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ABSTRACT 

In this article, we show how tests of non-linear serial dependence can be applied to high 

frequency time series data which exhibit high volatility, strong mean reversion and 

leptokurtotis. Portmanteau correlation, bicorrelation and tricorrelation tests are used to 

detect non-linear serial dependence in the data. Trimming is used to control for the 

presence of outliers in the data. The data that is employed are 161,786 half hourly spot 

electricity price observations recorded over nearly a decade in wholesale electricity 

market in New South Wales, Australia. Strong evidence of non-linear serial dependence 

is found and the implications of this for time series modelling are discussed.   
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1 INTRODUCTION 

In this article, we show how tests of non-linear serial dependence can be applied to 

high frequency time series data which exhibit high volatility, strong mean reversion and 

leptokurtotis features. These are features typically found in financial, currency exchange 

and commodity market data. Portmanteau correlation, bicorrelation and tricorrelation 

tests are applied to detect non-linear serial dependence.  In addition to using these tests to 

discover the presence and extent of non-linear serial dependence, we also use these tests 

to examine whether ‘stochastic volatility’ models provide adequate characterisations of 

the data. 

 Large positive and negative deviations from the mean are often deemed to be a 

principal source of deviations from the Gaussian ideal in finance and energy economics 

applications. The empirical distributions of most finance and energy time series data 

when transformed to continuous compound rates of returns have much fatter tails than the 

normal (Gaussian) distribution – an empirical feature called ‘leptokurtosis’. A key 

consequence of this empirical feature is that the returns data have large fourth order 

cumulants. For example, many NYSE stock rates of return have an excess kurtosis value 

larger than one (Hinich and Patterson, 1989, 1995, 2005). Foreign exchange rates are 

very leptokurtic (Brooks and Hinich 1998).  

From a statistical perspective, the principal affect of leptokurtosis is to significantly 

slow down the rate of convergence of finite sample tests whose asymptotic distributions 

are based upon asymptotic normality. Since economic time series have lagged time 
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dependence in the mean and the variance, standard bootstrapping is not appropriate to 

determine the variance of finite sample statistics based on some averaging of the data.  

One classical approach designed to improve the rate of convergence of test statistics so 

we can have greater confidence in the use of standard asymptotic theory for estimation 

and inference is to ‘trim’ back very large positive and negative rates of return in the time 

series data. This operation improves the finite sample performance of the test statistics. 

Trimming also allows us to discover whether an observed nonlinear generating 

mechanism is a ‘deep structure’ phenomenon. For our purposes, the concept of ‘deep 

structure’ can be viewed as arising if observed nonlinear serial dependence continues to 

arise after the effects of outliers have been removed. We conduct several trimming 

experiments to examine the impacts on non-linear serial dependence test results.  

The data we employ in this study is half hourly wholesale spot electricity prices for the 

state of New South Wales, Australia, over the period from 7/12/1998 to 29/02/2008, 

producing a sample size of 161,786 observations.1 There are two key ‘stylised’ facts 

concerning spot price dynamics in this market. First, there is high volatility (i.e. a lot of 

price spikes) and, second, there is strong mean-reverting behaviour (volatility clustering 

followed by sustained periods of ‘normality’).  The numerous spot price spikes act as 

outliers that produce significant deviations from the Gaussian distribution, producing the 

predominant empirical ‘leptokurtotic’ feature of most high frequency asset price data.  

In (Foster, Hinich and Wild 2008), the extent and stability of a weekly cycle in this 

time series data was investigated. A major finding was that the mean properties of the 

spot price data had a weak week and daily periodicity.  The most important periodicities 

were found to contain significant but imperfect signal coherence suggesting that some 
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‘wobble’ existed in the waveforms.  This was determined by applying the Randomly 

Modulated Periodicity (RMP) Model introduced in Hinich (2000) and Hinich and Wild 

(2001) to the data.  They suggested that the generating mechanism for an RMP process is 

likely to be nonlinear. Thus, a research question was posed: is the mechanism responsible 

for generating weekly data nonlinear, and if so, is it ‘episodic’ in character?  The 

rationale for episodic nonlinearity is that this type of behaviour would seem to be 

required to generate the aforementioned stylised fact of strong mean reversion in spot 

electricity prices.  

The finding that nonlinearity is present can rule out many classes of linear models as 

candidates for modelling spot price dynamics. This leads to the question as to how spot 

price dynamics can be modelled in a way that can capture observed nonlinearity.  

In the energy and finance literature, the notion of nonlinearity has been most 

commonly associated with ‘multiplicative nonlinearity’ or ‘nonlinearity in variance’. In 

principle, such models can be defined as either ‘observation driven’ or ‘parameter 

driven’. The main class of parametric models associated with the first category are 

Autoregressive Conditional Heteroscedasticity (ARCH/GARCH) models (Engle (1982), 

Bollerslev (1986) and Taylor (1986)).2 In these models, the conditional variance is 

postulated to depend on the variability of recent observations. The main class of 

parametric models that are associated with the second category are ‘stochastic volatility’ 

models. In this case, volatility is postulated to be a function of some unobserved or latent 

stochastic process (Shephard (1996, pp.6-7)).3   

A key aspect of both ARCH/GARCH and stochastic volatility modelling frameworks 

is that the time series is assumed to be a zero mean process. This implies that the mean of 
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the source time series has to be removed typically by some linear time series model. The 

residuals from this model then constitute the ‘zero mean’ data series that underpins 

theoretical discussion of ‘volatility’ models.  A potential problem emerges when the 

mean of the process is nonlinear. In this case, erroneous conclusions of ‘nonlinearity in 

variance’ might emerge when the prime source of serial dependence is nonlinear structure 

in residuals that could not successfully be extracted by conventional linear based time 

series models. This ‘nonlinearity in mean‘ structure would end up in the residuals of the 

fitted model and might subsequently ‘trip’ ARCH tests even though the serial dependence 

structure was associated with the ‘mean properties’ of the data generating process.4  

Thus, ‘volatility’ modelling might lead to situations involving the acceptance of linear 

specifications (with conditionally heteroscedastic disturbances) that actually constitute a 

misspecification of the actual process in statistical terms. Thus, it seems essential to 

discover as much information as possible about the nature of any nonlinearity present in 

the time series data before techniques such as GARCH are applied.  

The article is organized as follows. In Section 2 we outline the portmanteau 

correlation, bicorrelation and tricorrelation tests proposed in Hinich (1996). These tests 

are used to test for second-order (linear), third- and fourth-order (nonlinear) serial 

dependence, respectively.  In this section, we also outline the test for the presence of pure 

ARCH and GARCH structures in the weekly spot price data using the well-known Engle 

(1982) ARCH LM test. In Section 3, the rationale for and practical aspects of the 

trimming procedure are outlined. In Section 4, the empirical results are presented and 

concluding comments are offered in Section 5. 
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2   THE TESTING METHODOLOGY 

In this section, it is explained how the testing methodology, proposed in (Hinich and 

Patterson 1995, 2005), is applied in the context of spot price dynamics. The objective is 

to detect epochs of transient serial dependence in a discrete-time pure white noise 

process.5 This methodology involves computing the portmanteau correlation, 

bicorrelation and tricorrelation test statistics (denoted asC , H  and 4H  statistics, 

respectively) for each sample frame to detect linear and nonlinear serial dependence 

respectively.  

Before applying the various tests outlined in this article, we convert the source spot price 

data series to continuous compounded returns by applying the relationship 

( ) ( )
( )

100*
1

ln 








−
=

tx

tx
tr ,                                                                                        (1) 

where: 

   .  ( )tr  is the continuous compounded return for time period “t”; and 

   .  ( )tx  is the ‘source’ spot price time series data. 

For each sample frame, the data is standardised using the relationship 

( ) ( )
r

r

s

mtr
tZ

−
=                                                 (2) 

for each nt ,...,2,1=  where rm and rs  are the sample mean and standard deviation of the 

sample frame and ( )tr  are the returns data comprising a sample frame of n observations. 

As such, the returns data in each sample frame are standardised on a ‘frame-by-frame’ 

basis. 
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The null hypothesis for each sample frame is that the transformed data ( ){ }Z t  are 

realizations of a stationary pure white noise process. Therefore, under the null hypothesis, 

the correlations ( ) ( ) ( )[ ] 0,0 ≠=+= rallforrtZtZErCZZ , the bicorrelations 

( ) ( ) ( ) ( )[ ] srallforstZrtZtZEsrCZZZ ,,0, =++=  except where 0== sr , and the 

tricorrelations ( ) ( ) ( ) ( ) ( )[ ] vandsrallforvtZstZrtZtZEvsrCZZZZ ,,,0,, =+++=  

except where 0=== vsr . The alternative hypothesis is that the process in the sample 

frame has some non-zero correlations, bicorrelations or tricorrelations in the set. 

Lvsr <<<<0 , where L  is the number of lags associated with the length of the sample 

frame.  That is, either ( ) ( ) ( ) 0,,,0,,0 ≠≠≠ vsrCorsrCrC ZZZZZZZZZ  for at least one r  

value or one pair of r  and s  values or one triple of vandsr,  values, respectively.  

The r  sample correlation coefficient is defined as 

( ) ( ) ( )∑
−

=

+
−

=
rn

t

ZZ rtZtZ
rn

rC
1

1
.                                             (3) 

The C  statistic is designed to test for the existence of non-zero correlations (i.e. second-

order linear dependence) within a sample frame, and its distribution is 

( )[ ]∑
=

≈=
L

r

LZZ rCC
1

22
.χ                                                             (4) 

The ( ),r s  sample bicorrelation coefficient is defined as 

( ) ( ) ( ) ( )∑
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,
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,  for sr ≤≤0 .                                      (5) 
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The H statistic is designed to test for the existence of non-zero bicorrelations (i.e. third-

order nonlinear serial dependence) within a sample frame, and its corresponding 

distribution is 

( ) ( )∑∑
=

−

=
−≈=

L

s

s

r

LLsrGH
2

1

1

2

2/1

2 , χ                                    (6) 

where ( ) ( )srCsnsrG ZZZ ,, −= .  

The ( )vsr ,,  sample tricorrelation coefficient is defined as 

( ) ( ) ( ) ( ) ( )∑
−

=
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1

,
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,,  for vsr ≤≤≤0 .                (7) 

The 4H statistic is designed to test for the existence of non-zero tricorrelations (i.e. 

fourth-order nonlinear serial dependence) within a sample frame and its corresponding 

distribution is 

( ) ( )( )∑∑∑
=

−

=

−

=
−−≈=

L

v

v

s

s

r
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1

2

1

1

2

3/21

3 ,,4 χ                        (8) 

where ( ) ( )vsrCvnvsrT ZZZZ ,,,, ×−= .  

In principal, the tests can be applied to either the ‘source’ returns data determined 

from application of (2) or to the residuals from frame based autoregressive AR(p) fits of 

this data, where ‘ p ’ is the number of lags that is selected in order to remove significant 

C  statistics at some pre-specified threshold level. The latter is a ‘pre-whitening’ 

operation and can be used to effectively remove second order (linear) serial dependence 

producing no significant ‘C frames’, thus allowing the investigator to focus on whether 

spot price data contain predictable nonlinearities after removing all linear dependence.  

As such, the portmanteau bicorrelation and tricorrelation tests are applied to the residuals 
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of the fitted AR(p) model of each sample frame.  Any remaining serial dependence left in 

the residuals must be a consequence of nonlinearity that is episodically present in the data 

- thereby, only significant H and H4 statistics will lead to the rejection of the null 

hypothesis of a pure white noise process.     

The number of lags L  is defined as bL n=  with 5.00 << b  for the correlation and 

bicorrelation tests and 33.00 << b  for the tricorrelation test, where b  is a parameter to 

be chosen by the user. Based on results of Monte Carlo simulations, (Hinich and 

Patterson 1995, 2005) recommended the use of 0.4b =  (in relation to the bicorrelation 

test).6  In this article, the data is split into a set of equal-length non-overlapped moving 

frames of 336 half hour observations corresponding to a week’s duration.  

The correlation, bicorrelation and tricorrelation tests can also be used to examine 

whether GARCH or stochastic volatility models represent adequate characterisation of 

the data under investigation.  We can define a ( )qpGARCH ,  process as: 

( ) .,,0,
1

2

1

2

0

22 ∑∑
=

−
=

− ++=≈=
p

j

jtj

q

k

ktktttttt hhhNIIDhy βεααεε                                   (9)7 

We can similarly define a stochastic volatility model as: 

( ) ( )2

101 ,0,,1,0,
2

exp ηδηηααεε NIIDhhNIID
h

y ttttt
t

tt ≈++=≈




= +             (10) 

(Shephard (1996, pp. 6-7)).  In both cases, the ‘
th ’ term acts to model volatility of the 

observed process 
ty  by multiplicatively changing the amplitude of the NIID process

tε .  

The binary transformation defined next  removes the amplitude affects of the processes 

modelled by the ‘ th ’ term in the above equations and yields a Bernoulli process given the 
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assumption that the ‘volatility’ models in (9) and (10) are adequate characterisations of 

the data and provided and that the distribution of tε  is symmetric.8  

The binary data transformation, called ‘hard clipping’ in the signal processing 

literature, is defined as follows: 

( )[ ] ( ) ( )
( ) ( ) 0,1

0,1
:

<−=

≥=

tZifty

tZifty
ty .                                                                                         (11) 

If ( )tZ  is generated by a pure ARCH , GARCH or stochastic volatility process whose 

innovations 
tε  are symmetrically distributed with zero mean, then the ‘hard clipped’ time 

series ( ){ }ty  will be a stationary pure noise Bernoulli sequence.  In essence, while ( )tZ  is 

a special parameterised martingale difference process, the hard clipping defined in (11) 

converts it into a Bernoulli process (Lim, Hinich and Liew (2005, pp. 269-70)) which has 

moments that are well behaved with respect to asymptotic theory (Hinich (1996)).  

Therefore if the null of pure noise is rejected by the C, H or H4 tests when applied to 

binary data determined from (11), this then signifies the presence of structure in the data 

that cannot be modelled by ARCH, GARCH or stochastic volatility models defined by 

(9) and (10).  

The issue of parameter instability of GARCH models and the transient nature of ARCH 

effects can be examined by utilizing the Engle LM test for Autoregressive and 

Conditional Heteroscedasticity (ARCH) in residuals of a linear model. This was 

originally proposed in Engle (1982) and should have power against more general 

GARCH alternatives (Bollerslev (1986)).  The test statistic is based on the 2R  of the 

following auxiliary regression: 
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∑
=

− ++=
p

i

titit xx
1

2

0

2 ξββ ,                                                                                                 (12) 

where 2

tx  are typically squared residuals from a linear regression.  Therefore, equation 

(12) involves regressing the squared residuals on an intercept and its own p  lags. Under 

the null hypothesis of a linear generating mechanism for tx , ( )2NR  from the regression 

outlined in (12) is asymptotically distributed as 2

pχ , where N is the number of sample 

observations and 2R  is the coefficient of Multiple Correlation from the regression 

outlined in (12).  

To implement the test procedures on a frame-by-frame basis, a frame is defined as 

significant with respect to the C, H, H4 or ARCH LM tests if the null of pure noise or no 

ARCH structure is rejected by each of the respective tests for that particular sample frame 

at some pre-specified (false alarm) threshold.  This threshold controls the probability of a 

TYPE I error, - that of falsely rejecting the null hypothesis when it is in fact true.9 For 

example, if we adopt a false alarm threshold of 0.90, this would signify that we would 

expect random chance to produce false rejections of the null hypothesis of pure noise (or 

no ARCH structure) in 10 out of every 100 frames. In accordance with the above criteria, 

if we secure rejections of the test statistics at rates (significantly) exceeding 10%, 5% and 

1% of the total number of sample frames examined, then this would signify the presence 

of statistical structure, thus pointing to the presence of (significant) second, third and 

fourth order serial dependence or ARCH/GARCH structure in the data. 
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3 THE TRIMMING PROCEDURE 

Correlation, bicorrelation, tricorrelation and ARCH LM tests are large sample results 

based on the asymptotic normal distribution’s mean and variance. The validity of any 

asymptotic result for a finite sample is always an issue in statistics. In particular, the rate 

of convergence to normality depends on the size of the cumulants of the observed 

process. All data is finite since all measurements have an upper bound to their 

magnitudes.10 However, if the data is leptokurtic, as is typically the case for stock returns, 

exchange rate and energy spot prices, than the cumulants are large and the rate of 

convergence to normality is slow. Trimming the tails of the empirical distribution of the 

data is an effective statistical method to limit the size of the cumulants in order to get a 

more rapid convergence to the asymptotic (theoretical) distribution.  

Trimming data to make sample means less sensitive to outliers has been used in applied 

statistics for many years. Trimming is a simple data transformation that makes statistics 

based on the trimmed sample more normally distributed. Transforming data is a 

technique with a long pedigree, dating back at least to Galton (1879) and McAlister 

(1879). Subsequently, Edgeworth (1898) and Johnson (1949), among others, have 

contributed to the understanding of this technique for examining data. 

Suppose we want to trim the upper and lower %κ  values of the sample ( ) ( ){ }Ntxtx ,...,1 . 

To accomplish this, we order the data and find the )100/(κ  quantile 100/κx  and the 

)100/1( κ−  quantile 100/1 κ−x  of the order statistics. Then set all sample values less than 

the )100/(κ  quantile to 100/κx  and set all sample values greater than )100/1( κ−  quantile 

to 100/1 κ−x . The remaining ( )%100 κ−  data values are not transformed in any way. 
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4 THE EMPIRICAL RESULTS 

In Table 1, the summary statistics of the spot price returns series is documented.  It is 

apparent that the mean of the series is very small in magnitude - the spot price return is 

negative over the complete sample.  The ‘scale’ of the spot price returns data appears 

quite large. The size of the sixth order cumulants is also quite large in magnitude, thus 

pointing to the large scale implicit in the spot price returns data. It is also evident that the 

spot price returns are quite volatile with a sizeable standard deviation being observed and 

the spot price return displays positive skewness.  There is evidence of significant 

leptokurtosis with an excess kurtosis value of 104.  Not unexpectedly, the Jarques-Bera 

(JB) Normality Test listed in Table 1 indicates that the null hypothesis of normality is 

strongly rejected at the conventional 1% level of significance.  This outcome reflects the 

strong evidence of both non-zero skewness and excess kurtosis reported in Table 1 

implying substantial deviations from Gaussianity in the underlying spot price returns data 

(Lim, Hinich, Liew (2005, p.270)).   

[INSERT TABLE 1 HERE] 

A bootstrap procedure was used to enumerate the empirical distributions of the various 

test statistics and was implemented in the following way. Given the (possibly trimmed) 

‘global’ sample of 161785 ‘spot price’ returns, a bootstrap sample frame was constructed 

by randomly sampling 336 observations from the larger ‘global population’ and the 

various test statistics were calculated for that particular sample frame. This process was 

repeated 500000 times and the results for each test statistic were stored in an array. All 

test statistics entailed the application of the chi-square distribution and, for each bootstrap 

replication, the chi square levels (threshold) variable associated with each test statistic 
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was transformed to a uniform variate. This means, for example, that the 10% significance 

level corresponds to a confidence threshold of 0.90, the 5% significance level 

corresponds to a confidence threshold of 0.95, and the 1% significance level corresponds 

to a confidence threshold of 0.99.  The ‘transformed’ test statistic confidence threshold 

values are in the interval ( )1,0 .  As such, the theoretical distribution can be represented 

graphically by a forty-five degree line. The arrays containing the bootstrap confidence 

threshold values for each respective test statistic from the bootstrap process was then 

sorted in ascending order and associated with a particular quantile scale producing the 

empirical distribution for each test statistic.11 

Recall from the discussion in Section 3 that we raised the possibility of improving the 

finite sample performance of the various tests in the presence of significant outliers by 

employing trimming which allows us to improve the rate of convergence of the tests 

towards their theoretical levels.  In this context, it should be noted that trimming is 

applied to the ‘global’ spot price returns data and the improved finite sample performance 

can be discerned from inspection of the ‘QQ Plots’ in Figures 1 to 7.   

The results obtained for the C statistic is documented in Figure 1. In deriving the results, 

an ‘AR(10) pre-whitening fit’ was applied to each bootstrap frame of 336 half hourly 

bootstrap observations, producing a bootstrap sample frame of a week’s duration. It is 

clear from inspection of Figure 1 that the ‘no trimming’ scenario produced an empirical 

distribution that is substantially different from the theoretical distribution (corresponding 

to a forty-five degree line).12  It is also apparent that all trimming scenarios considered 

produce empirical distributions that are very close to the theoretical distribution.  
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[INSERT FIGURE 1 HERE] 

In general terms, the trimming scenarios can be interpreted in the following way. The 

‘10%-90%’ trimming scenario would involve trimming the bottom 10% and top 90% of 

the empirical distribution function of the complete sample of spot price returns. If a spot 

price return is smaller than the 10% quantile or larger than the 90% quantile, than the 

corresponding data values are replaced by the 10% and 90% quantile values, respectively.  

This operation serves to reduce the range of the data by increasing the minimum value 

and decreasing the maximum value of the data set, thereby reducing the affect of outliers 

that fall outside of the ‘10%-90%’ quantile range.  For example, for the spot price returns, 

the ‘10%-90%’ trimming scenario increased the minimum value from -572.0 to -15.3 and 

decreased the maximum value from 545.0 to 16.1. The newly trimmed data set provides 

the ‘global population’ concept underpinning the bootstrap procedure outlined above. 

[INSERT FIGURES 2 AND 3 HERE] 

The ‘QQ Plots’ for the H and H4 statistics are documented in Figure 2 and Figure 3.  It is 

evident from inspection of both that the empirical distribution associated with the ‘no 

trimming’ scenario is very different from the theoretical distribution.  In fact, the 

performance of both statistics under this scenario are ‘worse’ than the associated 

performance of the C Statistic (as depicted in Figure 1) because the variance of the third 

and four order products underpinning the H and H4 statistics depends more crucially on 

the higher order cumulants than does the variance of the C statistic which operates at a 

lower order of magnitude.  As such, the sample properties are much more sensitive to 

deviations from the Gaussian distribution than in the case of the C statistic. As a result, 

greater degrees of trimming appear to be needed to get the empirical distributions of the 
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H and H4 statistics to closely approximate the theoretical distribution than was the case 

with the C statistic. Specifically, in Figure 1, trimming in the range of ‘10%-90%’ seems 

to be sufficient to achieve a good approximation to the theoretical distribution while 

trimming rates of at least ‘20%-80%’ (and perhaps even as much as ‘30%-70% for the 

H4 statistic) would seem to be required to obtain a good approximation to the theoretical 

distribution.13  

[INSERT FIGURE 4 HERE] 

The ‘QQ Plots’ for the ARCH LM tests are depicted in Figure 4.  It is apparent that the 

empirical distribution for the ‘no trimming’ scenario once again deviates substantially 

from the theoretical distribution.  The pattern is similar to the pattern observed in Figures 

2 and 3 in relation to the H and H4 statistics. However, the level of trimming that appears 

to be required to get a good approximation to the theoretical distribution seems to be 

more closely aligned to that required for the C statistic as reported in Figure 1, i.e. 

trimming in the range of ’10%-90%’.  This might reflect the fact that the squaring of 

residuals involved in the construction of the ARCH LM test is of a similar order of 

magnitude to the product terms underpinning the C statistic although it produces a 

different data scale whereas the H and H4 statistics involving third and fourth order 

products involve a higher order of magnitude and, as such, are likely to be more sensitive 

to higher order cumulants and deviations from the Gaussian distribution.  

It should also be noted that the empirical distribution associated with the ‘no trimming’ 

scenario’s listed in Figures 1-4 all generally lie below the theoretical distribution except 

in the upper tail regions where the H, H4 and ARCH LM tests distributions, in particular, 
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lie above the theoretical distributions.  This result points to conservative outcomes for all 

four tests in the appropriate rejection regions in the upper tails of the distributions of the 

test statistics, in the case of the ‘no trimming’ scenario.14 

[INSERT FIGURES 5-7 HERE] 

The ‘QQ Plots’ for C, H and H4 Statistics for the bootstrap sample frame based ‘hard 

clipping’ is documented in Figures 5-7. The data that underpins these results are the same 

data that underpinned the results in Figures 1-4 except that prior to applying the test 

statistics, the data in each bootstrap sample frame is hard clipped using the binary data 

transformation outlined in equation (11) in Section 2. It is apparent from inspection of 

Figures 5-7 that the ‘no trimming’ scenario produces conservative distributions – that is, 

the empirical distributions of the various test statistics generally lie above their theoretical 

distributions. It is also apparent that the binary transformation implied in (11) produces 

an underlying data set that is more well behaved to the extent that ‘minimal’ trimming 

associated with ‘10%-90%’ trimming rates would appear to be sufficient to produce good 

approximation to the theoretical distributions for all three tests.  In fact, the closeness of 

the ‘no trimming’ empirical distributions, reported in Figures 6 and 7, for the H and 

(particularly) the H4 statistic supports the theoretical result that the hard clipping binary 

transformation converts the ARCH/GARCH and stochastic volatility processes into  

Bernoulli  processes (Hinich (1996)).  Conversely the statistic with the ‘poorest’ 

performance now appears to be the C statistic (see Figure 5) although ‘10% - 90%’ 

trimming appears to produce a good empirical approximation to the theoretical 

distribution    
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Overall the results from the ‘QQ Plots’ documented in Figures 1-7 indicate that the 

empirical distributions of all statistics tend to deviate substantially from the theoretical 

distribution in the case where ‘no trimming’ is employed to control the convergence 

properties of the test statistics in the presence of substantial deviations from Gaussianity 

in the returns data. Inspections of Figures1, 4-7 appear to indicate that reasonable 

empirical performance can be obtained for the C and ARCH LM tests based on spot price 

returns and for the C, H and H4 tests when the returns are hard clipped using trimming 

rates of the order ‘10%-90%’. For the H and H4 statistics applied to spot price returns 

data, the empirical performance appears to be more sensitive to deviations from the 

Gaussian distribution and trimming rates of at least ‘20%-80%’ appeared to be necessary 

in order to derive empirical distributions that closely approximated the theoretical 

distributions.  

Furthermore when applied to spot price returns (see Figures 1-4), the ‘no trimming’ 

empirical distributions of the C, H, H4 and ARCH LM tests appeared to generally lie 

below the theoretical functions suggesting that the tests were ‘anti-conservative’ for a 

wide assortment of quantiles but were conservative in the upper tail regions. For the hard 

clipped data and results reported in Figures 5-7, the empirical distribution functions of the 

C, H and H4 statistics tends to be conservative – that is, they tend to lie above the 

theoretical distribution function. The above analysis demonstrates how trimming can be 

used to improve the finite sample performance of the various test statistics in the presence 

of substantial deviations from the Gaussian distribution in the source returns data. 

 Trimming can also be used to see if any observed nonlinear serial dependence can be 

viewed as a ‘deep structure’ phenomenon which arises when nonlinearity is not generated 
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purely by the presence of outliers in the data.  This would arise for example when the 

‘structure’ associated with the ‘40%-60%’ or ‘30%-70%’ quantile range of the empirical 

distribution of the spot price returns data produces nonlinear structure and not just the 

data outside of the ‘10%-90%’ quantile range which would be more conventionally 

associated with outliers.  As such, the presence of deep structure can be confirmed if the 

finding of nonlinear serial dependence continues to hold in the presence of increasingly 

stringent trimming operations.  

The bootstrap procedure that is employed to address this issue differs slightly from that 

used above to enumerate the empirical properties of the various tests and is based on 

calculating specific ‘confidence threshold’ values associated with a user specified ‘false 

alarm’ threshold.15 The concepts of ‘global’ sample, weekly bootstrap sample frame, 

number of bootstrap replications and application of the various tests remain the same as 

outlined earlier in this section. Once again the arrays containing the bootstrap thresholds 

for the test statistics from the bootstrap process are sorted in ascending order. However, 

the desired bootstrap thresholds are now calculated as the ‘quantile’ values of the 

empirical distributions of the various test statistics associated with a user specified ‘false 

alarm’ confidence threshold.16 For example if the user set the ‘false alarm’ confidence 

threshold to 0.90, the bootstrap confidence threshold value would be the ‘90% quantile’ 

of the empirical distribution of the relevant test statistic determined from the bootstrap 

process.   

The number of frame based rejections for each test statistic is calculated by summing the 

number of frames over which rejections were secured at the calculated bootstrap 

confidence threshold when the tests are applied on a sequential frame by frame basis to 
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the actual (possibly trimmed) returns data.17 Note in this context that a rejection is 

secured when the ‘calculated’ threshold value for the various test statistics applied to 

actual data frames exceeds the bootstrap confidence threshold.  For example, suppose the 

actual threshold value determined from application of one of the test statistics to an actual 

sample frame produced a value of 0.97.  We would then secure a rejection for that 

particular frame if the bootstrap threshold value for the test at the user specified level of 

confidence was less than 0.97.   The percentage of frame rejections for each test statistic 

is calculated as the total number of frame based rejections computed as a percentage of 

the total number of frames. Recall that for ‘false alarm’ confidence thresholds of 0.90, 

0.95 and 0.99, we expect only 10%, 5% and 1% of the total number of frames to secure 

rejections that can be reasonably attributed to random chance.  If the actual number of 

frame rejections (significantly) exceeds 10%, 5% and 1% of the total number of frames, 

then this points to the presence of (significant) linear and/or nonlinear serial dependence, 

thus confirming the presence of a nonlinear generating mechanism in the latter case. 

In order to investigate whether nonlinear serial dependence could be viewed as a ‘deep 

structure’ phenomenon, a number of different trimming scenarios were investigated. 

These scenarios involved the implementation of different degrees of trimming in order to 

ascertain whether any observed nonlinear serial dependence that had been observed under 

less stringent trimming conditions continued to arise, thus confirming the presence of 

deep nonlinear structure. Specifically, the following trimming scenarios were 

investigated: 

• Scenario A: No Trimming;18 

• Scenario B: 1% - 99% Trimming; 
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• Scenario C: 10% - 90% Trimming; 

• Scenario D: 20% - 80% Trimming; 

• Scenario E: 30% - 70% Trimming; and 

• Scenario F: 40% - 60% Trimming. 

The trimming conditions were applied to the complete sample of spot price returns 

that were then used to underpin the ‘global’ population concept from which bootstrap 

sample frames were constructed and tests applied.   

The results for the C, H, H4 and ARCH LM tests applied to the spot price returns are 

documented in Table 2.  There is a significant number of frame based rejections in excess 

of 10%, 5% and 1% for H, H4 and ARCH LM tests that arise for all trimming scenarios 

considered and particularly for the H statistic (column 5).19 This finding signifies the 

existence of statistical significant third-order and fourth-order (nonlinear) serial 

dependence. Note further that the ‘AR(10) pre-whitening’ operation that was used to 

remove all linear dependence and significant C frames remained successful for all 

trimming scenarios considered. In fact, for Scenarios C-F, no significant C frames were 

detected.  

[INSERT TABLE 2 HERE] 

It should also be noted that for the 0.99 confidence threshold for the H, H4 and ARCH 

LM statistics for Scenario A, we had to set the false alarm threshold to 0.9999 and 

0.999999 because the bootstrapped values tended to be very high and ‘crowded out’ 

actual applications to the data. This result seems to be driven by outliers in the data and 



 24 

disappears when trimming is employed to reduce the impact of outliers as indicated, for 

example, by the results for Scenarios C-F.  

Overall, these conclusions confirm the presence of deep (nonlinear) structure because we 

secure a significant number of frame-based rejections (for H, H4 and ARCH LM tests) 

over an above what can be reasonably attributed to random chance for all trimming 

scenarios considered, including the more stringent scenarios associated with Scenarios E 

and F.  The observed rejection rates are believable because the tests were demonstrated to 

be conservative for Scenario A and the empirical distribution of the tests were found to 

be quite close to the theoretical distributions for Scenarios C-F for the C and ARCH LM 

tests and for Scenarios D-F for the H and H4 tests. The rejections rates confirm the 

presence of nonlinear serial dependence under all trimming scenarios considered, 

pointing to the presence of ‘deep’ nonlinear structure. This finding, in turn, implies that 

the observed nonlinear serial dependence is not purely determined by the presence of 

outliers in the data.        

The results for the C, H and H4 tests associated with hard clipping transformation applied 

to the residuals from the frame by frame ‘AR(10)’ fits are outlined in Table 3. Recall that 

these residuals are the same as those underpinning the results listed in Table 2 except that 

the transformation in (11) was applied to the residuals prior to applying the three above-

mentioned portmanteau tests.  Recall further that the intention of this particular test 

framework is to see if structure is present in the data that cannot be attributed to 

ARCH/GARCH or stochastic volatility models.   

[INSERT TABLE 3 HERE] 
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It is evident from inspection of Table 3 that the number of frame based rejections for the 

C, H and H4 statistics applied to the binary data sets are greater than the 10%, 5% and 

1% rates that we can reasonably attribute to random chance, thus pointing to the 

contributing presence of structure that cannot be explained by volatility models.  This 

conclusion holds for all trimming scenarios considered although the underlying rejection 

rates discernible from Table 3 suggest that third-order nonlinear serial dependence 

(associated with H statistic rejections) is the most prominent form of nonlinear serial 

dependence.  Interestingly, the rejection rates tail off somewhat over Scenarios B to D but 

then become more prominent for Scenarios E and F that correspond to the most stringent 

trimming conditions considered. This is interesting because ARCH/GARCH processes, in 

particular, are seen as being driven by volatility clustering associated with the ‘episodic’ 

presence of outliers in the data. The more stringent trimming conditions increasingly 

abstract from this type of generating mechanism while, at the same time, the results cited 

in Table 3 point to significant frame based rejections, indicating the presence of linear, as 

well as third and fourth order (nonlinear) serial dependence in the ‘hard clipped’ data.  

Finally, it should be noted that the data underpinning the ‘significant’ C test outcomes is 

the same set of residuals that produced very few or no significant C frames in Table 2.  

These conclusions indicate the non-trivial presence of a nonlinear generating mechanism 

that is operating over the ‘central’ quantile ranges of the empirical distribution of the spot 

price returns data that cannot be explained by volatility models encompassing 

ARCH/GARCH and stochastic volatility models.  The fact that the nonlinear serial 

dependence arises over this quantile range points to the presence of ‘deep’ structure – that 
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is, the presence of nonlinear structure that is not being predominantly generated by the 

presence of outliers. 

5 CONCLUDING COMMENTS 

Before modeling techniques such as GARCH are applied, it is important to understand 

the nature of non-linear serial dependence in the data under investigation.  Using the 

example of wholesale electricity spot prices, we have demonstrated how an effective 

testing methodology can be applied. This involves partitioning time series data into non-

overlapping frames and computing the portmanteau correlation, bicorrelation and 

tricorrelation test statistics for each frame to detect linear and nonlinear serial dependence 

respectively. Furthermore, the presence of pure ARCH and GARCH effects in the spot 

price returns was also investigated by applying the LM ARCH test and, additionally, a 

detection framework based upon converting GARCH and stochastic volatility processes 

into a pure noise process and then testing for the presence of linear and nonlinear serial 

dependence in the transformed data.  

The finite sample properties of the empirical distribution of the various tests were 

investigated using a bootstrap procedure.  This allowed an assessment to be made of how 

close the empirical properties of the tests were to their theoretical distributions given the 

significant observed deviations from the Gaussian distribution implied in the source 

returns data.  It was also demonstrated that the empirical properties of the tests could be 

improved substantially through the use of trimming, which permits an investigator to 

control for the impact of outliers on the finite sample performance of the test statistics in 

order to obtain an empirical distribution closer to the Gaussian distribution.  
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It was also shown how trimming could be used to investigate whether the nonlinear 

generating mechanism was a ‘deep structure’ phenomenon where observed nonlinear 

serial dependence is generated by more than the presence of outliers. In our example, it 

was found that nonlinear serial dependence did not disappear as more stringent trimming 

scenarios were adopted.  This confirmed the presence of a ‘deep structure’ in the 

generating mechanism. In particular, the results indicated that the generating mechanism 

was not consistent with the hypothesis that an ARCH, GARCH or stochastic volatility 

process generated the returns. 

Finding that nonlinearity is present has implications for modeling spot price dynamics.  If 

there is both third and fourth-order nonlinear serial dependence in the data, then time 

series models that employ a linear structure, or assume a pure noise input such as 

Geometric Brownian Motion (GBM) stochastic diffusion model, are problematic. In 

particular, the dependence structure violates both the normality and Markovian 

assumptions underpinning conventional GBM models. The finding that nonlinear serial 

dependence can be categorized as a ‘deep structure’ phenomenon poses questions about 

the validity of jump diffusion models which employ the Poisson Process in order to 

model the probability of the occurrence of outliers (i.e. jump events).  It is no longer 

appropriate to simply equate the presence of nonlinearity with the presence of outliers. 

This finding has important implications for the use of GBM and jump diffusion models 

that currently underpin accepted risk management strategies based on the ‘Black-Scholes 

Option Pricing Model’ that are employed in finance and energy economics. 
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ENDNOTES 

1. The half hourly load and spot price data were sourced from files located at the 

following web addresses: 

http://www.nemmco.com.au/data/aggPD_1998to1999.htm#aggprice1998link, 

http://www.nemmco.com.au/data/aggPD_2000to2005.htm#aggprice2000link, and 

http://www.nemmco.com.au/data/aggPD_2006to2010.htm#aggprice2006link. 

2. Also see Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993), 

Bollerslev, Engle and Nelson (1995) and Diebold and Lopez (1995) for detailed surveys 

of these models. 

3. We will demonstrate in the next section how a ‘hard clipping’ transformation can 

be used in conjunction with our nonparametric tests to falsify both types of models. 

4. This ‘nonlinear in mean’ structure in the residuals would be detected using higher 

order analogues of conventional Portmanteau test for serial correlation. 

5. Other references utilizing this framework include Brooks (1996), Brooks and 

Hinich (1998), Ammermann and Patterson (2003), Lim, Hinich and Liew (2003, 2004, 

2005), Lim and Hinich (2005a, 2005b), Bonilla, Romero-Meza and Hinich (2007) and 

Hinich and Serletis (2007). 

6. In this article, we set 4.0=b  for the correlation and bicorrelation tests and 

3.0=b  for the tricorrelation test. 

7. If we set the sj 'β coefficients to zero in (9), we get an ( )qARCH  process. 

8. For our purposes, the crucial requirement is that tε  is a pure white noise process, 

(i.e. iid). The assumption of normality was made purely for convenience. Other 

distributional assumptions used in relation to tε in the literature include the t distribution 
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(Bollerslev (1987)) and Generalised Error Distribution (Nelson (1991)).  In order for the 

‘hard clipping’ technique to work successfully, whatever distributional assumption is 

made about tε , it must be a symmetric distribution. 

9. The false alarm threshold is to be interpreted as a confidence level, for example, a 

false alarm threshold of 0.90 is to be interpreted as a 90% confidence level.  The level of 

significance associated with this confidence level is interpreted in the conventional way.  

Therefore, for a threshold of 0.9, we get a corresponding significance level of 10%. 

10. In the current context, a maximum spot price that can be bid by wholesale market 

participants is $10000/ MWh which corresponds to the Value of Lost Load (VOLL) price 

limit that is triggered in response to demand-supply imbalances that trigger ‘load 

shedding’ [see NEMMCO (2005)]. Thus, the range of the spot price data is finite 

ensuring that all moments are finite. 

11. In the current context, the term ‘quantile’ can be interchanged with the term 

‘percentile’ which is used on the horizontal axis of Figures 1-7. 

12. It should be noted that all distributions represented graphically in the various ‘QQ 

Plots’ are plotted on a ‘percentile’ basis.  However, the extreme lower and upper tails of 

the distribution functions are defined at an interval less than a percentile in order to 

enumerate the characteristics of the tails. This gives the slight ‘dog-legged’ appearance at 

the start and end points of the plots. 

13. This is especially the case in the upper tail region of the empirical distribution 

functions where the key rejection regions for the various test statistics in fact lie.  

14. In this context, the ‘no trimming’ scenario corresponds to the framework 

underpinning the results reported in Wild, Hinich and Foster (2008).   Given the 



 30 

conservative nature of the tests at the confidence levels considered in that article (i.e. at 

0.90, 0.95 and 0.99), then any frame based rejections reported in that article are 

believable in statistical terms. 

15. This bootstrap framework mirrors the framework used in Wild, Hinich and Foster 

(2008). 

16. Recall from the discussion in Section 3 that the false alarm threshold is used to 

control the probability of a TYPE I error. 

17. In the results reported below (in Tables 2-3), trimming is incorporated in 

Scenarios B-F and no trimming is used in Scenario A only. 

18. Note that the results corresponding to Scenario A are the same set of results 

reported in Wild, Hinich and Foster (2008). 

19. The results for the H4 and ARCH LM tests also point to significant structure (see 

columns 6 and 7 of Table 2) because the rejections rates still exceed those that can be 

attributed to random chance (i.e. 10%, 5% and 1%) but are still dominated by the H test 

results which involve much larger frame based rejection rates.  
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Table 1.  Summary Statistics for New South Wales Spot Price Returns Data 

 

 

No of Observations                    161785            
Mean                                            -0.002           
Maximum                                      545.0               
Minimum                                     -572.0              
Std Dev                                            19.2                 
Skewness                                          0.49                 
Excess Kurtosis                              104.0                 
6th Order Cumulant                     41958.9          
JB Test Statistic                    72900000.0    
JB Normality P-Value                  0.0000            
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Table 2.  Frame Test Results for NSW Weekly Spot Price (Returns) Data  
Specific Details: No Global AR ‘Prewhitening’ Fit; 
Applied Frame by Frame AR(10) ‘Prewhitening’ Fit to Remove Linear Dependence 

Various Trimming Scenarios 

Scenario  Total Num     False Alarm     Significant         Significant          Significant        Significant 

 / (State)   of Frames      Threshold        C Frames           H  Frames           H4 Frames         ARCH Frames 
                                                                       Num & (%)           Num & (%)            Num & (%)           Num & (%)      

Scenario A      481              0.90                    1                       464                       452                     395 
                                                                          (0.21%)                (96.47%)                  (93.97%)              (82.12%) 

                        481             0.95                    1                        406                       396                    326 
                                                                         (0.21%)                (84.41%)                   (82.33%)              (67.78%) 

                        481             0.99                    1                        358*                     358*                  186* 
                                                                         (0.21%)                (74.43%)                   (74.43%)              (38.67%) 

Scenario B      481              0.90                    3                       464                       422                    415 
                                                                          (0.62%)                (96.47%)                  (87.73%)              (86.28%) 

                        481             0.95                    1                        442                       360                    378 
                                                                         (0.21%)                (91.89%)                   (74.84%)              (78.59%) 

                        481             0.99                    0                        368                       280**                303 
                                                                         (0.00%)                (76.51%)                   (58.21%)              (62.99%) 

Scenario C      481              0.90                    0                       462                       427                    401 
                                                                          (0.00%)                (96.05%)                  (88.77%)              (83.37%) 

                        481             0.95                    0                        451                       400                    375 
                                                                         (0.00%)                (93.76%)                   (83.16%)              (77.96%) 

                        481             0.99                    0                        403                       308                    305 
                                                                         (0.00%)                (83.78%)                   (64.03%)              (63.41%) 

Scenario D      481              0.90                    0                       446                       378                    356 
                                                                          (0.00%)                (92.72%)                  (78.59%)              (74.01%) 

                        481             0.95                    0                        430                       339                    314 
                                                                         (0.00%)                (89.40%)                   (70.48%)              (65.28%) 

                        481             0.99                    0                        374                       257                    217 
                                                                         (0.00%)                (77.75%)                   (53.43%)              (45.11%) 

Scenario E       481              0.90                    0                       428                       304                    281 
                                                                          (0.00%)                (88.98%)                  (63.20%)              (58.42%) 

                        481             0.95                    0                        394                       260                    219 
                                                                         (0.00%)                (81.91%)                   (54.05%)              (45.53%) 

                        481             0.99                    0                        331                       173                    135 
                                                                         (0.00%)                (68.81%)                   (35.97%)              (28.07%) 

Scenario F       481              0.90                    0                       376                       220                    165 
                                                                          (0.00%)                (78.17%)                  (45.74%)              (34.30%) 

                        481             0.95                    0                        334                       161                    126 
                                                                         (0.00%)                (69.44%)                   (33.47%)              (26.20%) 

                        481             0.99                    0                        239                         76                      65 
                                                                         (0.00%)                (49.69%)                   (15.80%)              (13.51%) 

 
Notes: 
 
* - false alarm threshold arbitrarily set to 0.9999. 
** - false alarm threshold arbitrarily set to 0.999999.
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Table 3.  Frame Test Results for NSW Weekly Spot Price (‘Hard Clipped’ Returns) Data  

Specific Details: No Global AR ‘Prewhitening’ Fit; 
Applied Frame by Frame AR(10) ‘Prewhitening’ Fit to Remove Linear Dependence 
Frame by frame Hard Clipping of Residuals 
Various Trimming Scenarios 

Scenario          Total Num        False Alarm             Significant              Significant                 Significant   

 / (State)           of Frames          Threshold                C Frames                H  Frames                  H4 Frames    
                                                                                           Num & (%)                 Num & (%)                   Num & (%)         

Scenario A           481                   0.90                          176                         272                              149           
                                                                                           (36.59%)                     (56.55%)                          (30.98%)      

                            481                   0.95                          111                          212                              106          
                                                                                           (23.08%)                      (44.07%)                          (22.04%)   

                            481                   0.99                           52                            98                                 55           
                                                                                           (10.81%)                     (20.37%)                           (11.43%)      

Scenario B           481                   0.90                          129                          280                              113          
                                                                                           (26.82%)                     (58.21%)                          (23.49%)      

                            481                   0.95                           86                           222                                67          
                                                                                           (17.88%)                     (46.15%)                          (13.93%)   

                            481                   0.99                           34                           114                               24           
                                                                                            (7.07%)                      (23.70%)                           (4.99%)      

Scenario C          481                   0.90                          38                            297                              112          
                                                                                            (7.90%)                     (61.75%)                          (23.28%)      

                            481                   0.95                           25                           236                                67          
                                                                                            (5.20%)                     (49.06%)                          (13.93%)   

                            481                   0.99                            8                           127                                 18           
                                                                                            (1.66%)                      (26.40%)                           (3.74%)      

Scenario D          481                   0.90                           57                            320                              133          
                                                                                            (11.85%)                     (66.53%)                          (27.65%)      

                            481                   0.95                           41                           269                                82          
                                                                                            (8.52%)                     (55.93%)                          (17.05%)   

                            481                   0.99                           17                            169                               28           
                                                                                            (3.53%)                      (35.14%)                           (5.82%)      

Scenario E           481                   0.90                          197                           353                             144          
                                                                                            (40.96%)                     (73.39%)                         (29.94%)      

                            481                   0.95                          151                           310                             105          
                                                                                            (31.39%)                     (64.45%)                          (21.83%)   

                            481                   0.99                           85                            214                               49           
                                                                                            (17.67%)                     (44.49%)                          (10.19%)      

Scenario F          481                   0.90                          378                           391                             192          
                                                                                            (78.59%)                     (81.29%)                         (39.92%)      

                            481                   0.95                          341                           353                             139          
                                                                                            (70.89%)                     (73.39%)                          (28.90%)   

                            481                   0.99                          277                           277                               85           
                                                                                            (57.59%)                     (57.59%)                          (17.67%)      
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Figure 1.  QQ Plot for Bootstrapped C Statistic for NSW (Weekly) Spot Price Returns
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Figure 2.  QQ Plot for Bootstrapped H Statistic for NSW (Weekly) Spot Price Returns
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Figure 3.  QQ Plot for Bootstrapped H4 Statistic for NSW (Weekly) Spot Price Returns
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Figure 4.  QQ Plot for Bootstrapped LM ARCH Statistic for NSW (Weekly) Spot Price Returns
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Figure 5.  QQ Plot for Bootstrapped C Statistic for 'Hard Clipped' NSW (Weekly) Spot Price 

Returns

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
0
.1
0
%

1
.0
0
%

5
.0
0
%

9
.0
0
%

1
3
.0
0
%

1
7
.0
0
%

2
1
.0
0
%

2
5
.0
0
%

2
9
.0
0
%

3
3
.0
0
%

3
7
.0
0
%

4
1
.0
0
%

4
5
.0
0
%

4
9
.0
0
%

5
3
.0
0
%

5
7
.0
0
%

6
1
.0
0
%

6
5
.0
0
%

6
9
.0
0
%

7
3
.0
0
%

7
7
.0
0
%

8
1
.0
0
%

8
5
.0
0
%

8
9
.0
0
%

9
3
.0
0
%

9
7
.0
0
%

9
9
.5
0
%

Percentile

C
D
F
 V
a
lu
e
 (
P
e
rc
e
n
ta
g
e
)

theoretical

no trimming

'10-90' trimming

'20-80' trimming

'30-70' trimming

'40-60' trimming

 
 
 

Figure 6.  QQ Plot for Bootstrapped H Statistic for 'Hard Clipped' NSW (Weekly) Spot Price 
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Figure 7.  QQ Plot for Bootstrapped H4 Statistic for 'Hard Clipped' NSW (Weekly) Spot Price 
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