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The purpose of this article is to present a statistical uncertainty principle that can be

used when localizing a single change in the mean of a band-limited stationary random

process. The statistical model investigated is a continuous time process that experiences

a shift in its mean. This continuous time process is presumed to be sampled using an

ideal low-pass filter. The least squares estimate of the location of the change in mean is

asymptotically Gaussian. The standard deviation of the least squares estimate of the

location of the change-point provides a physical limit to the accuracy of the estimate of

the time of the mean shift which cannot be bettered.

& 2010 Published by Elsevier B.V.
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UNCORRECTED1. Introduction

Whether the world changes abruptly or gradually is a question that has absorbed scholars for centuries. In economics,
structural change has been an ongoing problem in attempts to forecast key variables using econometric models. Abrupt
shifts in variables are frequently overlooked or their timing misjudged, inducing large forecasting errors. Hinich et al.
(2006) argue that time series data must be presumed to be generated by complex systems. The data that we generally have
at our disposal is a discrete sample from a continuous time process that is subject to both ongoing and abrupt structural
changes. This poses significant problems in trying to locate a point in time when an abrupt change occurs. Our goal here is
to present a statistical uncertainty principle that can be used when localizing a single change in the mean of a band-limited
stationary random process.

The statistical theory used to detect and estimate structural change has evolved over at least sixty years, beginning with
Shewhart (1931, Ch. 19–20)) and the seminal contributions of Page (1954, 1955, and 1957), Chernoff and Zacks (1964) and
Hinich and Farley (1966). These papers stimulated research on the following related, but distinct, problems.

First, estimation and inference about the change in the mean of a stationary random process was examined in Farley
and Hinich (1970a, b), Hinkley (1970), Hawkins (1977), Hsu (1979), Talwar (1983), Worsley (1986), Ritov (1990), Bai
(1994), Bai et al., (1998) and Lavielle and Moulines (2000). Second, estimation and inference about regime shifts associated
with intersecting or ‘‘broken line’’ regressions were examined in Hudson (1966), Hinkley (1969, 1971) and Feder (1975a,
1975b). Third, the determination of the location of a change in the position and slope of a linear statistical model was
examined in Chow (1960), Quandt (1960), Brown et al. (1975), Farley et al. (1975), Feder (1975a, 1975b), James et al.
(1987), Kim and Siegmund (1989), Andrews (1993), Bai (1994, 1996), Kim (1994) and Yashchin (1995, 1997).
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Formally, we investigate the least squares estimate of the unknown time of an abrupt shift in the mean of a stationary
white noise random process, when it is known that one such change has occurred in the time period over which the
process is observed and sampled. If the noise is Gaussian, then the least squares estimate is maximum likelihood and this is
optimal as the sample size goes to infinity (Cox and Hinkley (1974, Sect. 9.2)). Because of the ideal statistical model used,
the large sample standard deviation of this maximum likelihood estimate of the time of shift serves as a lower bound to the
estimate of the shift time for more complicated mean shift problems.

When addressing the three above-mentioned problems, in line with the statistical theory underpinning time series
analysis more generally, the starting point is a discrete-time model. This contrasts with engineering and science
applications of statistical signal processing methods, where it is understood that any discrete-time series is the result of
filtering an observed signal and then decimating the filtered output (discrete-time sampling) to obtain the discrete-time
sample. The nth observation tn=nt for the sampling frequency fs=1/t is either implicitly or explicitly assumed to be the
true value of the process at time tn in the standard statistical time series literature, e.g., see Grenander and Rosenblatt
(1957, p.57), Box and Jenkins (1970, pp.399–400), Brillinger (1975, p. 178), Hannan (1970, Sect. II3), Fuller (1995, Sect. 1.3)
and Shumway and Stoffer (2000, Sect. 1.3). This assumption is highly questionable. Any discrete-time observation is the
result of some smoothing of the underlying process. The discrete-time observation is the average of a continuous time
process in a time slice around tn.

In the ideal framework employed here, the objective of the filtering operation is to remove the high-frequency
components of the signal in order to remove aliasing. The rule applied is: when its frequency is higher than twice the
sampling rate, a component is eliminated. If the data is sampled too slowly and is thus aliased, the high-frequency
structure will be lost and, in the current context, the mean shift would be distorted and become much more difficult to
localize. As such, the ideal framework developed in the article constitutes an optimal sampling experiment. In particular,
we are emphasizing the direct link between the ability to accurately locate a shift in mean and knowledge and/or control
over both the sampling and noise processes.1

With regard to the confusion about how discrete-time observations are generated, a key result is that we are able to
refute a central proposition in the literature that there is no consistent estimator of change time, as argued, for example, in
Hinkley (1970), Feder (1975a, b), Hawkins (1977), Worsley (1986) and Ritov (1990). Instead, we formulate the ideal
problem as a continuous time process with a mean shift that is low-pass filtered and sampled at the Nyquist rate. This
produces a discrete time problem where the mean shift has been smoothed by the integral of the impulse response of the
filter.

If we assume that the impulse response is known, the location of the mean shift can be found and is estimable using
conventional methods. This rules out the need to deal with complications arising from non-standard theory based on
Brownian motion as cited, for example, in Hinkley (1970), Hawkins (1977), Kim and Siegmund (1989), Bai (1994, 1996),
Kim (1994), Lavielle and Moulines (2000) and Chong (2001).

Our result will also represent a statistical version of an uncertainty principle. Given our ideal framework (incorporating
both optimal filter and sampling designs), we will provide a lower bound on the estimate of the standard deviation of the
location (time) of the shift in mean that cannot be improved upon (i.e. reduced). The mean shift problem considered is the
simplest in the class of abrupt shifts in the parametric structure of time series. As such the bound we develop can be
viewed as a first step in demonstrating that the error in detecting the time of a shift in mean is usually much larger and
more complicated than is commonly thought, and is linked inextricably to consideration of the nature of sampling process
that generates the time series in question. The technical details of the sampling and filtering issues are addressed in the
next section.
 E
UNCORR
2. Sampling a continuous time signal

We define a discrete-time sampled process {y(tn)} as a continuous time signal {x(t)} that has been ‘‘discretized’’ by some
measurement procedure. The measurement procedure we adopt is standard in signal processing. The continuous time
signal x(t) is filtered by a low-pass filter to remove all frequency components above a cutoff frequency fo and then the
filtered signal is sampled at a rate equal to 2fo in order to avoid aliasing the sampled signal (Priestley (1981, Sect. 7.1.1)).

Suppose that the filter is linear. Then the filter is characterized by its impulse response function denoted h(t). The output
of the filter can be represented as

yðtnÞ ¼

Z 1
�1

hðsÞxðt�sÞds ð1Þ

The filter smoothes the input process x(t) by removing all frequency components of the input that exceed the cutoff
frequency fo. In this article, we let the impulse response have unit area to simplify notation.
1 Indeed, it is our contention that the stated ability of many studies to accurately locate a mean shift is in fact largely illusory because of the lack of

knowledge and control over the sampling and noise processes—facts that have not been typically acknowledged in the broader literature.
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The framework introduced above rests on the assertion that the defining characteristic of the underlying process is a
continuous time process—a notion that can be readily extended to economic systems. In the context of economic systems,
for example, the continuity of the underlying process is related to the notion of continuity of exchange.

In economic applications, macroeconomists use data that is typically supplied by national statistical agencies.2 In
general, this data is compiled from surveys that are often conducted over a week’s duration either once a month or once a
quarter or perhaps from (aggregated) taxation data submitted on a quarterly basis. The continuity of economic activity
associated with the global economy that underpins this reporting activity by economic agents (included in the surveys)
reflects the normal day to day activities of businesses and other economic agents.

The results of these surveys contain information that is benchmarked with additional information obtained from annual
surveys (or censuses) which are then used to generate both quarterly and annual national accounts statistics. This process
can be viewed as a very complicated, albeit imperfect, filtering process that works to smooth out any abrupt changes in the
economy.

For example, any abrupt change appearing within a quarter will show up as a change across consecutive quarters. But
the information content in the resultant quarterly time series data will not be sufficient to locate and model the change as
it appeared within the quarter in which it occurred. Therefore, technical issues concerning sampling and filtering have to
be addressed when trying to locate when structural change has occurred in time series data. In general, some sort of
filtering operation is always latent in social science applications even if the investigator believes that each observation at tn

is the true value of the process at that time. The fundamental uncertainty principle in the natural world also applies for all
measurements in the social sciences. In particular, it should be recognized that the consequences of inherent limitations to
coding, transmitting and analyzing information on institutional and other forms of organizational behavior constitutes an
important source of finite bandwidth in social systems.

One implication of this finite bandwidth property is its apparent inconsistency with the conventional requirement of
infinite bandwidth (�N, N) underpinning the conception of continuous white noise, typically employed in continuous
time econometric and time series problems (see, for example, Bergstrom, (1976) and Priestley, (1981, pp. 234–235)). Note
further that the assumption of infinite bandwidth also ensures that the sampling interval t=(2fo)�1-0 as fo-N. Since all
real signals are band-limited, the appropriate continuous white noise concept is band-limited white noise. The spectral
density of a band-limited white noise signal is constant over the finite-pass band range (� fo, fo) and zero outside this
range.

A key consequence of the finite bandwidth property is that it is impossible to obtain a precise measurement of a process
at a precise point in time—we cannot observe or force (collapse) t-0 because the finite bandwidth property strictly
ensures that fooN, by definition.

In this article we do not address the inherent error in the time of measurement. We treat tn as the true time of
measurement but observed time series data x(tn) is really y(tn) for some filtering operation with a usually unknown
impulse response. For the theoretical development of our ideas we adopt the ideal situation and assume that the impulse
response is known in order to find the optimal least squares estimate of the time of the mean shift (i.e. shift time). Any error
in the impulse response function used to estimate the shift time or inherent error in the time of measurement increases the
error of the estimate of the shift time.

In order to establish the minimum mean squared error of any estimate of the shift time, there must be a precise
statement of the statistical problem. This is done in the following section.

3. The least squares estimate of the shift time

The idealized statistical problem is as follows. Suppose that a continuous time signal x(t) has an abrupt shift in mean
from m to m+d at an unknown time x. The continuous time process with mean shift can be represented as

xðtÞ ¼ dI½x,1�ðtÞþuðtÞ ð2Þ

where u(t) is an underlying continuous time white noise process, d denotes the shift in mean and I[x, N] is an ‘‘Indicator’’
function. Given (1) and (2), the sampled output obtained after using the ideal filtering operation on (2), denoted {y(tn)}, can
be represented as

yðtnÞ ¼

Z 1
�1

hðsÞfdI½x,1�ðt�sÞþuðt�sÞgds

¼ d
Z 1
�1

hðsÞI½x,1�ðt�sÞdsþ

Z 1
�1

hðsÞuðt�sÞds

¼ d
Z t�x

�1

hðsÞdsþeðtnÞ ð3Þ

It is apparent from inspection of (3) that the sampled process can be viewed as comprising two components. The first
component is the shift in the mean of the filtered process given by the term d

R t�x
�1

hðsÞds. This term captures the effect of the
2 This data is typically aliased because it is under sampled.

Please cite this article as: Hinich, Melvin.J., et al., A statistical uncertainty principle for estimating the time of a discrete
shift in the mean of a continuous time random.... J. Statist. Plann. Inference (2010), doi:10.1016/j.jspi.2010.04.034

dx.doi.org/10.1016/j.jspi.2010.04.034
Original Text:
&ndash; a 

Original Text:
some 

Original Text:
, and 

Original Text:
the 

Original Text:
pass 

Original Text:
&ndash; we 

Original Text:
The 

Original Text:
&lsquo;Indicator&rsquo;



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

ARTICLE IN PRESSJSPI : 4284 XML-IS

Melvin.J. Hinich et al. / Journal of Statistical Planning and Inference ] (]]]]) ]]]–]]]4
UNCORRECTED P
ROOF

mean shift d being smoothed by the integral of the impulse response of the filter. The second component e(tn) is band-
limited white noise obtained from filtering the continuous white noise signal u(t) in (2) at cutoff frequency fo.

The filtering operation in (3) can be interpreted as filtering the continuous time signal in (2) by a constant gain low-pass
filter whose complex frequency response is H(f)=1 in the band (� fo, fo) and zero outside the band. The impulse response of
this ideal constant gain filter is the sinc function ðptÞ�1sinðpt�1tÞ where t=(2fo)�1. This filtered signal is then sampled at
the rate 2fo producing a set of observations at the discrete times tn such that {y(tn)}={y(t1), y(t2), y, y(tN�1), y(tN)} where
tn=nt and T=Nt for an even integer N. Thus, the sampled process {y(tn)} can be interpreted as band-limited white noise
with a shift in the mean d at an unknown time x.

Since the filtered stochastic component is band-limited white noise, the sampled noise process {e(tn)} is a sequence of
uncorrelated random variables for n=1, y, N. If e(tn) is Gaussian then the y(tn) are independently distributed Gaussian
variates with common variance denoted by s2

e .3

The sample size N is directly linked to the bandwidth frequency fo for a fixed value of T. For example, the larger the
frequency fo (implying cycles of short duration), the smaller will be the sampling interval t and the larger will be the
required sample size N for a given value of T. This implies that the higher the frequency of the elements, the higher must be
the rate of sampling for a given value of T. However for given fo and t, if we want to observe cycles of long duration then N

must increase.
The shift in the mean of the sampled output is d

R nt�x
�1
ðpsÞ�1sinðpt�1sÞds. Since

R nt
�1
ðpsÞ�1sinðpt�1sÞds¼

R n
�1

n�1sinðpvÞdv

the shift in the mean is dF(n�a) where a=t�1x is the shift time normalized by the sampling unit and

Fðn�aÞ ¼
Z n�a

�1

sinðpvÞ

pv
dv ð4Þ

We derive the least squares estimate of a from the sample {y(t1), y, y(tN)} where y(tn)=F(Z�a)+e(tn) assuming that the
underlying noise is Gaussian. It then follows that the sampled noise values e(tn) are Gaussian, independently distributed
variates with common variance s2

e .
Recall that the goal of this enterprise is to find the lowest possible variance for an estimate of the shift time x using ideal

assumptions. The highest probability of detection of the shift is when the shift occurs in the middle of the sampling period
since there are an equal number of observations of the process before and after the shift. Setting the shift time at the
middle also reduces the error of the estimate since detecting a shift and localizing its time are highly interrelated.

The derivative of
PN

n ¼ 1

F2ðn�aÞ with respect to a is constant at the shift and so the least squares estimate â of a is the

value that maximizes the statistic

SðaÞ ¼
XN

n ¼ 1

Fðn�aÞyðtnÞ ð5Þ

If the noise is Gaussian then x̂ ¼ tâ is the maximum likelihood estimate of x and is thus efficient (Rao (1965, pp.
289–290)). The large sample variance of x̂ is

Varðx̂Þ ¼
s2

e

d2 PN
n ¼ 1

dFðn�t�1xÞ
dx

h i2
¼

s2
e

d2

t2

PN
n ¼ 1

sin2
½pðn�t�1xÞ�

½pðn�t�1xÞ�2

ð6Þ

Since x is in the middle of the observation period,
PN

n ¼ 1

sin2
½pðn�t�1xÞ�

½pðn�t�1xÞ�2
¼ 1 and thus from (6), Varðx̂Þ ¼ se

2dfo

� �2
.

Therefore the optimal standard deviation of the estimate is

sðx̂Þ ¼ se

2dfo
: ð7Þ

This simple result can be generalized to any non-Gaussian white noise process where the sampled noise values e(tn) are
independently distributed, rather than being merely uncorrelated. If s2

e is finite then from Theorem 27.1 in Billingsley
(1979), the statistic S(a) is asymptotically Gaussian as N-N. This result is important because it permits statistical
inference using conventional distribution theory instead of the non-standard theory based upon Brownian motion. Within
the accuracy of this standard approximation of a statistic the standard deviation of the least squares estimate x̂ is given by
(7).

4. Conclusions

In this article, we have presented a statistical uncertainty principle associated with localizing a single change in the
mean of a band-limited stationary random process. The statistical model used was a continuous time process that was
assumed to experience a shift in its mean. An ideal low-pass filter was used to derive discrete-time observations from the
3 The variance of the sampled process in (3) can be demonstrated to equal 2f0s2
u where s2

u is the variance of the continuous time white noise process

in (2).
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continuous time process producing a ‘‘discretized’’ band-limited white noise process with a shift in mean at an unknown
time that was to be estimated.

In developing our approach, we emphasized the direct link between the ability to accurately locate a shift in mean and
knowledge and/or control over both the sampling and noise processes.

A key result was that the least squares estimate of the location of the change in mean was demonstrated to be
asymptotically Gaussian. Given the ideal assumptions made about the sampling process, noise properties and location
of the mean shift (to ensure the highest probability of detection), the optimal approximation (7) of the standard deviation
of the least squares estimate of the location of the change-point provided a physical limit to the accuracy of the estimate of
the time of the mean shift which could not be bettered. In particular, if the sampling system response was not the ideal
low-pass filter used to derive the result, then the noise would not be white and the accuracy of the least squares estimate
would be worse than that in the ideal case.

A simple example is helpful to understand an implication of this result. If t is a day and d=se/2, the ideal two standard
deviation uncertainty of the estimate of the mean shift will be about four days.
UNCORRECTED P
ROOF
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