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1 Introduction

Consider a stationary processX = {Xt, t = 1, 2, ..., T} defined on (Ω,F , {Ft} , P ) where F denotes

the Borel sets, {Ft} is a filtration and P is a probability measure which is assumed to be absolutely

continuous respect to the Lebesgue measure. For this process we are interested on testing any

form of time-dependence (linear or nonlinear). Usually, we would expect a researcher to run

some convenient test over the whole sample in order to infer about the kind of dependence that is

present in the data. For instance, in the Box and Jenkins modelling strategy for ARMA models it is

required some inference over the whole sample using the autocorrelation and partial autocorrelation

functions in order to select the apropriate model, and it is also required an inference procedure

over the whole sample when selecting a parsimonious model using information criterions such that

of Akaike. However, in these examples as well as in several other statistical settings it is implicit

that the result of the test does not depend on how we can partitionate the data, otherwise the

inference made without this additional information is generally invalid.

In this study, we propose a test of whether a specific form of partitioning the data sample is

informative. The test is based on finding evidence of transient dependency (i.e., unstable structure

of dependence in the data). This problem can be restated to apply whenever the data is given

some order not necessarily in time (e.g., the order of individuals in a cross-section), although our
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examples are uniquely taken from the time-series context where the problem is more evident. To

be precise, let
{
X(i), i = 1, 2, ..., k

}
be an arbitrary collection of subsamples of X with elements of

length Ni and such that
∑
i

Ni = T . Define a suficient statistic S ∈ Rd to be used in the inference

procedure for which we know its limit distribution Q and denote S
(
X(i)

)
the statistic evaluated

at each X(i), S(X) corresponds to the same statistic evaluated at the entire sample.

The problem of transient dependency can be stated as follows. Let T : Rk+d 7−→ Rd be an

application over the sets
{
S
(
X(i)

)
∈ Ai, i = 1, 2, ..., k

}
∀k > 2 and denote the corresponding com-

position as T (X) =
{
S
(
X(i)

)
∈ Ai, i = 1, 2, ..., k

}
◦ T . If the partition of the data is informative

and if this information is summarized in the parameter φ, then we can build a similar test based

on T (X) with similar region α (the size of the test that is based on S (X)). That is, we intempt

to have (Barklett, 1937): P (S (X) ∈ A; φ) = α ∀φ ∈ Φ where φ is a nuisance parameter. But

if T (X) is a sufficient statistic for φ then under the null hypothesis the conditional distribution

P
(
S
(
X(i)

)
∈ A′i|T (X) ∈ A

)
(with A′ = ∪

i
A′i) will not depend on the parameter φ for i = 1, 2, ..., k.

Thus, evidence supporting transient dependence can be found by rejecting the null hypothesis for

some subsample based on this conditional test. We show below that this property is satisfied by

the family of union-intersection tests.

It is needed first to define formally the relationship between an inference based on S (X) and

that of T (X) which occurs under the null hypothesis.

Proposition 1. For S(X) to provide the same inference than that of T (X) it is necessary that

P [S (X) ∈ A′] ⇒n Q where A′ ∈ F is a Borel set such that Q (∂A′) = 0 (∂A′ is the boundary of

A′) and Q is proportional to the limit distribution of T (X).

Proof. If P [S (X) ∈ A′] ;n Q then there exist a collection of disjoint sets Ai for i = 1, 2, ..., k

forming a partition of A = ∪
i
Ai such that P [T (X) ∈ A] ;n λQ where λ = λ (X) > 0 is a

constant, but this is not possible because the latter distribution is tight on Rd for d ≥ 1 and the

finite dimensional distributions form a convergence-determining class on that space (Billingsley,
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1999).

Thus, when the null hypothesis is true the partition of the sample data
{
X(i), i = 1, 2, ..., k

}
is not informative and its knowledge conduces no further changes to the inference that we can

make through the statistic S (X). We operationalize this proposition as follows. For simplicity

assume that S, T ∈ R1. The null hypothesis of the test of interest is described as the inter-

section of complementary events ∩
i≤k

[
S
(
X(i)

)
≤ c
]
for some c. A level α test can be formed

through the union intersection approach with the maximum order statistic and the rejection

region defined as
[
S
(
X(i)

)
> c for some i = 1, ..., k

]
=

[
max
i≤k

S
(
X(i)

)
> c

]
where c = c (α, n).

To see this, we can note that
[
S
(
X(i)

)
> c for some i = 1, ..., k

]
⊂ ∪

i≤k

[
S
(
X(i)

)
> c
]
and that

P

(
∪
i≤k

[
S
(
X(i)

)
> c
])

= α (it is only required that S provides a size α test). We show then that

the union-intersection test can be used to answer the question of whether a partition of the data

sample is informative.

Proposition 2. Under the null hypothesis T (X) = max
i≤k

S
(
X(i)

)
is a suficient statistic for φ.

Proof. For union intersection tests we only need to note that P
(
S (X) > c|max

i≤k
S
(
X(i)

)
> c; φ

)
=

P
(
S (X) > c| ∪

i

{
S
(
X(i)

)
> c
}

; φ
)

= 1 which does not depend on φ.

Then, we identify λQ in Proposition 1 with the limit distribution of T (X) = max
i≤k

S
(
X(i)

)
and

1/λ = P

(
S
(
X(i)

)
> c|max

i≤k
S
(
X(i)

)
> c

)
< 1 for i = 1, 2, ..., k.

A well known convergence to types result due to Gnedenko (1943) shows that the limit dis-

tribution of the maximum order statistic for a sequence of independent, identically distributed

random variables exists and it is one of three types depending on the support of the distribution.

Extensions of this result to allow for dependency in the data either in discrete or continuous time

are available (e.g. Watson 1954; Welsch, 1971; Durret and Resnick, 1978) and also there are re-

sults for stationary processes and some forms of weak dependency (e.g. Berman, 1964; Leadbetter,
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1974; Adler, 1978). It is clear that depending upon the particular context a suitable result for a

limit distribution of the maxima is often available, and this is enough for our purposes.

2 Testing for Transient Dependence

In this section, we apply the previous results to derive a method for testing transient dependence

when S (X) is a centered chi-squared variable. An example is now provided in the context of

the Hinich (1996) test for nonlinearity. Consider a zero-mean second-order stationary process for

which we are interested on finding significant elements of the third-order cumulants. These are

moments of the form C (r, s) = E (XtXt+rXt+s) and their sample counterparts are referred as

bicorrelations . A stochastic process can show non-zero bicorrelations and still have a white noise

representation, which turns out to be a convenient specification for describing time-dependence in

many applications.

The Hinich (1996) test is a test for the null hypothesis of a pure white noise process (i.e., a

white noise process with independent innovations) against a process having many significant bicor-

relations. As usual, the test relies on assumptions about the stability of the dependence structure

in the sample. But note that this could be unlikely to occur if the sample covers a relatively long

period of time, which is commonly the case in time-series applications. Motivated by this fact,

Hinich and Patterson (2005) studied the transient dependence in white noise. Using financial data

they found that periods of time dependence do alternate with periods of independence, a result

that can have implications regarding the efficiency of financial markets. From a statistical point of

view, that result can also have implications on the forecasting ability of linear time-series models.

In their setting, Hinich and Patterson (2005) applied the test separately over data grouped in

consecutive window frames of fixed but rather short length of time. Thus, a penalty in the size

and power of the test is expected for that procedure because of the limited information contained

in a single window even when is applied consecutively or overlapped.
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Alternatively, we can use a union-intersection approach to control for the size of the test and

increase its power. In particular, let X = {Xt, t = 1, 2, ..., T} be a sequence of linearly filtered

data where EXt = 0 and EX2
t = 1 for all t ≤ T . The testing procedure employs non-overlapped

data windows, thus if N is the window length, then [X(ti+1), X(ti+1 + 1), ..., X(ti+1 +N − 1)] is

the i-th window where Xt = X(t) and i = 1, 2, ..., k and t = 1, 2, ..., T . The next non-overlapped

window simply considers ti+1 = ti + N . Define the statistic Hi =
∑
r

∑
s

G2
i (r, s) where Gi (r, s) =

(N − s)−.5
∑
t

XtXt+rXt+s for 0 < r < s which is indexed to the window i. The Hi statistic is

distributed chi-squared with (L− 1) (L/2) degrees of freedom for a test of size α. L is the number

of lags that enters the window and it is determined endogenously as L = Nb with 0 < b < 0.5

(recommended to maximize the power of the test).

Under the null hypothesis {Hi, i = 1, 2, ..., k} is a collection of independent and identically

distributed random variables, then we can characterize this hypothesis as ∩
i
{Hi ≤ c} and its prob-

ability as P
(
∩
i
{Hi ≤ c}

)
= P (H1 ≤ c)k when all the windows have the same length (or in general

as
∏
i≤k
P (Hi ≤ ci) where ci = ci (α,Ni) and i = 1, 2, ..., k). The rejection region for the union inter-

section test is given by
{

max
i≤k

Hi > c

}
.

Proposition 3. P (H1 ≤ bku)k ⇒k exp (−u−γ), where γ = γ (α, k) > 0 and bk is a normalizing

constant such that 1− P (H1 ≤ bk) = 1
n
.

Proof. In order to apply Proposition 3 to the H statistic, we have to show that we can write

1 − P (H1 ≤ u) = u−δh(u) for some δ > 0 and slowly varying function h(u). But it sufficies to

assume that Euδ <∞ with δ = 1 (so that the process X is second-order stationary). The rest is

a standard result and it can be found in Ferguson (1996), p.95.

It is immediate that max
i≤k

Hi is distributed reverse weibull with parameters (γ, 1). In order to

have a similar proposition for considering the case of different lengths on each window, one could

apply the results of limit convergence for the maxima on arrays of independent random variables

in Serfozo (1982), but the limiting distribution differs from that of Proposition 3.

5



Figure 1: Size of the test according window length (N) and sample size (T )

2.1 Size and Power of the Test

In this section we provide evidence on the size and power of the union-intersection test of section 2

through a Monte Carlo experiment. We generate pseudo random numbers for the pure noise process

from four alternative distributions: Gaussian, t-student (with v degrees of freedom), Uniform and

Exponential. Both the size and power of the test vary in a complex manner according to the

sample size T and the window length N , which is controlled by adequately choosing the value of

the parameter γ. Our Monte Carlo results show that we can use γ = k0.2 as a valid approximation

for most empirical applications.

2.1.1 Size

For the estimation of the size of the test we computed the times that the null hypothesis was

erroneously rejected, running ten thousand replications in each case. The results are summarized

in Figure 1. For a given window length the size of the test increases as the sample size increases

which is a standard result. The size also varies with the window length for a given sample size

although this is expected. The reason can be associated to the informational content of a single

window frame respect to the whole sample, which differs accordingly to the number of windows

and the window length.

For a given size of the test and a sample size we can deduce using Figure 1 the window length

that is consistent with the asymptotic theory. With T = 1100 observations and α = 0.1 we should

use a window length N = 90 observations if Gaussian innovations are assumed and a window

length N = 80 observations for t-Student innovations. Alternatively, by fixing the window length

for a given sample size we can obtain the respective probability of introducing Type I error. For

example, consider again T = 1100 and N = 105. In the case of Gaussian innovations the size of

the test is approximately 0.08 but it is near 0.05 for the Uniform innovations.
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Note that although the results differ across the four distributions for the innovations such

differences are still bounded on values that are commonly used in empirical work. Consequently

our results seem to be robust independently of the particular distribution that is assumed. In

practice this means that low p-values should be considered as strong evidence in favor of the

alternative hypothesis, even if the distribution of the innovations is assumed to have fat tails.

2.1.2 Power

The power of the test is evaluated against two nonlinear models: a nonlinear moving average

(NLMA) model and a bilinear (BL) model. The particular specification we use for the NLMA

model is Xt = et + βet−1et−2 where et denotes a zero-mean innovation with variance equal to

σ2. This model permits that the parameter β can take any nonzero value whilst the random

variable is clearly not independent yet is white, which has many desirable properties for our study.

Note that although there is no correlation between Xt and Xt+r for r 6= 0 the elements of the

third-order cumulants of the process {Xt, t = 1, 2, ..., T} can be different from zero. In fact, we

have that C (r, s) = βσ4 but there are only six of these elements for this particular process,

which makes it very difficult to capture the underlying time-dependence structure based on a

nonparametric test. On the other side, the bilinear model can be thought as a reduced form

of some higher-order nonlinear moving average process and therefore is characterized by having

several non-zero bicorrelations. These models have the property of approximating with arbitrary

accuracy any model that reasonably can be represented by Volterra expansions, and consequently

they have been proposed as natural nonlinear extensions of ARMA models (Tong, 1990; Granger

and Andersen, 1978). For instance, a model of the form Xt = et + βXt−pet−q is (second-order)

stationary if |βσ2| < 1 and the series is generally white for p 6= q. In our study we use p = 1 and

q = 2.

The results for the test are summarized in Exhibit 1 for each model and two alternative values

of the parameters. We report the percentage of correct decisions using a size of 0.01. As is usual
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the power greatly depends on the values of the model parameters, being more difficult to reject the

null hypothesis as their absolute value approaches to zero1. The power of the test is higher as the

number of windows is higher, which can be achieved by increasing the window length and/or the

number of observations. This result differs according to the four distributional alternatives on the

innovations, being more sensitive for the case of the Uniform distribution. We also note that the

power of the test is higher for the bilinear case than the NLMA, which is expected as the number

of possibly nonzero bicorrelations is higher in the former model.

2.2 An Empirical Example

We return to the problem stated in Hinich and Patterson (2005).
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