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Abstract. Let {x(r)} denote a discrete-time random process. Given a sample of
increments e(t) = x(t) — x(¢t — 1) from the time series, we wish to test formally
whether the sample is consistent with the assumption that {e(r)} is a martingale
difference. It is shown that the martingale criterion is more general than the white
noise criterion in analyzing fitted residuals for signs of model inadequacy. In this
paper we present such a test which approximately achieves a given type 1 error
probability for samples. We assume that (1) the process is strictly stationary, (2) all its
kth-order cumulant functions exist and (3) the kth-order cumulants are absolutely
summable and satisfy a mixing condition. The martingale assumption implies that
most third-order cumulants of the increment process are zero, and thus the third-
order cumulant sequence is sparse. This result is used to derive test statistics based on
a modified sample bispectrum. The test can be regarded as a two-dimensional
portmanteau test of serial dependence. The large-sample results are demonstrated
through the use of artificial data. Finally, the test is applied to a daily financial series.

Keywords. Discrete-time random process; martingale criterion; cumulant functions;
model inadequacy; serial dependence; residuals; financial series; diagnostic checks.

1. BACKGROUND

A tenet of time series analysis is the idea that evidence of model inadequacy
can often be found through diagnostic checks applied to the residuals of a
fitted model. For example, the residuals are typically checked for autocorrela-
tion. In the case of linear models, lack of autocorrelation is an indication of
model adequacy. However, in a non-Gaussian environment lack of residual
autocorrelation is a necessary, but not a sufficient, condition for model
adequacy. Consequently, the white noise stopping rule needs to be revised. In
this paper we present a new diagnostic test which is appropriate for
non-Gaussian settings. The test can easily be applied to data analysis using a
computer program called MARTIN, which is available from the authors.

It is well known that a wide variety of non-Gaussian and nonlinear models
are also white noise processes. In the context of these more general models,
the analog of white residuals is nonforecastable residuals in the mean square
metric. This requirement is stronger than no serial autocorrelation and
weaker than independence. Martingale difference processes are a class of
stochastic processes which meet this new criterion. There are many nonlinear
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models whose variates are dependent but nevertheless are nonforecastable.
Some examples of such models will be presented in Section 5.

In general, the conditional expectation provides an optimum forecast of the
mean in the sense that it minimizes the mean square forecast error (see
Papoulis, 1965, Section 11.1). In this paper we call a sequence {e(r)}
‘nonforecastable’ if E{|e(r)|} < o for all ¢ and if

Efe(t + D)e(t), e(t —1),...} =0 (1= 1). (1.1)

Let {x(¢#)} be the partial sums of e(z), ie. x(1)=e(l), x(2)=
x(1) + e(2), . ... Then

E{x(t + D)x(t), x(z — 1),.. .} = () (t = 1). (@:2)

Equation (1.1) defines a martingale difference process and Equation (1.2)

defines a martingale process.
The value of the martingale difference criterion as a diagnostic check can
be put into better focus through consideration of the following AR(1) model:

y()y =ay(t = 1) +u(t)  (la| <1) (1.3)
where {u(t)} is a stationary white noise series. The conditional expectation of
y(t) is

E{y(ly(t = 1), y(t = 2),...} = ay(t — 1) (1.4)
if and only if

E{u(t)lu(t — 1), u(t = 2),...} = 0. (1.5)

In other words (1.4) holds if and only if u(t) is a martingale difference. Next
let u(r) be a quadratic nonlinear error sequence:

L
u(t) = e(t) + >, a(m)e(t — De(t — m — 1) (1.6)
m=1
where the £(r) are independent and identically distributed random variates
and A(z) = > L_,a(m)z™ has no zeros inside the unit circle mod (z =)iin
the complex plane. This error sequence is not a martingale difference since
L

E{u(®)|u(t — 1), u(t = 2),...} = 2 a(m)e(t — D)e(t — m — 1), (1.7)

m=1

and the conditional expectation of y(z) is not ay(t — 1) but rather
E{y(ly(t - 1), y(t = 2),..} = ay(t ~ 1)
i
+ > a(m)e(t — De(t — m —1). (1.8)

m=1
Note that the error sequence in (1.8) is white noise, and that its serial
dependence will not be detected by the usual diagnostic tests.
In this paper we derive a statistical test to determine whether a sample is
consistent with the asssumption that the data are generated by a martingale
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difference process or, equivalently, that the partial sums follow a martingale.
The martingale difference assumption implies that the difference series is
serially uncorrelated; it also implies that most third-order cumulants of the
difference process are zero. The later fact is used to develop test statistics
calculated from a modified bispectrum. The test can be regarded as a
two-dimensional form of the ‘portmanteau’ test of autocorrelation in fitted
residuals because it considers the third-order cumulants (bicovariances) of
these residuals taken as a whole. In developing the test, however, we work in
the frequency domain in order to take advantage of certain well-known
asymptotic results concerning the sample bispectrum. The test is presented in
Sections 2, 3 and 4. In Section 5, the size and power of the test are examined
using artificially generated data. We demonstrate the test in Section 6 using
financial data which economic theory suggests should follow a martingale
difference.

2. INTRODUCTION TO THE TEST

Let {x(¢)} denote a discrete-time random process for integer ¢. Define the
increment e(t) =x(t) —x(¢t — 1). Given a sample of increments e(1),
€(2),...,e(N) from the time series, we wish to test formally whether the
sample is consistent with the assumption that {x(¢)} is a martingale. In this
paper we present such a test which approximately achieves a given type 1
error probability for large values of N. The test holds for several assumptions
which are required to apply large-sample theory. In particular, we assume the
following.

(i) {e(1)} is mean zero and strictly stationary.
(ii) All kth-order cumulant functions exist for {e(¢)}.
(iii) The kth-order cumulants of {e(z)} are absolutely summable and satisfy
the mixing condition stated by Brillinger (1975, Assumption 2.6.2(2)).

We note that some sort of stationarity and mixing (short-memory) condi-
tions are required to perform inferential analysis on time series data. The
mixing condition holds if the process is m-dependent (Billingsley, 1979,
p. 315).

The nth second-order cumulant of {e(r)} is the covariance c,(n) =
E{e(t)e(r + n)} for integer n. Note that the second-order cumulants for
n#0 are all zero for a martingale difference process. The (m, n)th third-
order cumulant is

E{e(t)e(t + m)e(t + n)}
= Coee(n, m) (2.1)

= Coee(M — 1, — n) = Cooe(n — m, — m).

I

Ceee(m* n)

For example, E{e*(t)e(t — n)} = o0, — n) = Coce(n, n). We shall use this
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example later. We use the term (m, n)th bicovariant for Equation (2.1).
The bispectrum of the process is its Fourier transform in two indices. For

m,p=-—mo,,,,,®

seee(f’ g) = 2 2 Ceee(m’ n)exp{_izn(fm i gn)} (22)

m n

The bispectrum is periodic in (f, g), and its principal domain D is the triangle
defined by the lines g=f, g=0 and 2f + g=1. The inverse Fourier

transform of s,,, yields

e, ) = |

—1/2 J=1p2

12 12
Seee(f, 8) exp {i2m(fm + gn)} df dg. (2.3)

Assumption 2.6.2(2) of Brillinger (1975) requires that >, n’|c,..(n, n)| < o,
which implies that 3°s,,.(f, g)/3f* exists for all f.

We suall now show that the bicovariants of the martingale difference
process {e(t)} are zero unless m =n=0, or m=0 and n <0, or n =0 and
m =< 0. If {x(¢)} is a martingale, the conditional expectation of x(¢), given a

realization of x(¢ — 1), x(¢ — 2), .. ., is equal to the realization of x(¢t — 1) for
all values of ¢. Then, from Doob (1953, expression (7.4)),
E{e(t)e(t — r)e(t — s)} =0 forall r, s > 0. 2.4)

The expected value can be nonzero for » =0 and s = 0. Thus c,..(—r, —s) =
0 unless r =0 and s =0 (or s =0 and r =0, or r = s <0 by the symmetries
of the cumulant function). Its bispectrum is

Seee(f, 8) = Ee*(t) + i Cece(n, n)[exp (i27fn) + exp (i2mgn)

n=0

+ exp {—i2n(f + g)n}] (2.5)

where the potentially nonzero bicovariants are nuisance parameters. If the
process {e(?)} is a time-reversible martingale difference, then c,,,(r, s) = 0 for
all r,s except r=s5=0. We do not restrict ourselves to time-reversible

martingales.
In general, E{e(t)E(t — my)e(t —m,)...e(t—my)} =0 for all positive
my, ..., m. This implies that increments of a martingale process are white

noise since E{e(t)e(t — m)} =0 for m > 0.

Out test procedure exploits the sparseness property of the bicovariance
function of a differenced time-irreversible martingale process. Failure to
reject the null hypothesis does not imply that the process is a martingale
difference since we only deal with the third-order cumulants. More to the
point, a differenced nonmartingale process can be white noise and have zero
bicovariants, and our test will fail to reject such a process with probability
1 — a where « is the type 1 error probability of the test. Our test is a first
step of a more general iterative procedure that uses the trispectrum and
higher-order cumulant spectra.
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3. LOGIC OF THE TEST

An exposition of our method requires an introduction to bispectrum estima-
tion. The bispectrum of a time series, as with its spectrum, is estimable from
a finite data record using two asymptotically equivalent approaches. In the
first approach, the estimate is computed by Fourier transforming a ‘win-
dowed’ sample bicovariance array. The second or ‘direct’ approach computes
estimates of the bispectrum directly from the Fourier transform of the data
record. A review of the windowed approach is given by Subba Rao (1983).
We point out that the direct approach is computationally more efficient
because it avoids the time-consuming calculation of lagged products.

The first step in the direct approach is to apply the discrete Fourier
transform to the data record. The Fourier transform ordinates are then used
to compute a set of complex values which is a two-dimensional analog of the
periodogram. This ‘bispectrogram’ is smoothed to produce estimates of the
bispectrum in a grid of frequency pairs in its principal domain. If the data
record is long, the sample should be divided into segments and the bispec-
trum computed for each segment and then averaged to give an estimate for
the sampled time series. This direct method is sketched by Brillinger and
Rosenblatt (1967b), Hinich and Clay (1968) and Huber et al. (1971). Hinich
(1982) presents computational details for smoothing over squares in the
principal domain. Patterson (1983) developed a computer algorithm which
calculates the Hinich bispectral estimator. Rosenblatt (1983) reviews the
general approach to estimating kth-order polyspectra, which is discussed in
more detail by Brillinger and Rosenblatt (1967b). The spectrum is the
second-order polyspectrum and the bispectrum is the third-order case.

The idea behind the test is easier to explain using the windowed approach
to estimation. Let {C,.(m,n):m,n=—-N+1,...,N—1} denote the
sample bicovariance computed from a sample of size N with the symmetries
of expression (2.1). Let {wy(m, n)} denote a (double) lag window whose
associated bispectrum smoothing kernel is

Wi(f, )= X 2 waim, n)exp{-i2n(fm + gn)}  (3.1)

In practice Wy, is of the form B*W(BRX'f, By'g) where W is some kernel

and B, is a bandwidth parameter to be specified later. The bispectrum

estimator, on an equally spaced grid of bifrequencies in D (i.e. the principal
domain), is then given by

Seeel f(1)s 8(K)} = 2 X Cucem, mywy(m, n)exp[—i2n{mf(j) + ng(k)}].

m n

(3.2)

The asymptotic results presented by Brillinger and Rosenblatt (1967a) and
Rosenblatt (1983) imply that, for large N and under adequate conditions, the
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estimates shown in (3.2) are approximately independent Gaussian variates
with mean S,.{f(j), g(k)} and variance of the real or imaginary part of
A0%/2NB?%,, where o2 denotes the variance of e(t) and
12 12
a=[ w9 ardg. (3.3)

Thus, for each frequency pair in D, the distribution of

2N BY|Seee{f()), 8(K)} = Seeelf()), 8(K)}?
Ao?

is approximately x* with two degrees of freedom, and that of the sum of the

CH(Jj, k) is approximately x* with 2P degrees of freedom where P is the

number of frequency pairs in D. This result yields the test for the null

hypothesis that S,..(f, g) =0 for all f, g (i.e. a test for Gaussianity).

In the present problem, the null hypothesis does not imply S,..(f, g) =0
but only that C,.(m, n) = 0 outside the set (m =n =0, or m=0and n <0,
or n =0 and m < 0). Thus, let d(m, n) be the indicator function of this set,
and then the Fourier transform of {1 — d(m, n)}C,,.(m, n) is zero under the
null hypothesis. By analogy with the bispectrum estimator, the last can be
estimated by (3.2) with vy(m, n) = wy{l — d(m, n)} replacing wy(m, n),
and denoted by S,,.q{f(j), g(k)}. It will be shown in the next section that this
adjusted bispectrum estimator has the same asymptotic covariance structure
as before. Thus the sum of

2 2 v(m, n)C(m, n)exp{=i2n(fm + gn)} (3.5)
can be used as the test statistic, as it is approximately a y* variate with 2P
degrees of freedom under the null hypothesis. In practice, o, is replaced by
its sample estimate computed from the N observations. The error in the
estimate is negligible in terms of the asymptotic variance of the bispectrum
estimator and does not affect the above result (Hinich, 1982).

3.4)

CH(j, k) =

4. LARGE-SAMPLE PROPERTIES OF THE ADJUSTED BISPECTRUM

To set up the large-sample approximation for the distribution of our new test
statistic  S,,4{f(/), g(k)}, let {By} denote a bandwidth sequence where
By=0(N‘"')and 1/2<c¢<1. Thus By— 0 and B3N — © as N — . If the
bispectrum at (f, g) is estimated by smoothing M? sample bispectral values
over a square centered at (f, g), then By = M/N. In this case M = [N°]. If
the estimates are an average of K = N/L bispectrograms computed from
non-overlapping segments of L observations, then By = 1/L and K = [N°].

Let Wy(f,g) = By'W(BY'f, By'g) where W(f, g) satisfies the following
conditions.
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(i) W is a bounded and continuous function in each variable.

(i) [Yia] 3o IW(f, @) df dg = 1. _
(i) W shares the symmetries of the bispectrum, i.e. w(f,g) =

wig: ) = wlfs1 — F—g) =w(l —f—g,8) ad W}, g) = W(-F, —g).

THEOREM. Under the stated conditions the asymptotic variance—covariance
of N'2BySmoa{f(j): 8(K)} is the same as that of N'2ByS,.(f(j). g(k)} as

N — oo,
Proor. From Brillinger and Rosenblatt (1967a),

2 2 Coeem, m)wy(m, n)exp {—i2n(fm + gn)}

m n

4.1)
= [[wus - 7.8~ )18 8 df dg

where

IN(f. g) = de(f)de(gj)vdf(f +8) 4.2)

is the third-order periodogram, with the asterisk indicating the complex
conjugate, and

N=1
d.(f) = 20 e(t) exp (—i2mfr) (4.3)
=
is the discrete Fourier transform of the data record. The asymptotic proper-
ties of the bispectral estimator follow from the asmptotic properties of the
third-order periodogram and the form of the smoothing kernel as N — . We
shall now show that the kernel for the lag window {v(m, n)} converges to the
kernel of {wy(m, n)}, and thus the asymptotic variance of S, is the same as
that of the unmodified bispectral estimator.
Consider the unidimensional smoothing kernel K(f) = f W(f,g)dg. The
assumptions made for W imply that K is continuous and bounded, and that
JIK(f)ldf = 1. Let Ky(f) = By'K(BR'f). Then, for each n,

wa(n, 0) = [[Wy(r. &) exp (i21fm) af de a5

= [Kah exp (2 fm) .

Since
o in {m(N + 1
HZO exp (—i2wfn) = exp (—in Nf) L {:1; (n;) )}

the following inverse relation holds:

(4.4)
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N
> wi(n, O)exp(—i2nfn) = Kn(f) + O(N ). (4.5)

n=0

It thus follows from (3.8) and (4.5) that the smoothing kernel for
wy(m, n)yd(m, n) is Ky(—f)+ Ky(—g) + Ky(f + g) + O(N ). The kernel
for v(m, n) = wy(m, n){1 — d(m, n)} and large N is

B {W(By'f, By'g) — BN'\WD(B,'f, Br'g)} (4.6)
where
WD(BY'f, By'g) = K(=By'f) + K(—=By'g) + K{By(f + g)}. (4.7)

Thus the difference between the kernel for wy(m, n) and that for v(m, n) is
of order 0(By) which goes to zero as N — . This completes the proof. |

We next turn to the bias level of the §,,,4 estimator. The magnitude of the
bias for the bispectrum estimator defined in (3.2) for frequency pair (f, g) is
of order 0(G B%) where

82 , 3 2 aZ olF, 9 2
G(f. g) = [8°5eee(f> 8)/9f ;r Seee(f> 8)/38°| 8)

Now, with the approximation By = N ' the squared magnitude of the bias
is of order 0(G?/N?). From (2.2), (4.8) and Parceval’s theorem, the sum of
squared biases for P bifrequencies is

SSB = O{N”Zz > (m? + n?)2ct,(m, n)}. (4.9)

m n

If the {e(t)} is a martingale difference, then
SSB = o{zv—22 n*ct,(n, n)} (4.10)

Assume that there are / nonzero c,.(n,n) in (4.10) and suppose that the
arithmetic average of the c,,, is ¢. Then
i =2 5
Z l, s
S n*E)? = §6 I+ D@+ DGE + 30— 1) ~ T &
n=1

and thus
Lo e
n*(¢)* =
N? ,,2::1 (@ 5N?
For a finite but large N and By~ N2, the complex variance of §,.4 is
approximately Ao (see the discussion following Equation (3.2)). Hence it
follows from (4.11) that the sum of the squared magnitudes of the bias

divided by the variance of S, is of order

[562
O(szvzoﬁ)' (4.12)

c2. (4.11)
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Clearly, [°” << N for the bias to be small.

This bias in the large-sample variance will affect the type 1 error probability
of our test if there are a number of large values of c,.(n, n)/ol. In filter
theory terminology, the bispectrum of the martingale ‘leaks’ through the
sidelobes of our sharp diagonal filter {w(m, n)d(m, n)}.

A smaller bias can easily be achieved by using a tapered filter. We use the
following two-dimensional simple taper in our application of the method to
data:

1—|m - n|/V iflm—nl<V
d(m, n) = .
otherwise
for m,n=0,1,.... This filter has a smaller bias than the 0-1 filter that we

used to explain the method. The use of this V-notch shrinks the distribution
of S04 toward zero.

5. SIZE AND POWER OF THE TEST

In this section we examine the size of the martingale test using artificially
generated data. In order to implement the test, we wrote a computer
algorithm called MARTIN. The mainframe version of the program is written
in FORTRAN and can handle up to 10000 observations, whereas the
personal computer (PC) version is limited to 4200 observations. The PC
version is available as an executable program.

The program breaks a time series of length N into smaller even-sized data
frames (these can range from a length of 10 to a length of 128). The end of
each frame is padded with zeros (the number of zeros is equal to the frame
length) so as to double the period of the periodic extension of the data. Next,
the third-order periodogram of each frame is computed and these estimates
are averaged. This approach of averaging the sample bispectrum of data
frames is discussed by Hinich and Clay (1968) and Rosenblatt (1985, Section
5.5). The estimated average bispectrum is transformed back into the time
domain and passed through the tapered filter described at the end of Section
4. After filtering, the estimated bicovariants are transformed back into the
frequency domain to produce the estimated adjusted bispectrum
Smoalf(j), g(k)} for a grid of width 1/NF, where NF is the number of
observations in each frame. It is necessary to transform back to the frequency
domain because the estimated bicovariants are correlated, i.e. the Fourier
transform turns correlations among lag indices into heteroskedastic complex
normal variates over bifrequency indices as in the spectrum correlation
function case. We note that the bispectral estimates obtained in the frequency
domain are asymptotically independent.

Under the null hypothesis that the series is a martingale,
Smoa{f()), g(k)} = 0. Hence, (3.4) can be written as
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2N By|Smoa{f(), 8(k)}
Aot '
The sum of the CH(j, k) with 0% replaced by its estimate is the martingale
test statistic. It is distributed as approximately a y* 2P variate under the null
hypothesis.
The behaviour of the martingale test was investigated using nonlinear
models of the quadratic type with a simple linear term. This class of models
can be written as

L K
e(t) = e(t) + 0 >, Y a,(n)e(t — n)e(t — m — n) (5.2)

m=1 n=0

CH(j, k) = (5.1)

where the £(¢) are independent and identically distributed random deviates
with zero mean and variance 1.0. The quadratic model (5.2) is also a
martingale difference if K = 0:

L
e(r) = e(t) + 0, a,(0)e(r)e(t — m). (5.3)

m=1

The bicovariances of this model are {a,,(0)o}, and thus

'8
> mick(m, m) =3 m'a’(0)o>.

m=1

This implies that the bias problem increases as o or L increases.

Although the behaviour of the test was studied using a variety of quadratic
models, we shall restrict out attention here to the following two models, of
which the first is a martingale difference and the second is not.

MopEeL 1. Fifteen-term quadratic martingale difference:
e(t) = e(t) + oe(t){— 0.429¢(r — 2) — 0.949¢(t — 4) + 0.872¢&(t — 7)
+ 0.489¢(t — 8) — 0.694¢(r — 10) + 0.683¢(t — 15)
+ 0.905¢(¢t — 17) — 0.954&(t — 20) — 0.922¢(t — 24)
— 0.349¢(t — 27) — 0.657¢(t — 29)
+ 0.703e(t — 31) + 0.570&(t — 33) + 0.105¢(t — 34)
+ 0.590e(t — 37)}.

MopbeEL 2. Fifteen-term quadratic nonmartingale difference:
e(t) = &(t) + o{— 0.429¢(r — 1)e(t — 17) + 0.570e(r — 2)e(t — 25)
+ 0.105¢(t — 3)e(t — 27) + 0.590&(t — 4)e(t —29)
— 0.657¢(t — 5)e(t — 20) + 0.683¢(t — 6)e(t — 9)
— 0.949¢(t — 7)e(t — 23) + 0.703¢(r — 8)e(t — 21)
— 0.694¢(t — 9)e(r — 14) + 0.872¢(t — 11)e(t — 17)
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+ 0.489¢(t — 14)e(t — 25) + 0.905&(t — 16)e(t — 27)
— 0.954¢(t — 20)e(t — 28) — 0.992&(t — 24)e(t — 32)
— 0.349¢(t — 26)e(t — 41)).

The £(t) variates were generated by the Gaussian pseudo-random number
routine GGNML in the International Mathematics and Statistics Library
(IMSL) and scaled by either o0 = 0.5 or o = 0.3. The lags on the £(t) variates
in Model 1 are distributed between 2 and 37, and the coefficients of the
quadratic terms are independent realizations from a rectangular density on
[—1,1]. Figure 1 shows a realization of Model 1 of length 500 with a scale
parameter equal to 0.5. The relatively large number of outliers seen in the
figure illustrates the non-Gaussian nature of this model.

Model 2 is constructed in a ‘freehand’ manner from Model 1, but with
lagged quadratic terms which break the martingale difference property of
Model 1. The same two values of ¢ are used to simulate the power of the test
for Model 2.

Table I summarizes the results from simulating Model 1 in order to
estimate the size of the test for the nominal 5% and 1% levels. The column
headings show the width of the V-notch used to reduce the bias. Model 1 was
replicated 200 times for each V. The same initial ‘seed’ was passed to
GGNML at the start of each set of 200 simulations in order to facilitate
comparisons between entries in Table I. For panels (a) and (b) the sample
size of each simulation was 3844 and the frame length NF was 62. The first
and second rows of each panel report on the 5% and 1% size of the test. The
remaining rows provide information about the distribution of the martingale
test statistic. For convenience, the test statistic is expressed as a standardized
normal variate (z statistic) in the table. The third, fourth and fifth rows show
the 90%, 95% and 99% fractiles of the sample distribution of the test statistic
for each set of 200 replications. The last two rows of each panel give the
minimum and maximum values of the z statistic. Panels (c) and (d) of Table I
show the results of the simulation when the sample size is increased to 10000
with NF = 100 (still 200 replications for each V). It is obvious from the table
that the appropriate width for the V-notch depends on the form of the
martingale model generating the data.

The estimated power of the test against a nonmartingale (Model 2) is
reported in Table II. The organization of the table is similar to that of Table
I. Also, 200 replications were made for each V-notch, and the combinations
of sample sizes and frame lengths were unchanged. The observed reduction in
power when o goes from 0.3 to 0.5 reflects the increase in bias mentioned
just below Equation (5.3).

Power can always be traded for a conservative position vis-a-vis type 1
error probability by using a sufficiently large notch width (as a fraction of N).
We recommend using various notch settings, say from 3% to 8% of N. If the
test statistic is not consistent with the null hypothesis when V is large, it is
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Figure 1. Plot of the realization of the 15-term martingale difference process. The broken
reference lines are two standard deviations above and below the zero mean of the process.
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TABLE1

5% AND 1% SIZE OF TEST FOR THE 15-TERM MARTINGALE MODEL AS A FUNCTION OF THE WIDTH OF

THE V-NOTCH

V=1 V=2 V=3 V= V=5 V=6 V=17 V =8
(a) N = 3844 and 0 = 0.3
5% 30.5% 17.0% 9.0% 5.0% 2:5% 1.0% 0.5% 0.0%
1% 20.0% 8.5% 4.0% 1.5% 1.0%  0.5% 0.0% 0.0%
0.90 2.95 2.03 1.49 0.96 026 —0.35 —1.10 -1.85
0.95 3.78 3.08 2.27 1.66 0.89 028 =031 —1.07
0.99 6.16 4.16 3.61 3.09 2.44 1.76 1.01 0.:25
Min —2.63 —3.48 =4.27 —4.84 -5.48 -6.01 —6.95 =722
Max 6.35 5.33 4.61 4.11 3.46 2.85 2.27 1.62
(b) N = 3844 and o = 0.5
5% 69.0% 54.0% 32.0% 23.0% 13.0% 9.0% 5.0% 1.5%
1% 57.5% 36.0% 21.5% 13.0% 9.0%  5.0% 1.5% 1.0%
0.90 4.97 4.17 3.48 2.78 217 1.49 0.82 0.09
0.95 6.49 5.79 4.76 4.02 3l 2.44 1.80 1.01
0.99 9.47 6.76 6.13 5.39 4.74 4.06 3.29 2.54
Min —2.33 —301 -3.60 —4.19 -5.00 -5.62 —6.21 —6.93
Max 9.59 8.50 7.64 6.95 6.21 5.57 4.94 4.22
(¢) N = 10000 and o = 0.3
5% 32.5% 14.0% 4.0% 3.0% 20% 0.5% 0.5% 0.0%
1% 16.5% 6.5% 3.0% 1.5% 0.5% 0.5% 0.0% 0.0%
0.90 2.74 1.89 1.18 0.59 -0.11 -0.73 —1.41 —2.08
0.95 3.32 2.49 1.56 0.97 0.30 -0.36 —0.94 —1.55
0.99 5.01 4.19 3.30 2.59 1.87 1:17 0.51 -0.19
Min —2.06 —2.85 -3.49 —4.10 —4.806 —5.63 —6.34 —6.96
Max 5.87 5.31 4.53 3.96 3.26 2.54 1.73 0.98
(d) N = 10000 and o = 0.5
5% 74.4% 56.8%  38.7%  20.6% 10.6% 6.0% 3.0% 1.5%
1% 59.8% 39.7% 18.6% 12.1% 6.5%  2.5% 1.5% 1.0%
0.90 4.96 4.09 332 2.59 1.89 1.15 0.44 —0.31
0.95 5.61 4.93 4.09 3.40 2.73 2.08 1.25 0.49
0.99 8.15 7.57 6.83 6.24 5.47 4.72 3.90 312
Min =178 =2.85 —3.49 —4.07 —4.77 —5.48 —6.13 —6.75
Max 9.68 8.75 7.70 6.81 5.82 4.99 4.14 3.33

The frame lengths are 62 and 100 for N = 3844 and N = 10000 respectively. The 0.90, 0.95 and
0.99 entries show the indicated fractile of the distribution of the z values of the test statistic.

strong evidence against the null hypothesis since the test statistic is shrunk
toward zero.

A convenient method for displaying the estimated adjusted (filtered) and
unadjusted bispectra is through contour plots of the probability that the
CH(J, k) are not zero (see Equation (3.4)). Figure 2 is a plot of the
unadjusted bispectrum (i.e. before applying the martingale filter) for a typical
realization of Model 1 with 0 =0.5, N =3844 and a frame length of 62.
Contours are plotted for probabilities of 50%, 80%, 90% and 95%. Note that
there are a number of peaks at or above the 95% level. Figure 3 shows the
probability levels for the estimated bispectrum of the same series after
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TABLE II

THE POWER OF THE TEST FOR THE 15-TERM NON-MARTINGALE MoDEL WIDTH OF THE V-NOTCH
VARIED BETWEEN 1 AND 8

V=1 V=2 V=3 V¥V=4 V=5 V=6 V=7 V =8

(a) N = 3844 and o = 0.3

5% 100.0% 99.5% 96.5%  92.0%  76.5% 57.0%  30.0% 8.0%
1% 100.0% 98.0% 91.5% 78.5% 60.5% 36.0% 14.0% 2.5%
0.90 7.69 6.78 5.99 5127 4.53 3.66 2.62 1.44
0.95 8.06 7.26 6:37 5.56 4.83 4.01 2.97 1.97
0.99 9.31 8.49 7T 707 6.16 5.02 3.94 2.90
Min 2:35 1.51 0.91 034 -033 -1.14 -225 -3.29
Max 10.40 9.40 8.41 7.55 6.83 5.85 4.43 2.97
(b) N = 3844 and o = 0.5

5% 99.0% 97.5% 87.5% 72.5% 54.0% 30.5% 13.5% 2.5%
1% 97.5% 88.5% 76.0%  56.5% 35.5% 18.5% 6.5% 1.0%
0.90 7.34 6.28 5.40 4.55 3.69 2.76 1.81 0.87
0.95 7.81 6.73 5.93 5.19 4.38 3.49 2.48 1.48
0.99 9.16 7.58 6.78 6.04 5.22 4.24 3.30 2.38
Min 1.26 0.00 -0.73 =141 =2.11 =2.91 -3.76 —4.63
Max 9.19 8.25 7.55 6.79 5.85 4.85 3.78 2.59
(¢) N = 10000 and o = 0.3

5% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%  99.5%
0.90 15.20 14.19 13.32 12.58 11.58 10.45 9.06 7.46
0.95 15.66 14.62 13.83 13.00 11.96 10.72 9.22 7.85
0.99 16.91 15.85 14.99 14.21 13.19 11.92 10.46 9.04
Min 015 8.60 7.54 6.74 5.88 4.99 3.76 2.24
Max 17.39 16.45 15.58 14.81 11.84 12.74 11.40 9.76
(d) N = 10000 and o = 0.5

5% 100.0% 100.0% 100.0% 100.0% 100.0%  99.5%  95.5%  80.5%
1% 100.0% 100.0% 100.0% 100.0%  99.5%  98.0% 87.5%  65.0%
0.90 12.01 10.83 9.95 9.12 8.21 7.10 5.87 4.56
0.95 12.30 11.32 10.42 9.59 8.53 7.40 6.27 5.01
0.99 13.94 12.81 11.93 11.14 10.21 9.06 7.81 6.48
Min 5.80 4.88 3.86 3.08 2.22 1.24 022 -0.80
Max 13.98 12.99 12.10 11.26 10.34 9.41 8.30 6.86

The frame lengths are again 62 and 100 for N = 3844 and N = 10000 respectively. The 0.90, 0.95
and 0.99 entries show the indicated fractile of the distribution of the z values of the test statistic.

filtering with a V-notch width of 6. The tapered martingale filter has removed
all the 95% peaks and most of the 90% peaks seen in Figure 2.

6. THE TEST APPLIED TO STOCK RETURN DATA

Martingale difference processes are of interest to economists because they
provide a mathematical model of a fair game. In this section the test will be
applied to a real financial time series which, according to economic theory,
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FIGURE2. Probability that the estimated bispectrum for the 15-term martingale difference before
filtering is not zero.

should behave as a fair game. The series is the ‘unanticipated’ component of
the daily stock return to the General Electric Corporation (GE).

A brief sketch of the economic theory follows. The reader with more than
a passing interest in the economic arguments is directed to the papers by
Samuelson (1965), Fama (1970), LeRoy (1973) and Lucas (1978). Consider
the intertemporal behaviour of the price per share of a common stock issue.
Denote the price per share at the close of trading on day t as P,. According
to the theory of stock price formation, today’s price P, is proportional to a
consensus forecast of tomorrow’s price P,,, predicted by currently available
information. Next, define the continuously compounded rate of return from
day f to day ¢t +1 as r,,; =In(P,,,/P,). Given P, and the market’s forecast
of P,,,, there are techniques for estimating the market’s implicit prediction of
the next period’s rate of return 7,(1), where 7,(1) denotes a one-period-ahead
prediction of the return made at time . Finally, define the unanticipated
return ¢, as the difference between the realized return and the predicted
return: e,.; = r,.; — 7,(1). The economic theory states that e,,, is non-fore-
castable given today’s information set, i.e. e¢,,, must follow a martingale
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FiGure 3. Probability that the estimated bispectrum for the 15-term martingale difference after
filtering is not zero.

difference process. The theory argues that, if this were not the case,
economic agents, as a consequence of their trying to exploit a forecast of e,,;,
would cause today’s price to change in a direction which would drive the
profits implied by the forecast to zero.

Estimates of the unanticipated returns e,,; are contained in a database
available from the Center for Research in Security Prices (CRSP) at the
University of Chicago called the ‘CRSP Daily Excess Returns File’. This
state-of-the-art database contains the daily returns for every stock listed on
the New York Stock Exchange or the American Stock Exchange in ‘excess’ of
an estimate of its expected, or forecast, return. In other words, the database
uses an instrument for the forecast return.

The period chosen for analysis of the GE excess returns was 18 September
1973 through 30 December 1983. The length of the time series is 2600 days.
Figure 4 is a plot of the estimated autocorrelation function for the GE excess
returns. The horizontal broken lines in the plot show the two standard error
levels for the estimates. The excess returns for GE appear to correspond
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Ficure 4. Autocorrelation function for GE excess returns.

nicely to white noise, a necessary condition under the fair game hypothesis.
Although the correllogram is not shown, the realized or raw returns r, exhibit
significant autocorrelation at lags 1 and 2—this correlation is not necessarily
inconsistent with theories of stock price formation (see, for example, Lucas,
1978).

The V widths, expressed as a percentage of the frame length, were 14%,
20%, 26%, 32%, 38% and 42%. Seven frame lengths were used for each
V:NF = 44, 46, 48, 50, 52, 54 and 56. We calculated the average value of the
martingale test statistic for each V setting, i.e. we averaged the test statistic
over the NF values used for a particular V' percentage. Performing the test on
the 2600 observations using the PC version of the MARTIN program and
running on a machine equipped with an 80386 central processor and a
20 MHz clock requires about 60 s for each V setting.

Figure 5 is a contour plot of the probability that the estimated unadjusted
bispectrum is not zero for the excess returns before applying the martingale
filter and using a frame length of 50. Loosely speaking, the peaks in Figure 5
show that the time series is neither Gaussian nor linear. Figure 6 is a contour
plot of the probabilities for the estimated adjusted bispectrum, i.e. the
estimates after applying a martingale filter with V = 13 (26%). Although the
height of many of the peaks has been reduced by the martingale filter, they
have not been reduced sufficiently for us to fail to reject the null of a
martingale difference. Again, under the null hypothesis that the excess
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Figure 5. Probability that the estimated bispectrum for GE excess returns before filtering is not
zero.

returns follow a martingale difference process, the adjusted bispectrum should
be zero. The martingale test statistic, when expressed as a standardized
normal variable, has a computed value of 11.35 for this particular combina-
tion of NF and V. Hence the test statistic is about 11 standard errors greater
than its expected value under the null hypothesis.

Raising the V-notch level reduces the test statistic, but the null hypothesis
is rejected for all the V-notch settings tried. The average z values over the
indicated NFs were as follows: Z =19.6/V =14%, Z= 16.2/V = 20%,
z=12.5/V =26%, 7 =8.6/V =32%, z=4.92/V =38% and
7 =2.6/V =42%. The rejection of the martingale difference hypothesis is
clearly not marginal.

We should point out that the strong rejection of the null hypothesis is not a
peculiarity of the GE excess returns. This result is typical of other stocks we
have analyzed, although in this particular application we are, in fact, testing
two hypotheses: (i) the instrument properly measures the market’s forecast of
next period’s return, and (ii) unanticipated returns follow a martingale
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FIGURE 6. Probability that the estimated bispectrum for GE excess returns after applying the
martingale filter is not zero.

difference process. Hence the rejection of the null hypothesis could be
evidence that daily returns are not generated by the linear model proposed in
economic theory. In fact, Hinich and Patterson (1985) have used a bispectral
linearity test to reject the hypothesis that daily stock returns are generated by
a linear stochastic process. As a consequence, we wonder whether any
instrument based on linear methods will provide unanticipated returns which
will pass the martingale difference test.
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