ( )−i kn L2π / ,                    k L= 1 2,..., / .                         (5) 

The test statistic is: 

( )∑
=

=
2/

1

2_L

k
kYPS                                                                                                         (6) 

Under the null hypothesis ( )[ ]E Y kp = 0  for each k L= 1 2,..., /  and p  implying that 

( )E Y k
_

.




= 0  It is shown in the Appendix (c.f. Theorem 1) that under the null the 

asymptotic distribution of ( ) ( )P Y P Y L
_ _

, ..., /1 2







 is complex normal N(0,1) as P  

goes to infinity with L  fixed. Thus, given the null hypothesis, ( )P Y k
_ 2

is 

approximately chi square with two degrees-of-freedom for large P , implying that 

under the null hypothesis the distribution of S  is approximately chi square with L  

degrees-of-freedom for large P . 

Rather than using chi square tables, the statistic S  is transformed to a uniform 

variable under the null by computing ( )F S  where F  is the cumulative distribution 

function (cdf) of a chi square distribution with 2M  degrees of freedom. 

The key implication of the null hypothesis is that it is impossible to obtain any 
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periodic structure from applying a linear filter to a pure noise process. This follows 

from the results of Fourier Analysis applied to stationary random processes, which 

can be defined as processes fulfilling Theorem 4.4.1 of Brillinger (1981). As the 

frame length grows and the resolution bandwidth shrinks, the ( )Y kp  representation of 

any stationary random process becomes independent with the resulting implication 

that the real and imaginary parts of the Fourier transform also become independent 

and normally distributed with a mean of zero and variance equal to a half of the 

spectrum.  This means, in turn, that the phase, which is defined as arctan(Im/Re) of 

the Fourier transform is uniformly distributed in the interval ( )−π π,  for frequency k  

(see Fuller (1976, pp. 315-316)). 

The key implication of this result is that it is impossible to distinquish either the 

time origin or relative time - confirming the reason why the process is defined to be 

stationary. This is the reason why, under the null, a least square AR fit of the data will 

preserve the underlying stationarity of the process, producing no periodic structure. 

Under the alternative, an AR fit will change the amplitude and phase of the periodic 

components, which exist by definition. Therefore, we cannot generate the alternative 

model from random noise even if we apply a linear filter to the noise input, as is the 

case with the AR fit. 

To understand when this test has power it is important to consider a realistic 

alternative to the null. We use the following alternative model in order to demonstrate 

that our test has power against a randomly modulated periodic process. is for each 

frame: 

( ) ( )w t um m
m

M

= +
=
∑ α 1

1

sin ( ) ( )2 2π φ φk t L u tm m m/ + + +                                              (7) 
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= + + + +
=
∑ α φ π φ πm m m m m m m m
m

M

u u k t L u k t L1 2 2
1

2 2b g b g b g b g b g[cos sin / sin cos /  

where φ φ1,..., M  are a set of phases which have random errors u m2 , α α1, ..., M  are 

amplitudes of the sinusoids which have random errors u m1 , and the ( )φ t  variates 

satisfy an AR(p) model. We suppress the subscript p to simplify notation. The sum of 

sinusoids in expression (6) will shift the mean of ( )Y kp  from zero and will increase its 

variance. 

3. ASSESSING THE SIZE AND POWER OF THE TEST USING 

SIMULATIONS 

The use of central limit theory to prove asymptotic normality does not answer the 

question of how large in this case the number of frames must be for the approximation 

to be good enough to apply to data. We set α αm = , u m1 0= , and φ m = 0  for each m 

in the simulations for the power of the test. 

The model defined by (5) was used to generate time series to estimate the power of 

the test. The AR variates ( )φ t  satisfied an AR(2) model 

( ) ( ) ( ) ( )w t a w t a w t e t= − + − +1 21 2  where the innovations ( )e t  used were either 

independently distributed normal N(0,1), double-tailed exponential or uniform 

pseudo-random variates with zero means and unit variances. The AR parameters were 

generated so that the AR(2) model would have two stable conjugate root pairs 

( )z r i= exp 2πθ  and ( )z r i= −exp 2πθ  where 0 1< <r  and 0 90< < °θ .  Thus 

( )a r1 2 2 180= cos /πθ and a r2
2= − .   In the simulations, r was set equal to either 0.2 

or 0.9, and θ  was set equal to 10.  The errors u m2  were uniform in the support set 

− < <β βu m2  where β  is a small jitter parameter. A typical setting used for β  is 
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β = 0 05. .   Therefore, parameter u2 , through parameter β , captures phase jitter. 

Several values for N, L, P, M, α  and β  were used. The signal amplitude parameter 

α  was either set equal to zero, giving size results, or set equal to 0.5, giving power 

results.  For a set of parameter values 6000 replications were generated. A least 

squares AR(2) fit was made for each replication of the time series and the residuals 

were standardised by subtracting the sample mean and dividing by the sample 

standard deviation for that replication. The test statistic was computed using the 

standardised residuals. 

The large sample approximation from the asymptotic theory was used to set the 

threshold levels for the test statistic at both the 5% and 1% levels of significance.  

Two broad types of simulations were performed. The first type was implemented to 

investigate the potential importance of frame averaging. This was undertaken by 

fixing the frame length and then increasing the sample size, thus increasing the 

number of frames and frame averaging involved in the simulation.  The detail and 

results of these simulations are reported in Table 1 and Table 2 for a frame length (L) 

of 5, and in Table 3 and Table 4 for a frame length of 10 observations.   

The second type of simulation involved examining the importance of frame length 

in assessing the size and power of the test. This type of simulation was implemented 

by fixing the number of frames and varying the sample size, thus permitting the block 

length to increase with sample size.  These simulations are reported in Table 5 and 

Table 6 for the number of frames (P) set equal to 5, and in Table 7 and Table 8 for P 

set equal to 10. 

The results of the simulations indicate two important findings. First, the 

approximations appear to be conservative for small values of the frame length (L). 
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This is evident in both the size and power results reported in Tables 1, 2, 3 and 4. 

When we increase the frame length to 10 observations, the estimated size results are 

consistent with the theoretical size levels.  Power results are shown in Tables 2 and 4. 

Frame averaging over at least 10 frames is needed to obtain good power levels. This 

means that for the two frame lengths of 5 and 10 observations respectively, we need 

samples of 50 and 100 observations in order to ensure good levels of power. 

To examine the question of  the trade-off between the number of frames and number 

of observations per frame, we performed the second type of simulation which entailed 

setting the number of frames and varying the frame length.  In the actual simulations 

performed, the number of frames was set to 5 and 10 respectively.  The size results 

listed in Table 5 correspond to simulations involving averaging over five frames.  It is 

evident from inspection of this table that the estimated size results are similiar to 

those documented above.  Power results are documented in Table 6 which indicate 

that in order to obtain good power levels, an effective lower bound must be placed on 

the frame length.  This is borne out by the requirement that to obtain good power, we 

would need to employ a frame length which is greater than 10 observations. 

This latter conclusion is reinforced by the results from simulations involving a 

larger number of frames, namely frame averaging over ten frames.  The size results 

are reported in Table 7. 

The power results listed in Table 8, were determined from simulations containing 

the same parameter setting used in the simulations reported in Table 7 (except for the 

signal amplitude parameter which was set equal to 0.5).  The most important finding 

to emerge from Table 8 is that with the increase in the number of frames, good power 

can now be achieved for a frame length of 10 observations. This represents a 
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reduction in the underlying frame length requirements from the results reported in 

Table 6.  Recall in that particular case, that for averaging conducted over five frames, 

we needed a frame length of 20 observations to secure good levels of power.   

Finally, note that the findings associated with both Tables 6 and 8 also reinforces 

the previous observation that frame averaging over at least 10 frames seemed to be 

necessary to secure good levels of power.  This would appear to be a useful working 

guide although it may be possible to secure good  power levels for frame averaging 

involving less than 10 frames. This latter situation would certainly require the use of 

larger frame length. 

4.  AN APPLICATION: U.K. BARLEY AND WHEAT PRICES FOR 

THE PERIOD AUGUST 1965 TO JUNE 1995 

To demonstrate the applicability of our method we applied the test to the residuals 

from an AR prewhitening fit of monthly growth rates of barley and wheat prices in 

the U.K. for the period August 1965 to June 1995. The time series used were the 

weighted average market prices for barley and wheat in England and Wales, measured 

in £ per tonne, which were purchased from growers in prescribed areas in England 

and Wales, in accordance with the Corn Returns Act, 1882.  The data was compiled 

and supplied by the Ministry of Agriculture, Fisheries and Food. 

Our a priori expectation is that our test should have good power in detecting 

seasonal fluctuations which are likely to be present in such data. Our interest in 

detecting seasonality follows from the fact that it can be viewed as closely 

approximating the type of non-stationarity mentioned in the introduction of this 

paper- namely, it could be conceived as representing a periodic process with random 

variation.  In the context of the price series being considered in the paper, the periodic 
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structure will reflect seasonal influences attributable to the effect that variations in 

weather can exert upon crop sowing, growth, and harvesting, and through this, on 

crop output and price.  Because of the dependence of cereal prices on cereal yields, 

which, in turn, will depend upon the growth-cycle of the cereals and weather 

conditions prevailing relative to the growth-cycle, it is likely that the cereal price 

series will exhibit a natural form of seasonality.4  Furthermore, because of dependence 

on variation in weather conditions, this seasonality is unlikely to be purely 

deterministic in character.  In these circumstances, our test should have good power in 

detecting and confirming the postulated randomly modulated seasonal variation. 

Unit root tests activated in the Pc Give 8 econometric package (Doornik and Hendry 

(1994)) were applied to the wheat and barley levels time series. In both cases we 

could not reject the null hypothesis of a unit root using both the Dickey Fuller (DF) 

and Augmented Dickey Fuller (ADF) tests with the latter test having twenty lags. 

This conclusion was also robust when a constant, trend and seasonals were included 

in the regression - see the results listed in Tables 9a and 9b, respectively. Unit root 

tests conducted on the first differences of both series led to the strong rejection of the 

null of a unit root at the 1% level of significance by all of the above tests - see Tables 

9a and 9b. This indicates that both levels series are I(1). However the preferred 

transformation of the authors involves taking the natural logarithm of the levels series 

and then first differencing. This transformation transforms the levels series to growth 

rates which is more meaningful from the perspective of explanation than is the 

differenced series.5 Unit root tests conducted on the growth rate data also indicated 

                                                           
4  For details on factors affecting the growth cycle of cereals in the UK, see Coleman (1972, pp. 27-
31). 
5   See Hamilton (1994, p. 438) for a discussion of economic rationale for adopting growth rate 
specification. 
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strong rejection of the null of a unit root at the 1% level of significance, thus also 

indicating that both series are I(0), see Tables 9a and 9b. 

To investigate this problem, we fit AR(18) models to the growth rates of the data.  

We stress that the AR fitting is employed purely as a prewhitening operation. We are 

not attempting to obtain a model of best fit. From the perspective of applying our test, 

we do not require a model of best fit - we only require that the data has been 

whitened. 

The residuals from the AR model adopted are then standardised, and the test is used 

to see if the complex amplitude of the discrete Fourier transform of the residuals for a 

12 month period is significantly different from zero.6 Summary statistics associated 

with the AR(18) fits are listed in Tables 10a and 11a respectively.  The Adjusted R 

Square values for the wheat and barley models are 0.277 and 0.307, respectively.  

While these results appear low, this is not uncommon for specifications based on 

growth rate data.  The standard error of the AR fits are 0.0334 and 0.0389, 

respectively.  Both sets of residuals do not "trip" the Hinich Portmentau C test for 

autocorrelation (see Hinich (1996)). The p-values of 0.994 and 0.989 indicate that the 

null hypothesis of pure white noise cannot be rejected at the 5% level of significance. 

The descriptive statistics of the residuals from the AR(18) fits are documented in 

Tables 10b and 11b. 

The "whiteness" of the residuals of the AR(18) fits for wheat and barley can also be 

seen in the power spectra of the residuals.  Plots of the power spectra of the residuals 

are outlined in Figures 1 and 2.  These spectral values were obtained by adopting a 

frame length (and resolution bandwidth) of 24 observations.  Tables 10c and 11c 

contain the parameter values and test statistic results associated with the application 

                                                           
6   A copy of the output files which list all the results reported below are available from the authors on 
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of the test statistic.  The sample size was 358 observations, and with the adopted 

frame length (L) of 24 observations, generated 14 frames (P).  Because we are using 

monthly data, these parameter settings permit us to estimate the power spectral 

density at the two year cycle and its sub-harmonics which includes the annual (12 

month) cycle.  The large sample standard error is 1.161. 

Figure 1 about here. 

Figure 2 about here. 

In the results reported, we are able to detect seasonal variation at the annual cycle 

and its harmonics even when the periodicity is subject to random variation.  For both 

wheat and barley, the null hypothesis of stationarity is strongly rejected - with p-

values of 0.0000 and 0.0000 respectively for wheat and barley. As such, we can 

conclude that the residuals are not stationary. 

These results point to statistically significant seasonal variation in the residuals of 

the AR fits which generate correlation between the periodic structure of the residuals 

and sinusoids at the annual frequency and its harmonic frequencies.   This 

fundamental seasonality can also be clearly discerned from inspection of the seasonal 

patterns which are evident in the plots of the two respective growth rate data series - 

consult Figures 3 and 4.  Finally, note from the results listed in Tables 9a and 9b that 

the unit root tests could not detect this structure, even in the case where the 

regressions did not contain seasonal dummies.  Recall that for both cereals, the 

conclusions from applying the battery of unit root tests to the growth rates data was 

that both series were I(0) and therefore stationary. 

Figure 3 about here. 

Figure 4 about here. 

                                                                                                                                                                      
request. 



 22

5.  DETECTION OF SEASONALITY IN THE U.S. CURRENCY 

COMPONENT OF THE MONEY STOCK:   JANUARY 1947 - 

NOVEMBER 1997 

In this section, we will demonstrate that the test can be used to detect whether there 

is any seasonal structure remaining in a seasonally adjusted macroeconomic time 

series which has been generated by a randomly modulated seasonal periodicity.  

Recall that this embedded structure would reflect instability in the phase, frequency, 

and amplitude of the time series at the annual frequency and possibly its sub-

harmonics.  The time series we use are the seasonally adjusted and unadjusted U.S. 

Currency Component of the Money Stock Figures, for the period January 1947 to 

November 1997.  This data can be freely obtained from the internet by accessing the 

FRED database of the ST Louis Federal Reserve Bank.7 

Our approach is to test for seasonal structure by applying the stationarity test 

statistic to both the unadjusted and seasonally adjusted time series.  The application of 

the test to both of the above series will confirm if there is any randomly modulated 

seasonal structure in the unadjusted series and, if so, whether the seasonal filtering 

algorithm employed by the FRB removes this seasonal structure from the time series 

in question. 

Once again, because we are using monthly data and are interested in the annual (12 

month) cycle and its sub-harmonics, we adopt a frame length and resolution 

bandwidth corresponding to 24 observations.  The sample size for the levels series is 

611 observations.  However, there is an obvious trend in the data (see Figure 5).  Unit 

root tests were conducted on the levels of the two time series which were found to be 

I(2) although the Dickey Fuller test, by itself, provided support for the proposition 
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that the first differences and growth rates were I(0), indicating that the levels were 

I(1).8  The broad conclusion, however, is that the levels series differenced twice or 

change in growth rates are I(0).  Moreover, these results are robust to the inclusion of 

a constant, trend and seasonals in the regression.  Details of these test results are 

documented in Tables 12a and 12b respectively.  Therefore, we transformed each 

levels series into change in growth rates by taking first differences of the natural 

logarithm of the original levels series, and then first differencing this transformed data 

series.  With this transformation, we lose two observations, hence, the sample size is 

609 observations. 

Figure 5 about here. 

In this section, the data is prewhitened by employing an AR(22) fit which was 

adequate enough to prewhiten the data.  Summary statistics associated with the 

AR(22) fits are listed in Tables 13a and 14a respectively.  The Adjusted R Square 

values for the unadjusted and seasonally adjusted models are 0.919 and 0.466, 

respectively.  The standard error of the AR fits are 0.0034 and 0.0022, respectively.  

Both sets of residuals do not "trip" the Hinich Portmentau C test for autocorrelation 

(see Hinich (1996)).  The p-values of 0.867 and 0.982 indicate that the null hypothesis 

of pure white noise cannot be rejected at the 5% level of significance.  The descriptive 

statistics of the residuals from the AR(22) fits are documented in Tables 13b and 14b. 

Recall that because we are using monthly data and are interested in the annual (12 

month) cycle and its sub-harmonics, we adopt a frame length and resolution 

bandwidth corresponding to 24 observations. Tables 13c and 14c contain the 

parameter values and test statistic results associated with the application of the test 

                                                                                                                                                                      
7   The World Wide Web address for the FRED database is http://www.stls.frb.org/fred/. 
8  A lag of twenty five was employed in the ADF tests. 
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statistic. The sample size was 609 observations, and with the adopted frame length (L) 

of 24 observations, generated 25 frames (P). 

The results from applying the test to these transformed series indicate evidence of 

significant structure for the transformed unadjusted series - the stationarity p-value is 

0.0000, indicating strong rejection of the null hypothesis of stationarity, see Table 

13c.  In contrast, the results of the test applied to the transformed seasonally adjusted 

series indicate that there is no significant randomly modulated seasonal structure.  The 

stationarity test p-value was 0.9250 which means that we cannot reject the null 

hypothesis of stationarity - see Table 14c. 

The above results indicate that the seasonal adjustment procedure employed by the 

FRB removes any non-stationarity associated with random variation in phase and 

amplitude of the annual cycle and its sub-harmonics.  As such, the seasonal 

adjustment procedure is removing more than just the deterministic seasonal 

component of the time series in question.  It is also apparent that it must be the 

seasonal adjustment techniques employed by the FRB which are removing any 

randomly modulated periodic structure because randomly moduated variation is still 

evident in the seasonally unadjusted series.  Furthermore, the removal of any 

randomly modulated periodic structure in the seasonally adjusted series was not an 

artifact of any filtering operation performed in activating our test because these 

operations, notably the AR prewhitening fit and centring operation to remove any 

mean periodicity, did not remove the randomly modulated structure from the 

seasonally unadjusted series.  Finally, note that the unit root tests did not collectively 

account for the presence of randomly modulated periodic structure in the seasonally 

unadjusted series and lack of such structure in the seasonally adjusted series.  In both 

cases, the source time series were found to be I(0) and hence stationary. 
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6.  CONCLUSIONS 

In this paper, a stationarity test was developed which can be applied to residuals 

from AR fits in order to test whether the residuals are white noise.  In theoretical 

terms, the test makes use of the fact that the mean of the complex amplitude of  the 

discrete Fourier transform is zero for all frequencies. The only assumptions we made 

about the innovations of the AR process was that they are pure noise and have finite 

moments  

The test that we developed will have considerable power against an important form 

of nonstationarity not considered so far in the mainstream time series literature - 

namely, where the time series has a mean which is periodic with random variation in 

its waveform.  The importance of testing for this type of nonstationarity reflects two 

key issues.  First, this type of model is based on the proposition that both nature and 

society rarely generate periodic processes which are perfectly periodic.  There is 

usually some random variation in the structure of these periodic processes.  Second, 

from a modelling perspective, the test will help to establish whether it is legitimate to 

employ a model which fixes the periodic structure of the process or whether one has 

to employ a model which allows the periodic structure of the process to evolve over 

time.  

To assess size and power of the proposed test statistic, an AR(2) model was 

generated in a simulation experiment which had two stable conjugate root pairs. The 

innovations used in the simulations were either independently distributed normal 

N(0,1), double-tailed exponential, or uniform pseudo-random variates. 

The relevance of the test to actual economic application was demonstrated by 

testing the stationarity of  residuals from an AR fit of monthly time series data on 
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average wheat and barley prices in the U.K. for the period August 1965 to June 1995.  

It was argued that these time series were likely to contain a natural form of 

seasonality because of the effect that variation in weather conditions could exert upon 

crop size and quality.  Unit root tests conducted on both levels series indicated that 

the series were I(1).  We transformed the levels series into growth rates by taking 

natural logarithms and then first differencing.  For both average cereal price series, 

AR(18) fits were adopted.  The evidence we obtained from applying the test to the 

residuals of the AR prewhitening fits suggest that the seasonal patterns are significant.  

This means that the residuals contain significant periodic structure which is not 

consistent with the null hypothesis of white noise residuals. 

We also applied our test to the seasonally unadjusted and adjusted U.S. Currency 

Component of the Money Stock Figures, for the period January 1947 to November 

1997.  Unit root tests indicated that both levels series were I(2).  Hence, we adopted 

change in growth rate specifications.  We also employed AR(22) fits to prewhiten the 

data.  The results of our investigation indicate that there is embedded seasonal 

structure in the seasonally unadjusted series but this structure is effectively removed 

by the seasonal adjustment filter employed by the FRB. Hence, the seasonal 

adjustment techniques are clearly removing more than deterministic seasonal 

structure.   

The key implication therefore from the test is that there is embedded structure in the 

residuals pointing to the existence of unexplained seasonality.  In a forecasting 

context, this information will be important if all available information about the 

process is to be used in forecasting.  In a modelling context, it is evident that one 

would have to use a model which allows the periodic (seasonal) structure to vary over 

time.  This raises the issue of how best to model such evolving processes.  One 
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possibility would be to adopt model frameworks alluded to in Harvey (1989) and 

Priestley (1981).  Another possible approach relates to the explicit use of the 

information obtained from the test developed in this paper in a spectral regression 

framework.  Research on this latter approach is currently being undertaken. 
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APPENDIX. 
Theorem 1:  Assume that ( ){ }y n  is a pure white noise process where E ( )y n = 0  and 

E ( )y n2 1= .  ( )A ky is the average of P complex amplitudes 

( ) ( )( ) ( )A k p
L

y n p L i kn Ly
n

/ exp /= + − −∑1 1 2π . The asymptotic distribution of 

( ) ( ){ }P A P A Ly y1 2,..., / is a complex normal N(0,1) distribution as P → ∞  

with L fixed. 

 
Proof: The expected values of ( )Re /A k py , the real part of ( )A k py / , and the 
imaginary part ( )Im /A k py  are zero. Their covariance is the sum for n = 0,...,L-1 of 

( ) ( ) ( )sin / cos / sin / /2 2 4 2π π πkn L kn L kn L= since the y ’s are independent and have 
unit variance. The sums for n = 0,...,L-1 of ( )sin /2πjn L  (and ( )cos /2πjn L ) are zero 
for any integer j and thus ( )Re /A k py and ( )Im /A k py are uncorrelated. The 
variances of ( )Re /A k py and ( )Im /A k py are equal to ½ since 

( ) ( )[ ]cos / cos / /2 2 1 4 2π πkn L kn L= +  and ( ) ( )[ ]sin / cos / /2 2 1 4 2π πkn L kn L= − . 

( )Re /A k py 1 and ( )Re /A k py 2 are uncorrelated since 

( ) ( ) ( )( ) ( )( )[ ]cos / cos / cos / cos / /2 2 2 2 21 2 1 2 1 2π π π πk n L k n L k k n L k k n L= − + + and 

similarly for ( )Im /A k py 1 and ( )Im /A k py 2 . 

Since the frames are independent, so are the ( )A k py /  for p=1,...,P. Thus by the 
central limit theorem, (Theorem 27.5, Billingsley (1986)) 

( ) ( ){ }P A P A Ly yRe ,..., Re /1 2 are asymptotically independent normal N(0,1/2) 

variates as P → ∞ , and similarly for ( ) ( ){ }P A P A Ly yIm ,..., Im /1 2 . In 

addition, the real and imaginary components are asymptotically independent.  Q.E.D. 
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Table 1.  Size Test Results for Stationarity Test: Frame Length  = 5. 
 
Simulation   Size              Type of Pure Noise Input 
         Gaussian  Exponential    Uniform 
A.   N=30,  
 P=6, r=0.2 

   5%    
   1%  

      2.0%        
      0.1% 

      1.6%        
      0.1% 

     2.2%     
     0.1% 

B.  N=30, 
 P=6, r=0.9    

   5% 
   1% 

      0.1%        
      0.0% 

      0.1%       
      0.0% 

     0.1%     
     0.0% 

C.   N=50,       5%       2.8%              2.6%            3.3%     
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Simulation   Size              Type of Pure Noise Input 
 P=10, r=0.2         1%       0.2%       0.2%      0.3% 
D.  N=50,    
 P=10, r=0.9      

   5% 
   1% 

      0.1%        
      0.0% 

      0.2%       
      0.0% 

     0.2%     
     0.0% 

E.   N=100,    
 P=20, r=0.2      

   5% 
   1% 

      4.2%        
      0.6% 

      3.8%       
      0.5% 

     4.2%     
     0.5% 

F.  N=100,    
 P=20, r=0.9      

   5% 
   1% 

      0.6%        
      0.1% 

      0.4%       
      0.0% 

     0.5%     
     0.1% 

G.   N=200,    
 P=40, r=0.2   

   5% 
   1% 

      4.4%        
      0.9% 

      4.5%       
      0.8% 

     4.3%     
     0.7% 

H.  N=200,    
 P=40, r=0.9      

   5% 
   1% 

      1.8%        
      0.2% 

      1.6%       
      0.2% 

     1.7%     
     0.2% 

I.   N=400,    
 P=80, r=0.2 

   5% 
   1% 

      4.6%        
      0.9% 

      4.8%       
      0.8% 

     4.8%     
     0.9% 

J.  N=400,    
 P=80, r=0.9      

   5% 
   1% 

      2.9%        
      0.4% 

      3.1%       
      0.3% 

     3.0%     
     0.4% 

 
N = sample size, and P = number of frames. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.  Power Test Results for Stationarity Test: Frame Length = 5. 
 
Simulation Power              Type of Pure Noise Input 
         Gaussian  Exponential    Uniform 
A.   N=30,     
  P=6, r=0.2  

   5%    
   1%  

     20.3%       
       1.7% 

     22.5%       
       1.5% 

   19.0%     
      1.8% 

B.   N=30,  
  P=6, r=0.9   

   5% 
   1% 

     18.3%       
       1.5% 

     19.5%       
       1.8% 

    17.0%    
      1.2% 

C.   N=50,       5%      57.5%            56.9%           54.2%    
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Simulation Power              Type of Pure Noise Input 
 P=10, r=0.2         1%      18.9%      19.8%     16.8% 
D.   N=50,    
 P=10, r=0.9      

   5% 
   1% 

     75.2%       
     39.8% 

     73.6%       
     39.4% 

    73.9%    
    39.2% 

E.   N=100,    
 P=20, r=0.2      

   5% 
   1% 

     95.3%       
     79.6% 

     94.8%       
     80.6% 

    95.9%    
    80.8% 

F.   N=100,    
 P=20, r=0.9      

   5% 
   1% 

   100.0%       
     99.8% 

   100.0%       
     99.6% 

  100.0%    
    99.8% 

G.   N=200,    
 P=40, r=0.2      

   5% 
   1% 

   100.0%       
     99.9% 

     99.9%       
     99.8% 

  100.0%    
    99.9% 

H.   N=200,    
  P=40, r=0.9     

   5% 
   1% 

   100.0%      
   100.0% 

   100.0%       
   100.0% 

  100.0%    
  100.0% 

I.   N=400,    
  P=80, r=0.2     

   5% 
   1% 

   100.0%       
   100.0% 

   100.0%       
   100.0% 

  100.0%    
  100.0% 

J.    N=400,    
  P=80, r=0.9     

   5% 
   1% 

   100.0%       
   100.0% 

   100.0%       
   100.0% 

  100.0%    
  100.0% 

 
N = sample size, and P = number of frames. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.  Size Test Results for Stationarity Test: Frame Length = 10. 
 
Simulation   Size              Type of Pure Noise Input 
         Gaussian  Exponential    Uniform 
A.   N=30,  
  P=3, r=0.2  

   5%    
   1%  

      1.3%        
      0.0% 

      1.2%        
      0.0% 

     1.5%     
     0.1% 

B.  N=30, 
  P=3, r=0.9   

   5% 
   1% 

      0.4%        
      0.0% 

      0.3%       
      0.0% 

     0.6%     
     0.1% 

C.   N=50,       5%       2.9%              2.3%            2.9%     
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Simulation   Size              Type of Pure Noise Input 
  P=5, r=0.2         1%       0.2%       0.1%      0.2% 
D.  N=50,    
  P=5, r=0.9      

   5% 
   1% 

      0.3%        
      0.0% 

      0.5%       
      0.0% 

     0.6%     
     0.1% 

E.   N=100,    
  P=10, r=0.2     

   5% 
   1% 

      4.1%        
      0.4% 

      3.9%       
      0.5% 

     4.2%     
     0.6% 

F.  N=100,    
  P=10, r=0.9     

   5% 
   1% 

      0.9%        
      0.1% 

      0.8%       
      0.2% 

     0.9%     
     0.2% 

G.   N=200,    
  P=20, r=0.2     

   5% 
   1% 

      5.0%        
      0.9% 

      4.4%       
      0.8% 

     4.7%     
     1.0% 

H.  N=200,    
  P=20, r=0.9     

   5% 
   1% 

      2.0%        
      0.3% 

      1.7%       
      0.2% 

     1.7%     
     0.2% 

I.   N=400,    
 P=40, r=0.2      

   5% 
   1% 

      4.7%        
      1.0% 

      4.5%       
      0.7% 

     5.3%     
     0.9% 

J.  N=400,    
 P=40, r=0.9      

   5% 
   1% 

      2.6%        
      0.4% 

      3.0%       
      0.5% 

     3.0%     
     0.4% 

 
N = sample size, and P = number of frames. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.  Power Test Results for Stationarity Test: Frame Length = 10. 
 
Simulation Power              Type of Pure Noise Input 
         Gaussian  Exponential    Uniform 
A.   N=30,     
  P=3, r=0.2  

   5%    
   1%  

       8.8%       
       0.4% 

       9.4%       
       0.5% 

     8.7%     
      0.4% 

B.  N=30,  
  P=3, r=0.9   

   5% 
   1% 

       5.4%       
       0.4% 

       5.9%       
       0.4% 

      6.0%    
      0.3% 

C.   N=50,       5%      34.7%            35.5%           32.9%    
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Simulation Power              Type of Pure Noise Input 
  P=5, r=0.2         1%        7.0%        7.8%       6.9% 
D.  N=50,    
  P=5, r=0.9      

   5% 
   1% 

     41.8%       
     12.0% 

     42.5%       
     12.4% 

    42.0%    
    11.4% 

E.   N=100,    
  P=10, r=0.2     

   5% 
   1% 

     86.1%       
     57.8% 

     85.6%       
     58.6% 

    86.3%    
    56.8% 

F.  N=100,    
  P=10, r=0.9     

   5% 
   1% 

     99.7%       
     97.8% 

     99.6%       
     97.5% 

    99.8%    
    98.1% 

G.   N=200,    
  P=20, r=0.2     

   5% 
   1% 

     99.9%       
     98.9% 

     99.9%       
     98.6% 

  100.0%    
    99.1% 

H.  N=200,    
  P=20, r=0.9     

   5% 
   1% 

   100.0%       
   100.0% 

   100.0%       
   100.0% 

  100.0%    
  100.0% 

I.   N=400,    
 P=40, r=0.2      

   5% 
   1% 

   100.0%       
   100.0% 

   100.0%       
   100.0% 

  100.0%    
  100.0% 

J.  N=400,    
 P=40, r=0.9      

   5% 
   1% 

   100.0%       
   100.0% 

   100.0%       
   100.0% 

  100.0%    
  100.0% 

 
N = sample size, and P =  number of frames. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5.  Size Test Results for Stationarity Test: Number of Frames = 5. 
 
Simulation   Size              Type of Pure Noise Input 
         Gaussian  Exponential    Uniform 
A.  N=30, P=5     
      L=6, r=0.2  

   5%    
   1%  

     2.0%        
      0.1% 

      1.7%        
      0.1% 

    2.2%     
     0.1% 

B.  N=30, P=5    
      L=6, r=0.9   

   5% 
   1% 

     0.2%       
      0.0% 

      0.1%       
      0.0% 

     0.3%     
     0.0% 
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Simulation   Size              Type of Pure Noise Input 
C.   N=50, P=5  
     L=10, r=0.2  

   5%    
   1%  

     2.9%       
      0.2% 

      2.3%        
      0.1% 

    2.9%     
     0.2% 

D. N=50,  P=5  
    L=10,  r=0.9   

   5% 
   1% 

     0.3%       
      0.0% 

      0.5%       
      0.0% 

     0.6%     
     0.1% 

E. N=100, P=5    
     L=20, r=0.2    

   5% 
   1% 

     2.7%       
      0.3% 

      2.8%       
      0.3% 

     2.8%     
     0.2% 

F. N=100, P=5  
     L=20, r=0.9    

   5% 
   1% 

     0.2%       
      0.0% 

      0.2%       
      0.0% 

     0.2%     
     0.0% 

G. N=200, P=5  
     L=40, r=0.2    

   5% 
   1% 

     3.0%       
      0.4% 

      2.9%       
      0.4% 

     2.7%     
     0.4% 

H. N=200, P=5  
     L=40, r=0.9    

   5% 
   1% 

     0.2%       
      0.0% 

      0.2%       
      0.0% 

     0.3%     
     0.1% 

I.  N=400,  P=5  
     L=80, r=0.2    

   5% 
   1% 

     3.1%       
      0.3% 

      2.9%       
      0.5% 

     2.9%     
     0.4% 

J.  N=400, P=5  
     L=80, r=0.9    

   5% 
   1% 

      0.7%      
      0.1% 

      0.5%       
      0.0% 

     0.6%     
     0.1% 

 
N = sample size, P = number of frames, and L = frame length.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6.  Power Test Results for Stationarity Test: Number of Frames = 5. 
 
Simulation   Power              Type of Pure Noise Input 
         Gaussian  Exponential  Uniform 
A.  N=30, P=5  
        L=6, r=0.2  

   5%    
   1%  

   21.2%         
      2.2% 

     23.2%       
       2.4% 

 20.2%     
    2.0% 

B.  N=30, P=5  
       L=6, r=0.9   

   5% 
   1% 

    16.9%        
      2.0% 

     18.8%       
       2.3% 

  16.3%     
    1.7% 
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Simulation   Power              Type of Pure Noise Input 
C.  N=50, P=5  
      L=10, r=0.2  

   5%    
   1%  

   34.7%         
      7.0% 

     35.5%       
       7.8% 

 32.9%     
    6.9% 

D. N=50, P=5  
     L=10, r=0.9   

   5% 
   1% 

    41.8%        
    12.0% 

    42.5%       
    12.4% 

  42.0%     
  11.4% 

E.  N=100, P=5  
     L=20, r=0.2    

   5% 
   1% 

    52.4%        
    15.9% 

    50.7%       
    16.0% 

  50.3%     
  15.2% 

F. N=100, P=5  
     L=20, r=0.9    

   5% 
   1% 

    93.9%        
    78.2% 

    92.3%       
    76.3% 

  93.4%     
  76.7% 

G.  N=200, P=5  
     L=40, r=0.2    

   5% 
   1% 

   78.9%        
   41.0% 

    77.7%       
    40.6% 

  78.1%     
  40.7% 

H.  N=200, P=5  
     L=40, r=0.9    

   5% 
   1% 

 100.0%        
   99.8% 

    99.9%       
    99.6% 

100.0%     
  99.9% 

I.   N=400, P=5  
     L=80, r=0.2    

   5% 
   1% 

   97.5%        
   83.6% 

    97.2%       
    83.0% 

  97.5%     
  83.7% 

J.  N=400, P=5  
     L=80, r=0.9    

   5% 
   1% 

  100.0%        
  100.0% 

  100.0%       
  100.0% 

100.0%     
100.0% 

 
N = sample size,  P = number of frames, and L =  frame length.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7. Size Test Results for Stationarity Test: Number of Frames = 10 
 
Simulation   Size              Type of Pure Noise Input 
         Gaussian  Exponential  Uniform 
A.  N=28, P=7  
        L=4, r=0.2 

   5%    
   1%  

     1.7%         
      0.0% 

      1.4%        
      0.1% 

    2.0%    
     0.1% 

B.  N=28, P=7  
        L=4, r=0.9   

   5% 
   1% 

      0.2%        
      0.0% 

      0.1%       
      0.0% 

    0.2%    
     0.0% 
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Simulation   Size              Type of Pure Noise Input 
C.  N=50, P=10  
        L=5, r=0.2  

   5%    
   1%  

     2.8%         
      0.2% 

      2.6%        
      0.2% 

    3.3%    
     0.3% 

D.  N=50, P=10  
        L=5, r=0.9   

   5% 
   1% 

      0.1%        
      0.0% 

      0.2%       
      0.0% 

    0.2%    
     0.0% 

E. N=100, P=10   
     L=10, r=0.2    

   5% 
   1% 

      4.1%        
      0.4% 

      3.9%       
      0.5% 

    4.2%    
     0.6% 

F. N=100, P=10   
      L=10, r=0.9   

   5% 
   1% 

      0.9%        
      0.1% 

      0.8%       
      0.2% 

    0.9%    
     0.2% 

G. N=200,P=10  
     L=20, r=0.2    

   5% 
   1% 

      4.6%        
      0.7% 

      3.6%       
      0.6% 

    3.9%    
     0.6% 

H. N=200,P=10  
     L=20, r=0.9    

   5% 
   1% 

      0.9%        
      0.1% 

      0.9%       
      0.1% 

    1.1%    
     0.1% 

I.  N=400,  P=10  
     L=40, r=0.2    

   5% 
   1% 

      4.2%        
      0.6% 

      3.9%       
      0.7% 

    3.8%    
     0.5% 

J.  N=400, P=10  
     L=40, r=0.9    

   5% 
   1% 

      1.2%        
      0.1% 

      1.4%       
      0.2% 

    1.4%    
     0.1% 

 
N = sample size, P = number of frames, and L = frame length.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 8. Power Test Results for Stationarity Test:  Number of Frames = 10 
 
Simulation Power               Type of Pure Noise Input 
         Gaussian  Exponential  Uniform 
A.  N=28, P=7  
        L=4, r=0.2 

   5%    
   1%  

   13.0%         
      0.6% 

    14.8%        
      0.7% 

  12.8%    
     0.4% 

B.  N=28, P=7    
       L=4, r=0.9   

   5% 
   1% 

    17.6%        
      3.6% 

    20.2%       
      4.6% 

  16.6%    
     2.8% 
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Simulation Power               Type of Pure Noise Input 
C.  N=50, P=10   
        L=5, r=0.2  

   5%    
   1%  

   57.5%         
    18.9% 

    56.9%        
    19.8% 

  54.2%    
   16.8% 

D.  N=50, P=10  
        L=5, r=0.9   

   5% 
   1% 

    75.2%        
    39.8% 

    73.6%       
    39.4% 

  73.9%    
   39.2% 

E. N=100, P=10  
      L=10, r=0.2   

   5% 
   1% 

    86.1%        
    57.8% 

    85.6%       
    58.6% 

  86.3%    
   56.8% 

F. N=100, P=10  
      L=10, r=0.9   

   5% 
   1% 

    99.7%        
    97.8% 

    99.6%       
    97.5% 

  99.8%    
   98.1% 

G. N=200,P=10  
     L=20, r=0.2    

   5% 
   1% 

    98.1%       
    87.2% 

    98.2%       
    88.1% 

  98.4%    
   88.1% 

H. N=200,P=10  
     L=20, r=0.9    

   5% 
   1% 

  100.0%        
  100.0% 

  100.0%       
  100.0% 

100.0%    
 100.0% 

I.  N=400,  P=10  
     L=40, r=0.2    

   5% 
   1% 

  100.0%        
    99.7% 

  100.0%       
    99.6% 

100.0%    
   99.8% 

J. N=400, P=10  
      L=40, r=0.9   

   5% 
   1% 

  100.0%        
  100.0% 

  100.0%       
  100.0% 

100.0%    
 100.0% 

 
N = sample size, P =  number of frames, and L = frame length. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 9a.  Unit Root Test Results for Wheat Time Series 
 
Test Details                                                 Wheat Series 
                  Levels          First Differences 
 Calc 5% 

Crit 
1%  
Crit 

Concl Calc 5% 
Crit 

1% 
Crit 

Concl 

       DF  1.097  -1.94 -2.571    I(1) -12.05  -1.94 -2.571    I(0) 
     ADF(20)  1.263  -1.94 -2.572    I(1) -4.752  -1.94 -2.572    I(0) 
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     ADF(20) 
with Constant 

-1.482  -2.87 -3.452    I(1) -5.275  -2.87 -3.452    I(0) 

   ADF(20) 
with Constant 
  and Trend 

-0.504 -3.425 -3.989    I(1) -5.506 -3.425 -3.989    I(0) 

   ADF(20) 
with Constant 
and Seasonals 

-1.491  -2.87 -3.452    I(1) -4.748   -2.87 -3.452    I(0) 

   ADF(20) 
with Constant, 
  Trend and 
   Seasonals 

-0.572 -3.425 -3.989    I(1) -4.962 -3.425 -3.989    I(0) 

 
 Growth Rates 
 Calc 5% 

Crit 
1% 
Crit 

Concl 

       DF -12.55  -1.94 -2.571    I(0) 
   ADF(20) -4.498  -1.94 -2.572    I(0) 
   ADF(20) 
with Constant 

-5.069  -2.87 -3.452    I(0) 

   ADF(20) 
with Constant 
  and Trend 

-5.493 -3.425 -3.989    I(0) 

   ADF(20) 
with Constant 
and Seasonals 

 -4.63  -2.87 -3.452    I(0) 

   ADF(20) 
with Constant, 
  Trend and 
   Seasonals 

-5.039 -3.425 -3.989    I(0) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 9b.  Unit Root Test Results for Barley Time Series 
 
Test Details                                                  Barley Series 
                  Levels          First Differences 
 Calc 5% 

Crit 
1%  
Crit 

Concl Calc 5% 
Crit 

1% 
Crit 

Concl 

       DF  0.554  -1.94 -2.571    I(1) -15.91  -1.94 -2.571    I(0) 
     ADF(20)  1.362  -1.94 -2.572    I(1) -4.601  -1.94 -2.572    I(0) 
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     ADF(20) 
with Constant 

-1.513  -2.87 -3.452    I(1) -5.162  -2.87 -3.452    I(0) 

   ADF(20) 
with Constant 
  and Trend 

-0.322 -3.425 -3.989    I(1) -5.402 -3.425 -3.989    I(0) 

   ADF(20) 
with Constant 
and Seasonals 

-1.469  -2.87 -3.452    I(1) -4.924   -2.87 -3.452    I(0) 

   ADF(20) 
with Constant, 
  Trend and 
   Seasonals 

-0.345 -3.425 -3.989    I(1) -5.141 -3.425 -3.989    I(0) 

 
 Growth Rates 
 Calc 5% 

Crit 
1% 
Crit 

Concl 

       DF -14.42  -1.94 -2.571    I(0) 
   ADF(20) -4.228  -1.94 -2.572    I(0) 
   ADF(20) 
with Constant 

-5.782  -2.87 -3.452    I(0) 

   ADF(20) 
with Constant 
  and Trend 

-5.205 -3.425 -3.989    I(0) 

   ADF(20) 
with Constant 
and Seasonals 

-4.497  -2.87 -3.452    I(0) 

   ADF(20) 
with Constant, 
  Trend and 
   Seasonals 

-4.866 -3.425 -3.989    I(0) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 10a.  Summary Statistics of AR(18) Fit of Wheat Growth Rate Model 
 
Sample Size =  358 
============================================== 
                 AR(18) parameters / t values 
============================================== 
   Lag             Coefficient            t-value18s 
    1                         0.45                8.22 
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    2                        -0.16              -2.66 
    3                         0.12                1.93 
    4                        -0.20              -3.28 
    5                         0.02                0.29 
    6                        -0.08              -1.35 
    7                         0.16                2.66 
    8                         0.00                0.03 
    9                       -0.09                -1.41 
   10                        0.06                 1.01 
   11                       -0.03               -0.45 
   12                        0.20                 3.29 
   13                       -0.08               -1.29 
   14                       -0.09               -1.38 
   15                        0.04                 0.62 
   16                       -0.03               -0.45 
   17                        0.06                1.03 
   18                      -0.15               -2.79 
============================================== 
Adjusted R Square = 0.277     Std Error of AR Fit =   0.0334 
Hinich Portmentau C Statistic Test for Autocorrelation P-value = 0.994 
============================================== 
 
 
Table 10b.  Descriptive Statistics of Residuals from Wheat AR(18) Fit 
============================================Mean = -0.00003          
Standard Deviation = 0.0325 
Skewness = 0.502            Kurtosis = 3.24    
Maximum Value = 0.144           Minimum Value = -
0.116============================================ 
 
 
 
 
 
 
 
 
 
Table 10c.  Spectral Properties of Residuals from Wheat AR(18) Fit 
 
Sampling interval =  1.00 month     Frame size = 24 

Resolution Bandwidth =  24.00 month    No. of  Frames =  14 

Passband (24.00  2.00) month 

Stationarity test p value =  0.0000 

No. of frequencies in band = 12 
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Large sample standard error = 1.161. 

============================================ 
 
Table 11a.  Summary Statistics of AR(18) Fit of Barley Growth Rate Model 
 
Sample Size =  358 
============================================== 
                 AR(18) parameters / t values 
============================================== 
   Lag             Coefficient            t-value18s 
    1                         0.37                6.67 
    2                        -0.19              -3.25 
    3                         0.04                0.67 
    4                        -0.07              -1.25 
    5                        -0.05               -0.84 
    6                         0.03                 0.46 
    7                         0.05                 0.95 
    8                        -0.04               -0.69 
    9                         0.00                 0.06 
   10                       -0.09                -1.62 
   11                        0.00                  0.02 
   12                        0.33                 5.92 
   13                       -0.25               -4.37 
   14                       -0.07               -1.13 
   15                        0.02                 0.31 
   16                        0.00                 0.03 
   17                       -0.03               -0.54 
   18                       -0.09               -1.59 
============================================== 
Adjusted R Square = 0.307     Std Error of AR Fit =   0.0389 
Hinich Portmentau C Statistic Test for Autocorrelation P-value = 0.989 
============================================== 
 
 
Table 11b.  Descriptive Statistics of Residuals from Barley AR(18) Fit 
============================================Mean = -0.0002          
Standard Deviation = 0.0378 
Skewness = 0.566            Kurtosis = 2.19    
Maximum Value = 0.162           Minimum Value = -
0.115============================================ 
 
 
Table 11c.  Spectral Properties of Residuals from Barley AR(18) Fit 
 
Sampling interval =  1.00 month     Frame size = 24 

Resolution Bandwidth =  24.00 month    No. of  Frames =  14 
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Passband (24.00  2.00) month 

Stationarity test p value =  0.0000 

No. of frequencies in band = 12 

Large sample standard error = 1.161. 

============================================ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 12a.  Unit Root Test Results for Seasonally Unadjusted U.S. Currency Time 
Series 
 
Test Details                    Seasonally Unadjusted U.S. Currency Component 
                  Levels          First Differences 
 Calc 5% 

Crit 
1%  
Crit 

Concl Calc 5% 
Crit 

1% 
Crit 

Concl 

       DF 23.73  -1.94 -2.569    I(2) -14.01  -1.94 -2.569    I(0) 
     ADF(25) 3.725  -1.94 -2.569    I(2) -0.863  -1.94 -2.569    I(1) 
     ADF(25) 
with Constant 

3.592 -2.867 -3.444    I(2) -0.099 -2.867 -3.444    I(1) 

   ADF(25) 
with Constant 
  and Trend 

3.436  -3.42 -3.978    I(2) -2.492  -3.42 -3.978    I(1) 

   ADF(25) 
with Constant 
and Seasonals 

3.924 -2.867 -3.444    I(2) -0.088  -2.867 -3.444    I(1) 

   ADF(25) 
with Constant, 

3.768  -3.42 -3.978    I(2) -2.559  -3.42 -3.978    I(1) 
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  Trend and 
   Seasonals 
 
Test Details                    Seasonally Unadjusted U.S. Currency Component 
             Second Differences               Growth Rates 
 Calc 5% 

Crit 
1%  
Crit 

Concl Calc 5% 
Crit 

1% 
Crit 

Concl 

       DF -35.04  -1.94 -2.569    I(0) -17.61  -1.94 -2.569    I(0) 
     ADF(25) -6.928  -1.94 -2.569    I(0) -0.501  -1.94 -2.569    I(1) 
     ADF(25) 
with Constant 

-7.083 -2.867 -3.444    I(0) -2.351 -2.867 -3.444    I(1) 

   ADF(20) 
with Constant 
  and Trend 

-7.154  -3.42 -3.978    I(0) -2.545  -3.42 -3.978    I(1) 

   ADF(25) 
with Constant 
and Seasonals 

 -6.49 -2.867 -3.444    I(0)   -2.3 -2.867 -3.444    I(1) 

   ADF(25) 
with Constant, 
  Trend and 
   Seasonals 

-6.564  -3.42 -3.978    I(0) -2.474  -3.42 -3.978    I(1) 

 
 
 
 
 
 
 
 
 
 
 
      Change in Growth Rates 
 Calc 5% 

Crit 
1% 
Crit 

Concl 

       DF  -33.7  -1.94 -2.569    I(0) 
   ADF(20) -7.187  -1.94 -2.569    I(0) 
   ADF(20) 
with Constant 

-7.224 -2.867 -3.444    I(0) 

   ADF(20) 
with Constant 
  and Trend 

-7.286  -3.42 -3.978    I(0) 

   ADF(20) 
with Constant 
and Seasonals 

-6.978 -2.867 -3.444    I(0) 

   ADF(20) 
with Constant, 
  Trend and 
   Seasonals 

-7.039  -3.42 -3.978    I(0) 
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Table 12b.  Unit Root Test Results for Seasonally Adjusted U.S. Currency Time 
Series 
 
Test Details                    Seasonally Adjusted U.S. Currency Component 
                  Levels          First Differences 
 Calc 5% 

Crit 
1%  
Crit 

Concl Calc 5% 
Crit 

1% 
Crit 

Concl 

       DF 57.69  -1.94 -2.569    I(2) -3.888  -1.94 -2.569    I(0) 
     ADF(25) 5.154  -1.94 -2.569    I(2)  1.009  -1.94 -2.569    I(1) 
     ADF(25) 
with Constant 

6.117 -2.867 -3.444    I(2)  0.119 -2.867 -3.444    I(1) 

   ADF(25) 
with Constant 
  and Trend 

5.217  -3.42 -3.978    I(2) -2.453  -3.42 -3.978    I(1) 

   ADF(25) 
with Constant 
and Seasonals 

5.272 -2.867 -3.444    I(2) 0.115  -2.867 -3.444    I(1) 

   ADF(25) 
with Constant, 
  Trend and 
   Seasonals 

5.182  -3.42 -3.978    I(2) -2.422  -3.42 -3.978    I(1) 

 
 
 
 
 
 
 
 
 
 
 
Test Details                    Seasonally Adjusted U.S. Currency Component 
             Second Differences               Growth Rates 
 Calc 5% 

Crit 
1%  
Crit 

Concl Calc 5% 
Crit 

1% 
Crit 

Concl 

       DF  -34.81  -1.94 -2.569    I(0) -6.297  -1.94 -2.569    I(0) 
     ADF(25) -4.827  -1.94 -2.569    I(0) -0.501  -1.94 -2.569    I(1) 
     ADF(25) 
with Constant 

-5.003 -2.867 -3.444    I(0) -2.358 -2.867 -3.444    I(1) 

   ADF(20) 
with Constant 
  and Trend 

-5.101  -3.42 -3.978    I(0) -2.961  -3.42 -3.978    I(1) 

   ADF(25) 
with Constant 
and Seasonals 

-4.966 -2.867 -3.444    I(0) -2.336 -2.867 -3.444    I(1) 

   ADF(25) 
with Constant, 
  Trend and 
   Seasonals 

-5.064  -3.42 -3.978    I(0) -2.933  -3.42 -3.978    I(1) 
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      Change in Growth Rates 
 Calc 5% 

Crit 
1% 
Crit 

Concl 

       DF -40.79  -1.94 -2.569    I(0) 
   ADF(20) -6.429  -1.94 -2.569    I(0) 
   ADF(20) 
with Constant 

-6.478 -2.867 -3.444    I(0) 

   ADF(20) 
with Constant 
  and Trend 

-6.529  -3.42 -3.978    I(0) 

   ADF(20) 
with Constant 
and Seasonals 

-6.42 -2.867 -3.444    I(0) 

   ADF(20) 
with Constant, 
  Trend and 
   Seasonals 

-6.471  -3.42 -3.978    I(0) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 13a.  Summary Statistics of AR(22) Fit of Seasonally Unadjusted U.S. 
Currency Model: Change in Growth Rates 
 
Sample Size =  609 
============================================== 
                 AR(22) parameters / t values 
============================================== 
   Lag             Coefficient            t-value18s 
    1                        -0.79             -20.76 
    2                        -0.65             -13.62 
    3                        -0.52               -9.61 
    4                        -0.56               -9.67 
    5                        -0.41               -6.77 
    6                        -0.40               -6.32 
    7                        -0.45               -6.99 
    8                        -0.44               -6.57 
    9                        -0.30               -4.30 
   10                       -0.44               -6.36 
   11                       -0.47               -6.69 
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   12                        0.43                6.13 
   13                        0.24                3.39 
   14                        0.09                 1.37 
   15                       -0.03               -0.50 
   16                        0.01                 0.09 
   17                       -0.09               -1.48 
   18                       -0.11               -1.79 
   19                       -0.03               -0.45 
   20                       -0.02               -0.33 
   21                       -0.16               -3.37 
   22                       -0.05               -1.27 
============================================== 
Adjusted R Square = 0.919     Std Error of AR Fit =   0.0034 
Hinich Portmentau C Statistic Test for Autocorrelation P-value = 0.867 
============================================== 
 
 
Table 13b.  Descriptive Statistics of Residuals from Seasonally Unadjusted U.S. 
Currency AR(22) Fit: Change in Growth Rates 
============================================Mean = -0.0001          
Standard Deviation = 0.0033 
Skewness = 0.042            Kurtosis = 0.417    
Maximum Value = 0.011           Minimum Value = -
0.012============================================ 
 
 
 
Table 13c.  Spectral Properties of Residuals from Seasonally Unadjusted U.S. 
Currency AR(22) Fit: Change in Growth Rates 
 
Sampling interval =  1.00 month     Frame size = 24 

Resolution Bandwidth =  24.00 month    No. of  Frames =  25 

Passband (24.00  2.00) month 

Stationarity test p value =  0.0000 

No. of frequencies in band = 12 

Large sample standard error = 0.8686. 
 
Table 14a.  Summary Statistics of AR(22) Fit of Seasonally Adjusted U.S. Currency 
Model: Change in Growth Rates 
 
Sample Size =  609 
============================================== 
                 AR(22) parameters / t values 
============================================== 
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   Lag             Coefficient            t-value18s 
    1                        -0.76             -19.16 
    2                        -0.62             -12.38 
    3                        -0.42               -7.58 
    4                        -0.41               -6.97 
    5                        -0.26               -4.33 
    6                        -0.21               -3.38 
    7                        -0.20               -3.19 
    8                        -0.15               -2.38 
    9                        -0.06               -1.03 
   10                       -0.07               -1.10 
   11                       -0.07               -1.23 
   12                       -0.18               -3.01 
   13                       -0.13                -2.20 
   14                       -0.12                -1.97 
   15                       -0.18                -2.95 
   16                       -0.22                -3.56 
   17                       -0.15               -2.53 
   18                       -0.09               -1.45 
   19                       -0.07               -1.23 
   20                       -0.02               -0.45 
   21                       -0.03               -0.51 
   22                       -0.09               -2.21 
============================================== 
Adjusted R Square = 0.466     Std Error of AR Fit =   0.0022 
Hinich Portmentau C Statistic Test for Autocorrelation P-value = 0.982 
============================================== 
Table 14b.  Descriptive Statistics of Residuals from Seasonally Adjusted U.S. 
Currency AR(22) Fit: Change in Growth Rates 
============================================Mean = -0.000004          
Standard Deviation = 0.0022 
Skewness = -0.114            Kurtosis = 1.33    
Maximum Value = 0.0097           Minimum Value = -
0.0092============================================ 
 
 
Table 14c.  Spectral Properties of Residuals from Seasonally Adjusted U.S. Currency 
AR(22) Fit: Change in Growth Rates 
 
Sampling interval =  1.00 month     Frame size = 24 

Resolution Bandwidth =  24.00 month    No. of  Frames =  25 

Passband (24.00  2.00) month 

Stationarity test p value =  0.9250 

No. of frequencies in band = 12 
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Large sample standard error = 0.8686. 
 

Footnote this - An alternative prewhitening method to the fitting of an AR(p) model 

is to divide ( )Y kp  by the square root of the frame averaged spectra at frequency k  

(see Hinich (1982), and Hinich and Rothman (1998)). Simulation results indicate that 

the size and power properties of the test statistic reported in section 3 of this paper are 

robust to the type of prewhitening operation adopted.9 

                                                           
9  A Fortran 77 simulation program and a program to compute the test is available from the authors on 
request. 


