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ABSTRACT 

Linear dynamical systems are widely used in many different fields from 

engineering to economics. One simple but important class of such systems is 

called the single input transfer function model. Suppose that all the variables of 

the system are sampled for a period using a fixed sample rate. The central issue 

of this paper is the determination of the smallest sampling rate that will yield a 

sample that will allow the investigator to identify the discrete-time 

representation of the system. A critical sampling rate exists that will identify the 

model. This rate, called the Nyquist rate, is twice the highest frequency 

component of the system. Sampling at a lower rate will result in an 

identification problem that is serious. The standard assumptions made about 

the model and the unobserved innovation errors in the model protect the 

investigators from the identification problem and resulting biases of 

undersampling. The critical assumption that is needed to identify an 

undersampled system is that at least one of the exogenous time series is white 

noise. 

 

1. INTRODUCTION 

Linear dynamical systems are widely used in many different fields from 

engineering to economics. One simple but important class of such systems is 
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called the single input transfer function model. Suppose that all the variables of 

the system are sampled for a period using a fixed sample rate. The central issue 

of this paper is the determination of the smallest sampling rate that will yield a 

sample that will allow the investigator to identify the discrete-time 

representation of the system. The determination of the minimal sufficient 

sampling rate is a mathematical problem that was solved years ago using 

Fourier transforms. A critical sampling rate exists that will identify the model. 

This rate, called the Nyquist rate (p.388, Anderson, 1971) is twice the highest 

frequency component of the system. The importance of the Nyquist rate for 

system identification is known in the science and engineering spectral analysis 

literature yet it has been largely ignored in the literature that applies the time 

domain methodology popularized by Box and Jenkins (1970). 

The standard approach is to start with a discrete-time linear model. An 

alternative approach, strongly advocated by Wymer (1972,1997) and Bergstrom 

(1990), is to start with a linear stochastic differential equation model for the 

system. Telser (1967) discusses the identification problem inherent in 

estimating the parameters of a difference equation using a data series that is a 

moving sum of discrete-time observations. Telser also recognized the connection 

between the parameter identification problem for discrete-time data and the 

aliasing of the period of a sinusoid. Phillips (1973) addresses the identification 

of parameters of a continuous time differential equation using discrete-time 

data. Phillips shows that it is possible to identify a finite parameter dynamical 

system by assuming linear constraints on the structural matrix even when the 

stochastic disturbance is aliased. His paper should have led to an important set 

of advances in time series model identification but it did not catch on, perhaps 

because as with Telser’s paper it was overshadowed by the popularity of the Box 

and Jenkins point and click methodology. 

The sampling rate issue is also confused or ignored in the econometrics 

literature extending the Box and Jenkins methodology to economics (see 

Granger and Newbold, 1976, and Harvey, 1981). The standard reason usually 
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given by time series econometricians for ignoring the sampling issue is that it is 

irrelevant for the identification and estimation problem for a discrete-time linear 

system model. The parameters of the model are estimated by sample 

autocorrelations and the sample autocorrelations are unbiased. A more subtle 

reason for ignoring the sampling rate is that the sampling rate used to collect 

the data was fixed when the data was collected and it thus can not be changed. 

This point is well made by Telser in the paper previously cited. 

These arguments are true but they deflect attention away from the fact that 

the models used and the assumptions made about the unobserved innovation 

errors in the model protect the investigators from the identification problem and 

resulting biases of undersampling. The critical assumption needed to identify 

an undersampled system is that at least one of the exogenous time series is 

white noise. 

The standard form for a causal linear transfer function model in continuous 

time is as follows where )(tx  denotes the input time series and )(ty  denotes the 

output: 

(1.1)  ∫
∞

−=
0

)()()( dsstxshty  

The function )(th  is the impulse response of the model. In engineering and 

science applications, the time series are called signals and (1.1) is called a 

filtering operation where the input signal )(tx  is filtering by the impulse 

response to yield the output signal )(ty . Assume that 0)( =th  for t > T. The 

impulse response has finite support. 

The input and output signals are sampled to produce a set of data. Since the 

problem is mathematical and not statistical there is no reason to add a noise 

signal in (1.1) and the signals are functions of time and not continuous time 

stochastic processes. The sampling issues discussed in this paper apply to any 

statistical time series model. 
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2. BANDLIMITED SAMPLING 

If )(tx  and )(th  are absolutely integrable, the Fourier transforms 

(2.1)  ∫
∞

∞−

−= dttitxfX )2exp()()( π  and ∫
∞

∞−

−= dttithfH )2exp()()( π  

exist and )()()( fXfHfY = . Since )(tx  is real )()( fXfX ∗=− , the complex 

conjugate of )( fX  and similarly for the complex transfer function )( fH . 

Assume that the set of positive support for )( fX  is ),( oo ff−  for some 

frequency of . This frequency is the bandlimit of )(tx . The transfer function 

)( fH  has infinite support since )(th  is finite. 

Suppose that the signal is sampled at the Nyquist rate of2 , or equivalently at 

a fixed sampling interval )2/(1 of=τ . Then the discrete time version of the 

model (1.1) is 

(2.1) ∑
=

−=
N

n
nknok txthty

0
)()()(  where ds

st
stf

shth o
o  

)( 
))( 2sin(

)()( ∫
∞

∞− −
−

=
π
π

, 

τktk =  and τ/TN =  (Chapter 10, Bracewell, 1986). If τ is much smaller than T 

then the impulse response parameters )()( ττ khkho ≈  with an error of order 

)( 1−τO . 

The discrete-time convolution of the finite )( τkho  sequence with the )( τkx  

sequence to yield the )( τky  sequence is a set of linear equations which can be 

solved to obtain the impulse response parameters )( τkho  for k=1, … , N. 

Suppose that the sampling rate used is of  rather than the Nyquist rate of2 . 

Then every other ))((0 τnkh −  and )( τkx  are missing in the system of equations 

(2.1). It thus is impossible to solve for the N values of )( τkho . For example, 

suppose that ))1(( )()( τττ −+= kxakxky . Then the two equations for k=1 and 2 

for times τ=1t  and τ32 =t are 

(2.3) )0( )()( xaxy += ττ  and )2( )3()3( τττ xaxy += . 
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These equations can not be solved to find a since )0(x  and )2( τx  are not 

observed. Using more equations is fruitless since the )( τkx  for even values of k 

are not observed. The parameter a is not estimable since the system is not 

identified. The investigator must interpolate the missing values in order to 

estimate a. Interpolation requires some prior knowledge about the functional 

form of the input. 

So far the sampling issue has been separated from the stochastic linear model 

problem which is the motivation for this exposition. Let us turn to the 

stochastic model. 

3. STOCHASTIC TRANSFER FUNCTION MODEL 

Suppose that the )}({ τkx  in expression (2.1) is a sequence of observations of a 

zero mean random process with a given joint distribution. The covariance 

function of )}({ τkx  is ))(()()( τττ knxnExkcxx += . Then the cross covariance 

function for )}({ τkx  and )}({ τky  is 

(3.1) ∑
=

−=
N

n
xxoxy nkcnhkc

0

))(()()( τττ . 

This system of linear equations is used to solve for the parameters )( τkho . If the 

system in (2.1) were used to obtain an ordinary least squares fit of the 

parameters, then the solution would be the solution using (3.1) with sample 

estimates of the covariances )( τkcxx  and the cross covariances )( τkcxy  ignoring 

end effects. Consider the covariances and cross covariances to be known values 

to simplify exposition. 

Once again if the processes are sampled at a slower rate than of2  then the 

solution of the linear system (3.1) will produce a distorted estimate of the filter 

parameters unless the investigator can produce a valid interpolation for the 

missing covariances. The impulse response is not identified. 

An example is helpful here. Suppose that the impulse response is 

)/2cos( 10)( Nnnho τπτ =  and the input is a first order autoregressive process 
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AR(ρ) whose innovations variance is one. Thus the covariance of the input is 
12 )1()( −−= ρρτ τk

xx kc . Assume that the processes are sampled at the rate 2/of  

and thus every fourth value of the processes is observed. Figure 1 compares the 

impulse response recovered from a least squares solution of the under identified 

system for ρ =0.9 with the skip sampled true impulse response. Figure 2 

displays the results for a sampling rate of 6/of . The undersampling produces a 

distorted picture of the response of the system.  

4. IDENTIFICATION BY WHITE NOISE 

There is a special case for which a subset of the impulse response parameters 

will be identified. Suppose that )}({ τkx  is white noise, that is 0)( =τkcxx  for all 

0≠k  Then 2)()( xoxy khkc σττ =  from (3.1). In this case, if the processes are 

sampled at a slower rate than Nyquist, the estimated impulse response 

parameters will be an under-sampled version of the filter parameters. For 

example if )exp()( ττ ckkho −=  and the process is sampled at a rate of 10/of  the 

recovered filter parameters will be )10exp( τck−  for 10/Nk ≤ . The recoverd 

impulse response will provide good short-term prediction for the )10( τky . 

If one could control the input then it is obvious that one would use white noise 

input. It is the time series equivalent of an orthogonal design in the statistical 

design of experiments literature. In the more general dynamical systems the 

state space representation is of the form 

(4.1)  )())1(()( τττ kkk eAyy +−=  

where )( τky  is an n dimensional vector of observed exogenous and endogenous 

time series, A is a nonsingular system matrix and )( τke  is an n dimensional 

vector of unobserved exogenous random inputs which are called innovations in 

economics. The innovations sequence models the real input to the linear system 

and are not a mathematical representation. If on the other hand expression 

(4.1) is seen as a statistical model to represent the correlations in the data, then 



 7

one should question the validity of using this statistical model to make 

statements about causal relationships in the true system. 

The system matrix is identified if the innovations are jointly white. This is the 

generalization of the white input in expression (3.1). If the system is under-

sampled then the eigenfunctions of the system are similarly under-sampled but 

their pattern is not distorted. 

The identification assumption on the unobserved innovations time series is the 

mathematically equivalent to the identification of the impulse response of a 

linear transfer function with an important distinction. The innovations are not 

observed while the input of the transfer function is. If nature is obliging and 

makes the innovations white to help the investigator, then all is well. If not then 

the covariance structure of the input must be modeled. 

Another approach is to reject the Markov model (4.1) and use a properly 

sampled multivariate transfer function model for forecasting. A multivariate 

transfer function is an intellectually and technically valid approach to modeling 

and forecasting a linear system where the input can be measured. Transfer 

functions are widely applied in engineering and science. But it is not in favor 

among most time series econometricians. 

5 CONCLUSIONS 

The results presented in this paper pose a real problem for macroeconomists 

who use time series models to model economics systems. It is impossible to 

obtain high frequency data for standard macroeconomic series such as interest 

rates, output, and prices. The highest frequency macroeconomic data available 

is monthly. Thus the analyst must use the dynamical model (4.1) and hope that 

the innovations are white. If the model is a good approximation to reality then 

the analyst can get some sense of the dynamical response of the system. 

Otherwise only the trends can be analyzed. 
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Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 

Aliased & True Impulse Responses for a Sampling Interval of 4τ
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Figure 2 

Aliased & True Impulse Responses for a Sampling Interval of 12τ
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