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Abstract. The computation of power spectra, cross spectra, coherence, and bi- 
spectra of various types of geophysical raildom processes is part of the established 
routine. Since it is routine, some of the standard procedures need to be examined 
rather carefully to be certain that the assumptions behind the procedures are applicable 
to the data on hand. The basic criteria for a particular method are its resolution band- 
width, its variance, and its bias. In this paper several basic power-spectrum estimation 
procedures are reviewed and their statistical and mathematical pro.perties are discussed. 
The direct use of the discrete Fourier transform for various spectrum calculations is 
discussed in detail, and its properties are compared with the standard proced.ure that 
uses the cosine transform of the estimated correlation function. 

INTRODUCTION 

The cornputa•ion of power spec[ra, cross spectra, and bispec[ra of geophysi- 
cal da[a is par• of [he es[ablished analysis routine [Tukey, 1965]. Since i[ is 
routine, some of •he s•andard cornpu•a•ion procedures need •o be examined ra•her 
carefully to be certain tha• •he assumptions behind •he procedures are applicable 
•o •he set of data in question. In measuring •he applicability of a procedure, we 
must de•errnine •he following' •he resolution bandwidth, •he variance, and •he 
bias due •o leakage of power from one spec[rurn region in•o another. 

Until recently most cornpu•ations have been made by using •he correlation- 
cosine •ransforma[ion procedure [Blackman and Tukey, 1959] Application of 
•he same •ype of procedure [o •he rneasurernen[ of •he bispectra promises [o be 
• very lengthy calculation [Hasselman et al., 1963]. Using [he fas• Fourier 
[ransforrna[ion permits some of •hese quanti•ies •o be calcula[ed more easily. 
The direct Fourier •ransforrna•ion is a differen[ •ype of calculation, and i[ seems 
•o be particularly suitable for •he analysis of microbarograph da•a. 

• Now at the Department of Geology and Geophysics, University of Wisconsin, Madison, 
Wisconsin 53706. 
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A typical finite data sample is shown in Figure 1. Notice thai, the diurnal 
component of atmospheric pressure fluctuation is exf, remely strong. To. study 
shorter sections of data, i.e. to compare power spectra at differenf, times of the 
day, the effect of the diurnal must be eliminated. For short records the diurnal 
effect is seen as a slowly varying mean. High-pass filters can be used to reduce the 
low-frequency components; however, sharp cutoffs require lengthy convolution 
calculations. Another method is to fit a suitable low-frequency function to the 
data and then subtract this function from the data. For example, we could fit 
a sine function to the data sample and determine the frequency, amplitude, and 
phase of f, he diurnal component. Over shorter samples we could choose to fit first- 
or second-degree polynomials. The Fourier transformation is also a least-squares 
fit to the data, however, and it is aparent thai, we can discard the low-frequency 
components and keep the high-frequency components. One calculation then serves 
both to filter and to analyze the data. 

Attractive as the direct transform method is, we musf, consider very care- 
fully its variance and resolution bandwidth. If we were to make a direct trans- 
formation of the whole data sample, the resolution would be very high but the 
variances of the Fourier components would also be large. 

For a given sample of data, the variances of the estimates are generally 
large when the resolution is high (or the bandwidth is narrow). The trick is to 
find a procedure that permits us to average a number of independenf, estimates 
of the spectrum component and thus to reduce the variance of the estimate. It is 
important to remember thai, the averaging procedure must be chosen to match the 
physical processes (i.e., we cannot improve our estimate of apples by averaging 
crab apples, peaches, and apples). 

The method of spectrum smoothing (Hanning) has been widely used and is 
applicable to many physical processes. Assume, for example., that we are measur- 
ing the pressure fluctuations from a great many independent sources and that 
each of the sources produces signals thai, have broad spectrums. The situation is 
sketched in Figure 2. The geophysical purpose of the spectrum analysis is to at- 
tempf, to 'relate sections of f, he observed spectrum at the receiver to the different 
sources. 

TIME 

FREQUENCY 

Fig. 1. Power spectrum of a pres- 
sure record. 
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Fig. 2. Spectrum of received signal from four 
sources. BW is the bandwidth. 
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Fig. 3 (left). Spectra before and after smoothing. The bar indicates the 
width of the smoothing function. 

Fig. 4 (right). Spectra having periodic or nearly periodic components: top, 
actual spectrum; bottom, smoothed spectrum. The bar indicates the width 

of the smoothing function. 

Le• us now assume •ha• •he spectrum a• •he receiver has been measured a• 
moderately high resolution. Measuremen• in each frequency ]•and is indicated 
in Figure 3. The fluctuations of •he spectrum are qui•e large. Note also (Figure 
2) •ha• several frequency bands apply •o •he same physical process. Thus i• seems 
•ha• we could legitimately reduce •he variance of the estimate by averaging •he 
spectrum levels in adjacen• frequency bands for any one particular process, A 
smoothed spectrum is sketched in the lower par• of Figure 3. 

If •he physical processes also include a very s•rong periodic driving func- 
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tion such as tides or day-night heating and cooling of the atmosphere, then the 
spectrum may have the appearance sketched in Figure 4. It is evident that 
application of the smoothing function broadens the periodic components. The 
cross-hatching indicates regions where the power due to the periodic components 
is spread over the power due to the other sources. Spectrum smoothing is un- 
satisfactory in this situation. 

There are alternatives to simple spectrum smoothing, and we shall examine 
one method rather carefully. Its suitability will be determined on the basis of 
leakage, large sample variance of the estimate, and bias. 

STATISTICAL PROPERTIES 

The statistical properties of the direct Fourier transform method for esti- 
mating the spectrum of a random process will be discussed and compared with 
the properties of the Blackman-Tukey procedure. We will not discuss the well- 
known sampling problem of a signal but will simply assume that the sampling 
interval is sufficiently small so that the spectrum of the sampled signal is not 
aliased. 

Consider a discrete stationary process {X(tA)), where A is the time interval 
between successive obervations of the process. Let $(•) denote the power spec- 
trum of the process. Consider the finite record X,o, ß ß ', X•, where Xt = X(tA). 
Cooley and Tukey [1965] published an efficient algorithm, now called the fast 
Fourier transform, for the computation of the discrete Fourier transform of 
Xo, ß ß ', X•_•, i.e., an algorithm for the computation of the n complex Fourier 
coefficients 

n-• k-0 1 ... n--1 
A, = (5/n) 1"' • X, exp [2,•ik(t/n)] ' ' ' (1) 

,:o i= A/--1 

By taking the inverse transform we have 

let 

n--I 

X, - (nA)•/2 • A k exp [--2;rit(k/n)] (2) k--0 

To see the connection with the usual form of the discrete Fourier transform, 

Thus 

n--1 

A(]) = • X(t/X) exp 
t=0 

where ]• = k/n,_X Hz. For example, let 

X(t/x) = exp (--2tit/X/o) 
where I]o] < 1/2,_x. Then 

Re [A([•)] = 
sin (2n - 1)•r/x([• - [o) 

2 sin •r/X (:h - Io) 
q- 
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If fo = r/aA for some integer r, i.e., if •here are exactly r cycles in •he record, 

A(•) = {• if k --- r if k•r 

A method will be described tha• makes direc• use of •he Fourier •ransform 
for •he calculation of power spectra. This direc• method is several orders of 
magnitude faster •han •he Blackman-Tukey approach [Alsop and Nowroozi, 
1966], owing t•o •he efficiency of •his algorithm and •o •he fact• tha• •his method 
involves n log n operations instead of the n' operations used in •he older way. 
The finite discrete Fourier transform is discussed in de•ail by Gentleman and 
Sande [1966] and Binsham et al. [1967]. 

From equation 1 i• follows bhab A• = A•_• •, where •he asterisk denotes the 
complex conjugate. Thus ]A•I :- IA•_•] •ø. The numbers IAo]:, .. ., A(,a,_xl: are 
called ½he periodosram ordinates of 6he sample a6 6he discrete frequencies/% = 
k/nA, where k = 0, 1 ß ß .,( n/2A)-l, and n is even for convenience. 

The periodogram ordinaCes can be expressed in another form. By sCraigh•- 
forward algebra 

IAI: = a I - C, exp -2•ri• (3) 
r=--n+l 

where for r > 0 

C,- I Y] X,X,+,* (4) 
T• -- T t=o 

and C_, - C, •. Le• • be •he mean of •he process, i.e. E (Xt) - g for each t, and 
for convenience assume i• is real. Le• p, denote •he •h covariance •erm of •he 
process, i.e. 

2 

p, = E(X,X, +, • 

Since by definition of $ 

S(I) = a Y] p, exp (-2•rirM) (5) 

[aking •he expected value of equation 3, i• follows •ha• for each k 

E(IA•[ •) = A • 1 -- (p,+ga) exp -2rir (6) 
•=--n+l 

= s -• •+ 
-•/•a n sin a •a• if k > 0 

Thus for very large n we have •he approximation 

•([A•[•) • ••(I•) + g•na if k: 0 (7) 
tS(I•) if k > 0 

In many appliea[ions [he g•nA [erm is removed by sub[rae[ing [he sample 
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mean 

n--1 

from each observation X,. Using the discrete Fourier transform, the sub•mction 
of -• is e•sily •ccomplished by setting Ao - 0, since from equations I •nd 2, .• -- 0 
if •nd only if Ao = 0. 

For a finite n, •he expected value of [A•[ • can be interpreted as 5he power in 
a band around f• - k/hA of approximaSe bandwidth 1/nA Hz. However, if •he 
power specSrum has some large peaks near f• or if •he spectrum has a large slope 
around f•, •he side lobes of fil•er function (sin • •Af)/(n sin • •Af) (called •he 
Fej•r kernel) will 'leak' power from •he adjacen5 bands 5o such an exSen5 as 5o 
produce a severe bias for [A•[e; i.e., [A•] e will no5 be a good esSimaSe of •he 
power in 5he band around f• owing •o i•s sysSemaSic error. After we have ex- 
amined •he s•a•is•ical properties of •he •A•[ •, we shall re•um •o •his problem. 

I5 has been shown [Bartlett, 1955] •ha5 under some fairly weak condiSions 
for 5he random process, such as 5ha5 •he process is linear bus no• necessarily 
Gaussian, •he periodogram ordinaSes [A•[ • for large n are approximaSely inde- 
penden• random variables. Their large-sample variances are given by 

•2••(f•) if k=0 
IS (f•) if k > 0 

Moreover for large n, 2[A•I•/S(k/nA) have approximately a chi-squared 
distribution with 2 degrees of freedom for k • i and wi•h I degree of freedom 
for •he •erm 1Aol•/S(0). 

Since •he variance of [A•[ • does no• go •o zero as n • •, •he periodogram 
ordinates are no• consis•en• estimates of •he power spectrum. Fur•hemore, •he 
asymptotic independence of [A•l• and IA•l • implies •ha• from sample •o sample 
(non-overlapping) from •he same random process •he periodogram fluctuations 
appear highly erratic when plo•ed agains• k. The standard deviation of IA•l • is 
100% of i•s mean, which impli• •ha• for any given k •he obse•ed value of 
•A•l • can lie anywhere from 0 •o 2 S(k/nA). The periodogram peaks will include 
many false peaks, owing •o sampling flucbuabions. The inconsistency of •he 
periodogram forced investigators •o seek o•her means of computing spectra, such 
as computing •he main par• of •he au•covariance function and •hen •aking i•s 
Fourier transform [Parzen, 1957]. To obtain a meaningful estimate of •he power 
spectrum wi•h a given sample size of n, •he 1/nA--Hz resolution of •he periodo- 
gram mus• be reduced to reduce •he fluctuations of •he estimate. 

A simple method of •rading resolution for smaller variance is bo break 
up •he record in•o non-overlapping pieces and •hen •o compute •he average value 
for each of •he corresponding periodogram ordinates. To be more explicit, if r 
is a divisor of n, •he record is broken in•o r pieces, each of which has m poinSs, 
where m - n/r. The pieces are m points apart. Then •he m numbers 

= __ •• (p) 2 S• 1 [A• [ k=0,--- ,m/2- 1 (9) 
r = 
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are computed, where for each p = 1, ß ß -, r, 

iA•(,, [= = _A • X,+ (•_!,= exp (2•rit)(k/m) (10) 

This averaging technique is discussed by Haubrich [1965] for use in cross- 
spectrum, coherency, and bispectmm analysis, as well as for power-spectrum 
calculations. Haubrich did not, however, give the large sample variances and bias 
of the estimators; instead, Monte Carlo simulation was used •o estimate the 
variances of these estimators for a certain time-series model. Fu•her discussion 

of statistical prope•ies of the direct use of the Fourier transform is given by 
Hannah [1960] and [Welch [1961]. From equation 6 the expected value of S• is 

E(S•) S(m • •) sin2 m•rAf (11) 

Thus for large m 

E(S•) • S(f•), • - k/m/• 

Thus •,he S• give asympt•o•,ically unbiased es•,imates of bhe power spectrum 
evalua•,ed at frequencies l/mA I-Iz apa•. For finite n, S• is a good estimate of 
the power in •,he band around f• - k/mA of approximate bandwidth lfmA 
Itz. As mentioned earlier, the bias of •,he es•,imator S• will be small if •,he power 
spectrum is fairly fiat for a few bands about f•. When data are analyzed in this 
way, it is important •,o remember that several different values of r (and (,hus m) 
should be tried if it is believed (,ha•, there are sinusoidal componen•,s in the data, 
i.e., if there are spectral lines in the •,rue spectrum. 

If m is larger than the correlation distance of the random process (1/mA 
is smaller •,han •,he bandwidth), then [A•(•)[2 and [A•(8)]2 are approxima•ly un- 
correla•,ed for p • s. Thus from equations 8 and 9, for large m the variance of 
S• is approximately 

var (S•) • • •: var 1 

m 

n 

(12) 

where 1/r - m/n. 
Anof. her method involving f•he direcf• use of f•he discrelic Fourier f•ransform 

is discussed by Jones [1965]. In this method, first suggesf•ed by DanJell [1946], 
the n periodogram ordinates are calculaf•ed from f•he whole record, and f•hen 
blocks of r = n/m ordinates are averaged to give mr2 = n/2r estimates of the 
spectrum up f•o f•he folding frequency. The averaging or smoof•hing produces f•he 
required trade-off between resolution and variance. The large-sample pro- 
portional variance is reduced from I to 1/r - m/n, and the resolution i s reduced 
from 1/nA to lima I-Iz. This method gives the same large-sample variance and 
resolufAon as f•he method cifed above. However, if S(f) has one or more large 
peaks in a band of interest (of bandwidth 1/mA), the smoof•hing causes a greaf•er 
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bias in •he estimated value of the spectrum than is produced by •he previously 
described method involving •he Fej•r kernel. On •he o•her hand, if •he •rue 
spectrum is slowly varying over •he frequency bands of in•eres•, periodogram 
smoothing is a simple and effective way of reducing •he variance of •he periodo- 
gram •ype of power-spectrum es•ima•ors. 

Le• us now compare •he above procedure with •he Blackman-Tukey method. 
The main step in •heir method is •o compute the Fourier •ransfo• of •he firs• 
M covariance •erms, i.e., •o compute for k - 0, ..., M, •he raw power-spectrum 
estimates 

U• = A • C.e• -•{• (13) 

where M << • and where the sample mean • h•s been subtracted from the 
In order •o properly compare •he methods, le• M = m/2, where m = •/r. 

For finite n, •he expected value of U• is 

ß 

f'/• sin (• + 1)•Af df = o -1/2A SI• 

and •hus for large m 

E(U•) • S(h) (15) 

where f• - k/m• Hz. I• ½•n be shown [Bartlett, 1955] •ha•, for large m, U• 
and U, are approximately independen• if k -• l, and also 

var (U•) • (m/n)S•(h) (16) 

Thus bo[h U• and S• give asympto[ieally (as m -o oo) unbiased es[images of 
•he power spee[rum S(f), wi•h identical large-sample variances m/n S•(f•). 

For fini[e m, U• is also a good es[ima[e of •he power in •he band abou[ f• 
of bandwid[h 1/mA Itz, provided S(f) is smoo•h and does no[ have large peaks. 
As indicated by equalion 14, if S(f) has a large peak a[ a frequency fo (due •o 
a sinusoidal eomponen[ in •he da[a wi[h period 1/fo), [he major side lobes of 
•he Dirichle[ kernel [sin (m + 1) ,r•f]/(sin v•f) leak power and cause con- 
siderable bias in [he es•ima[es of [he power in adjaeen• bands of f.o. The leakage 
problem for several impor, an[ kernels will be discussed in more de[ail in [he 
nex[ see[ion. I• is clear, however, [ha• [he side-lobe area of [he Diriehle• kernel 
is grea•er •han [ha[ of [he Fej•r kernel (sin • m•Af)/(m sin •' vsf), since [he 
Diriehle[ kernal decays as O(f-•), whereas [he Fej•r kernel decays as O(f-"). 
Thus [he bias due [o side-lobe leakage of [he raw spee[rum es•ima[es U• is 
grea[er [han [he bias of S•. Furthermore, since 

even if/• - 0, [he zero-frequency es•imat. e Uo can be large in contras[ wi[h So. 
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There exists, however, a very simple method to decrease both the variance 
and f, he side-lobe leakage of the U.• estimates, provided that the true spectrum is 
nor, too convoluted. Consider the following smoothing of the U•: 

where • cj = 1. If Co = • and c• = c_• = xA, this smoothing operation is called 
Hanning. Since • cj - i and the U• are independen• for large m, i• follows from 
equations 14, 15, and 16 

(17) 

where 

' sin (m + 1)•rA[/• + (j/mA)] (18) = c, 
•_, sin •rA[[ + (j/mA)] 

and 

var (V•,) • (c_, • + Co • + c,•)(m/n)S2(l•) (19) 
For Harming smoo[hing, the large-sample variance of the V• is (3M/4n) S•(J'•), 
where M - m/2 is the number of lags used. Thus Hanning reduces the variance 
of the spectral estimates by 3/8. 

The bandwidt•h of the Hanning kernel (K with co = 1/2, c• = c_• = 1/4) 
is greater than tha• of the Diriehlet kernal, as seen in Figure 5 with A = 1 see. 
If at a given frequency, •, the true spee[rum has peaks a• the adjaeen[ fre- 
quencies •+ • and )•_•, the Harming smoothing will •ake power from these 
adjacent, bands and will give an overestimate of t•he power at• [•. The t•win peaks 

+1o 

o 

FEdiOR 

.•DIRICHLET 
•••/H2NIN6 Fig. 5. Three spectral kernels with m -- 20. 

.O$•.lO .• .•0 .• .$0 .$fi • 

-I0 -- 



356 HINICH AND CLAY 

will be blurred into one hump, whereas •he unsmoo[hed U• would show •he •wo 
peaks. Since •he major side lobes of •he Itanning kernel (a• • = 3/2m•) are 
smaller •han •he Diriehle• kernel, •hey have less leakage from peaks a• fre- 
quencies farther away from • •han 1/m•x. 

The Fej•r kernel has even smaller bandwidth and even lower major side lobes 
than ghe Itanning kernel. Consequently, •he S• es•ima[es have less bias than •he 
V•. However, the large-sample variance of V• is 3/8 of •he variance of S•. If •he 
true spectrum has many peaks, •he smaller variance of •he Itanned estimates V• 
does not compensate for i•s larger bias. Furthermore, if •he Fourier eoetIieienks 
A•(•) are Itanned for each piece p = 1, ..., r, •hen the averaged periodogram 
ordinates (ef. equation 9) will have the same variance as •he V•. The bias will 
be less, however, since •he appropriate kernel for •hese spectral estimates will be 
K •', which has smaller bandwidth •han K. 

TRENDS AND PERIODIC TERMS 

The signal may consist of many small high-frequency components super- 
imposed on a large low-frequency componen• (see Figure 1). If we observe only 
a short section of this record, the data would appear to be a fluctuating process 
superimposed on a drifting or slowly varying mean. In statistical terminology, 
•his slowly varying mean is referred to as a. •rend. 

Le• us assume tha• we are interested in the higher-frequency components 
and would like •o eliminate the low-frequency effect. In order to illustrate •he 
problem of a •rend, let us consider •he process (Yt), where 

N 

Y, = m, q- Y• a• exp (2,rills) q- X, (20) 

with the X, as discussed above, with •x = 1 see and f•r < •/•I-Iz. The a• coetIieien[s 
can be complex. In polar form, a• = last exp [ib (L)], where b (L) is the phase of 
the sinusoidal. The term mr, a low-order polynomial in t, is called the t;rend. For 
many models, the trend is linear, i.e., mt -- yt. The trend contributes mostly low- 
frequency power • S•, the spectrum of {Yt}. Thus, to control the bias due to low- 
frequency leakage in the estimation of S•, the trend must; be filtered out. Durbin 
[1962] discusses the basic problems associated with trend elimination. A moving 
average high-pass filter (such as a first-difference filter) is usually used to remove 
the trend, and then the estimat;ed spectrum is corrected for the effect of filtering 
by dividing it by the filter function. However, the reduction of the leakage bias 
from the trend depends only on the beginning and end of the record, not on t;he 
middle points. A good met;hod to ill; a •rend of known functional form (such as an 
nt;h-order polynomial) is to use 'least squares.' The properties of least-squares 
[rend estimation are reviewed by Hannah [1960], and •hey are discussed in de- 
tail by Grenander and Rosenblatt [1957]. 

Let. us now give the contribution of the periodic terms to •he estimate of S•. 
For simplicity let us find the eontribut, ion of just one of the sinusoidal •erms in 
equation 20 to the expected value of the various spectral estimates. For a given 
/% let the phase b(L) be chosen from the uniform density with the range 0 < 
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• (•8) < 2•. Il; l;hen follows l;hal; {as exp (2•4t•)) is a sl;al;ionary random process,' 
whose ensemble is characterized by the ensemble of phase angles, and l;hal; il;s 
jth covariance term is 

p• - la•l 2 exp (2•rirf•) 

Thus from equal;ion 5, (a• exp (2•rit/•)) has •he power specl;rum 

S(f) - la• [2 • exp [2•rir(f• - f)] - /•(f - f•) (21) 

where •(/•) is l;he Dirac dell;a funcl;ion. By applying equal;ion 21 l;o equal;ions 11, 
14, and 17, we have for/• - k/nix 

E(&) = lal sin2 m7r(fk- f•) rn sin e •r(fk -- •) 

E(Uk) = la•[ 2 sin (m -1- 1)•r(/k- is) sin •r(f• - f•) 

E(V•) - ]a•l•r(f•- I2 

Fej6r (22a) 

Diriehlel; (22b) 

Hanning (22c) 

where K(f) is given by equal;ion 18 wil;h co = •/• and cx = c_x = •A. Thus as 
m --> oo, S• and U• have expeel;ed values l;hal; converge l;o l;he l;rue power miami at 
/',, whereas E (V•) --> (m/2) !a,I anol;her frequency ft =/=/'8, all 4;he esl;ima•rs 
have a bias due l;o l;he 'leakage' of power by l;he side lobes of l;he kernels (assum- 
ing t•hal;/', • k/mix for some k). 

In order l;o compare l;he leakage bias l;hal; resull;s in l;he use of l;he B laekman- 
Tukey mel;hod (wil;h and wit;houl; Hanning) wi[h t;he bias l;hal; resulLs in l;he use 
of l;he periodogram method when l;he dal;a have a subsl;anl;ial nonsl;al;ionary mean, 
l;he nonrandom parl; of {Yt} was eompul;ed for n = 512, m =. 128 (64 lags), and 
r = 8 (pieces). A linear l;rend, mt= 7t, was used wil;h 7 = 2/n, and t;he fre- 
quencies sleel;ed were /'• = 8.25/512 Hz plus /'e = 16.5/512 Hz. The periodic 
eomponen• were chosen [o be real sine funel;ions, and l;he amplil;udes a, used 
were X/0.5 for bot;h frequencies. As an all;ernal;e ease, l;he linear l;rend alone was 
used as l;he inpul; for bol;h procedures. The eonl;ribul;ion l;o l;he power 'esl;imal;e' 
of each of l;he sine funel;ions was m/4 - 16 al; l;he posil;ive frequencies/'.x and 

Wil;h l;he periodogram mel;hods 4•he bias of l;he power 'esl;imat;e' al; l;he il;h 
band is nol; simply l;he square of l;he absolul;e value of l;he t;ransform of l;he l;rend 
(wil;h l;he mean subl;rael;ed). There is an addil;ional bias, which is t;he sum of 
l;he products of l;he real and imaginary parts of l;he l;ransform of l;he sinusoidal 
and l;he 4;ransform of l;he l;rend, since for complex numbers zx and ze 

[Zx q-z212 ---- !z•] 2 q- ]Z2I 2 + 2(Re z• X Re z2 q- Im z• X Im z2) 
The eonl;ribul;ion using l;he periodogram mel;hod due l;o l;he l;rend alone is 0.2 
for/'x and 0.05 for/'2 (Figure 6), whereas l;he l;ol;al bias witch l;he sinusoidals pre- 
senl; (Figure 7) is 10.8 - 16 = 3.8 for /'x and 16.8 - 16 = 0.8 for /'2. Thus, 
all;hough l;he power eonl;ribul;ion of l;he l;rend is small, l;he cross l;erms give a bias 
proportional l;o l;he power of l;he sinusoidal (Figure 8). 
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Fig. 6 (left). Spectrum of trend (zero mean) before Harming. 
Fig. 7 (middle). Spectrum of trend and equal sinusoidals before Harming. 
Fig. 8. (right). Spectrum of trend and equal sinusoidals after Harming for B-T method. 

CROSS SPECTRA AND COHERENCE 

Many studies of geophysical processes involve the computation of the cross 
spectra and coherence between signals observed at various sensors in an array. As 
dictated by array theory, the estimated cross spectra are used to improve the 
signal-to-noise gain of the array [Backus et al., 1964; Burg, 1964]. The use of 
cross spectra is well known, but it is also well known that the significance of the 
measurements is often difficult to judge. 

Consider two discrete stationary random processes {Xt) and {Yt). The 
cross spectrum S• (/) for this pair of processes is defined by 

S•(f) = zX • p• exp (-2ri•Af) (23) 
where the •th cross covariance is 

= - (24) 

The coefficient of coherence is defined to be 

where S, and S• are •he power spec[ra of {X•} and {Y•}, respectively. From •he 
Schwarz inequality, it follows that 0 _• 7•(•) -• 1. The average phase diJ]erence 
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is defined to be 

Im [S.,(f) ] (26) •b(• = tan -• Re [S•,(J)] 
where Re (z) and Im (z) are the real and imaginary parts of a complex z. Thus 

= exp 
The coherence coe•cient 7•y(/o) is inversely related to the variance of the 

observed phase difference of the/• frequency components of the two processes. 
That is, if 7•y(/•) - 1, then the/• components are perfectly in phase with phase 
difference • (/•). If •y(/o) - 0, the phase difference of the y• components of the 
two processes has a large variance, and thus the average difference •(/•) does 
not make any physical sense. The two processes are said to be incoherent at 

The statistical problems involved in the estimation of 7• from finite records 
of {X•) and {Y•) are not trivial. The first basic work was done by Goodman 
[1957]. Further work in the estimation problem is given by Shapiro [1963], 
Tick [1966], and Foster and Guinzy [1967]. We will now sketch a method for 
estimating 7• using the discrete Fourier transform. This method is similar to 
the one discussed by Haubrich [1965], but we will also state the large-sample 
variances. 

Suppose that equal size records are taken of {X•) and {Y•) and that these 
records are subdivided into r pieces, each piece containing m points as before. 
Given the pth pieces X(•_•, ß ß., X• and Y(•_•, ß ß., Y•, define 
for • - 0, 1, ß ß., m - 1, as before and 

m--1 

B• (•) = (A/m) 1/• • Y,+(•_•)• exp [2•it(k/m)] (27) 

Then 

= &,(h - I) (28) 
which is similar [o equation 11. Thus for large m, A• •* is a good es[ima[e of 
S•([•) if •he cross spectrum is reasonably behaved near •. Analogous [o [he 
one-dimensional case, consider •he estimator 

S• _ 1 • A•r•)B•,(• > (29) 
r 

From equation 28, for large m 

E(S; •) • 

The coefficient of coherency and the average phase difference are of primary 
interest in most problems, however. Consider the following es[imate of •y(/•)' 

• • x • 1/2 = IS;l/( & ) (3o) 

where S• ' is the estimate of S,q•) as defined by equation 9, and, similarly, 
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is the estimate of S•(•). By the Schwarz inequality for sums it follows that 0 _• 
•x• _• 1. For large m 

•x, • •'•,(i•)' (31) 

and following the technique given by Jenkins [1963], it can be shown that 

var (•,) • (m/2n)[1 -- •,2(I•)]2 (32) 

Now consider the following estimate of •(/•)' 

•(•) = tan -• [Im (S•')/Re (S•x')] (33) 

For large m, •(•) • •(/•), and the large sample variance is 

var (•) • (m/2n) [•x,-2(f•) - 1] (34) 
, 

Thus as the coherency ?•, --• 0, the variance of, -• •. This is to be expected from 
the inverse relation between the coherence and the variability of the phase dif- 
ference. It can also be shown that 

var (]S,•'I) • (m/2n)S•(i,)S,(i,)[1 + ?•,•(i,)] (35) 

The estimators •, and • will give good results for reasonable m and n if the 
cross spectrum is slowly varying in the frequency bands. of interest and if S, and 
S, are not small for these frequencies. Moreover these estimators will also give 
good results if there is a sinusoidal component in IX, ] at i = io that is in phase 
with a sinusoidal component of frequency io in /Y, ], provided m is chosen so ttfat 
there is an integer k such that i• = k/m A is near io- 

BISPECTRA 

Suppose that a zero mean Gaussian process (Xt) is passed through a non- 
linear fil•er (such as a squarer). The output of the nonlinear filter is no longer 
Gaussian. If there are strong sinusoidal components in (Xt) with frequencies fx 
and f2 and phases •(fx) and •(f2), then, owing to the nonlinearity, the com- 
ponen• at f -- fx + f• will have a phase angle 

•(i• + f•) = •(f•) + •(i•) - 0 (36) 

where 0 is slowly varying over time. The phases of the component of (X•) for 
f - f• - f2. and f - f: - fx will also be coherent with b (fx) + b (f•.). This could 
correspond to a physical process in which a wave is propagating in a medium 
whose response is nonlinear. 

The bispectrum B(f•,f2) gives a measure of the multiplicative nonlinear 
interaction of frequency component in (X•) [Hasselman et al., 1963; The bi- 
spectrum is defined by MacDonald, 1963]. 

B(f•, f•) = •'• •,, p,,• exp [--2•ri(/•a --• f•)] (37) 
o- •. 

where 



SPECTRUM CALCULATIONS 361 

If {Xt) is a real process, then 

= = - 

If {Xt) is a Gaussian process, its bispectrum B(f•,f•.) ---- O, since in the 
Gaussian case •, • is zero for each a and •. Thus i/ the bispectrum is not iden- 
tically zero, the process is not Gaussian. 

Expressed in polar form 

[S(0 = p exp (iO) (38) 

where •(•, •) is called the skewness and 0 (•1, •) ie the phase lag. If the com- 
ponent at • - /1 + • is basically due to a multiplieative interaction between 
the components of {X•} at • and •, then • - 1 and 0 is as given in equation 36. 

The estimation of the bispeetrum from a finite record of the process can be 
easily computed by the use of the discrete Fourier transform. Consider the fol- 
lowing estimate of B (•,/•) for 0 < k < j < m/2' 

-- • (•) , (•) /•(/•, f0 = 1 A• A, (')A•+, (39) 
r •=l 

where the A•(•) are given by equation 10. As the estimate of skewness, let 

!/•(•, h)[ (40) 
Using the work of Rosenblatt and Van Ness [1965], for large m and n 

and 

/•([•, f•) • B([•, 

var (Re/)) = var (Im/)) • (m/2n)S(]i)S([OS([i q- •) (41) 

where Re/• and Im/) are independent. Thus if S([i), S([O, and S([i + •) are 
known with certainty, the large sample variance of • is m/2n. However, if the 
record of {X, ] is used to estimate the power spectrum terms as in equation 40, 
the large sample variance of • is not trivial to compute. 

In many applications, however, the nonlinearity in the process is d. ue to 
first-order multiplicative interactions between major components of the process 
(such as between tidal and diurnal cycles). In these cases it is often reasonable to 
assume that the amplitude value IA•+•l is proportional to IA•I IA•l for interacting 
components of frequencies [i and [•, and thus the nonzero value of the skewhess 
is mainly due to phase coherence between the [i, [•, and [i+• components. Then 
the large-sample variance of • is approximately 

var (•) • (m/2n)[1 -- p2[i, 1'•)]• (42) 

for each j and k. This result follows by analogy from equation 32, since the bispec- 
trum estimate/• for (y•, [ - •) can be expressed as the appropriate estimate of the 
cross spectrum of {X, } and a process [Z,(J)} as follows: 
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where 

Z,(/•) = • XtX,_. exp (2•ris•) 

since the jth Fourier coefficient of {Z,(])} is A(]i)A(] -- ]i). In order to have 
[•[ • 1, however, the denominator in equation 40 should be 

As a simple rule of •humb, • should only be estimated when •here is a reasonable 
amoun• of power a• [•, [•, and 
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