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MEASURING NONSTATIONARITY
IN THE PARAMETERS OF THE
MARKET MODEL

Melvin J. Hinich and Richard Roll

I. INTRODUCTION

Nonstationarity is an important and pervasive problem in the applications
of financial theory. The industrial clients of modern finance theory, such
as investment advisory firms, frequently apply statistical techniques to
time series that extend over many periods. Virtually all analyses of time
series are subject to a nonstationarity problem. There is usually no the-
oretical reason nor practical guarantee that the data used for estimation
were generated by a process whose parameters are stationary.

The purpose of this chapter is to apply a simple technique for measuring
nonstationarity to the one-factor market model (MM1) of asset returns,

R = o5, + Bi.Rm: + & 03]
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in which R;, is the observed rate of return on asset j during time period
t, R;,, is the return on a market index, B;, is a parameter which measures
the risk of asset j, o;, is another parameter which can be given several
interpretations, and ¢;, is a stochastic disturbance term with zero mean.

MMI is related to the theory of asset price determination, the capital
asset pricing model (CAPM) enunciated first by Sharpe (1974) and Lintner
(1965) who derived market equilibrium conditions based on the assump-
tion that all investors followed Markowitz’s (1952) advice to diversify
their investments. In the original CAPM, there were only two periods,
so all parameters were stationary (trivially). The parameter «; was spec-
ified as o; = (1 — B;)R¢ Where Ry was a riskless rate of interest. In the
later model of Black (1973), however, there was no riskless borrowing
and o; became related to the mean return on a portfolio whose return
was orthogonal to R,,.

Since excellent expositions of the CAPM and MM 1 are available else-
where,! we will not give yet another one. Suffice it note that the original
CAPM, or closely related variants such as MMI1, are widely applied in
the financial industry. In portfolio management, there are probably no
more important current paradigms. They aid decision making in risky
environments. They have been used for assessing portfolio performance,
for measuring the impact of various events on security prices,? for mea-
suring rates of discount to use in the valuation of uncertain cash flows,
and for other purposes.

MM1 also can be considered a special case of a generating mechanism
that leads to the Ross (1976) Arbitrage Pricing Theory (APT). This theory
has recently become prominent as a very general model of intertemporal
asset price variation and expected return equilibrium.3

The APT begins with an assumption that returns are generated linearly
by a limited set of stochastic factors. MM1 imposes two additional as-
sumptions: (a) that the number of factors is exactly one; and (b). that
this single factor can be measured by some market index. By allowing
the parameters of MM1 to change over time as in specification (1), we
effectively relax these two requirements. The parameters a;, and B;, in
(1) can vary either because there actually exist several generating factors
or because the single-factor APT has nonstationary parameters.

Even if nature is single-factor, there are possible nonstationarities
which could have a detrimental impact on the quality of estimates derived
from fitting (1) to time series of returns, while assuming stationary pa-
rameters. First, there is no theoretical reason for the ‘‘risk’’ parameter
B; to be an intertemporal constant. In fact, this parameter is widely
acknowledged to depend on factors that are known to change (such as

‘the debt/equity ratio of the firm* when asset J is a common stock) and

on the absolute risk aversion® of investors (which is likely to change with
the aggregate level of wealth).s
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Another source of nonstationarity is in the distribution of &;, the dis-
turbance term intended to measure all influences on the return of asset
j that are unrelated to the index m.” There exists no satisfactory theory
about the distribution of &; aside from the simple assertion that its mean
is zero. In any finite sample, of course, the mean of g; can be nonzero
insofar as disequilibrium conditions occur temporarily. Also, the higher
moments of the distribution of ¢; need not be constant. For example,
the variance of ¢; could fluctuate drastically and cause considerable dif-
ficulty in econometric estimation of (1).

Finally, of course, nonstationarity can be mduced in the model and
in estimates of its parameters if the particular form (1) is misspecified.
This is the situation when the true state of nature requires several ex-
planatory factors.

There is one very good reason for investigating a single-factor model
with data that possibly have been generated by a multifactor process.
The reason is simplicity. Just estimating the number of factors is a
difficult econometric problem (see Roll and Ross, 1980). Since the single-
factor version (1) is so widely applied, a detailed investigation of
its parameter stability should be very worthwhile for practical
implementation.

Our method of measuring nonstationarity can be adapted easily to a
wide variety of problems and improved upon in obvious ways (which
we will mention).

The method estimates an explicit time path of a lmear model’s coef-
ficients and it provides the capability to assess the statistical significance
of the nonstationarity. Furthermore, this is done under very weak as-
sumptions concerning the probability distribution that generated the data.
No particular generating distribution need be assumed. Such a robust
method will clearly not be optimal for every application. An investigator
who knows the generating distribution, or is willing to assume that he
knows it, will be able to find a specialized technique better adapted to
his case; but for those of us with a lower degree of skill or of arrogance,
the method to be described here has much virtue.

A. An Outline of What Follows

In the two sections following, we will discuss techniques for avoiding
some of the pitfalls caused by nonstationarity. The next section (II) will
explain the technique of robust regression; that is, of an improved regres-
sion method for a model such as (1) when the disturbances do not have
all the standard spherical Gaussian properties so familiar from econo-
metrics texts.

There is no doubt that asset returns, and the estimated residuals from
regressions with asset returns, do not have standard properties. Asset
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returns are not stationary Gaussian.® There is a controversy about
whether the disturbances of (1) are drawn from a stationary non-Gaussian
probability distribution, such as a stable distribution, or whether they
conform better to a Gaussian process with nonstationary parameters;?
but whatever the true explanation may be, the observed distributions
strongly suggest that an alternative to the classic least-squares method
of line fitting may give better results. We will provide evidence that
“‘robust regression’’ does indeed perform better than ordinary least
squares.

In Section III, we describe the second part of a methodology for

3.

regression with a nonstationary linear model. It utilizes orthogonal poly-

nomials of time to track the paths taken by the coefficients, the ‘‘risk’’
coefficient §;, and the intercept parameter o;. Section IV gives the em-
pirical results for a sample of U.S. assets.

In summary, the basic model (1) will be fit to data while Q, Bj., and

the distribution f; (g;,) of the disturbance term are fit to exp11c1t functions
of time. This is a very robust specification and it has the potential to
sidestep many of the troubling theoretical and econometric problems
previously mentioned. For example, if the ‘‘true”’ state of nature requires
another factor (such as in the models of Black, 1972, or of Merton, 1972,
or in the more general APT of Ross, 1976) this is econometricaily cor-
rected in our specification by allowing the intercept to vary in time.
Similarly, if the simple Sharpe-Lintner model, but with nonconstant pa-
rameters, is the “‘true’’ state of nature, our specification will work. By
using model (1) we are not obliged to take sides on the question of which
particular theory is “‘true’’ because this specification will be an approx-
imation to all of the currently suggested theories (for a particular data
sample). .

II. ROBUST REGRESSION

The parameters of a linear model are often estimated by the method of
ordinary least squares (OLS), which is sensitive to large values of the
additive error terms. Various alternative methods have been proposed
for obtaining regression estimates which are insensitive to large disturb-
ances and have known sampling properties, at least asymptotically (see
Bickel, 1973, and Huber, 1973). The iterative algorithms used in all these
studies have the disadvantage that they require a preliminary-‘‘reason-
able’” estimate, usually OLS. Using linear programming to minimize the
sum of absolute errors protects against large disturbances, but the only
known sampling results were found by artificial data studies (Blattberg
and Sargent, 1971). Hinich and Talwar (1975) present an alternative
simple two-stage procedure and study its asymptotic and empirical prop-
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erties when the disturbances are assumed to be independent realizations
from a symmetric stable distribution.

Let us present the Hinich-Talwar procedure for estimating the fixed
coefficients o and B in the simple model:

y, = a + BX, + g t=1,...,T 2)

where ¢, are independent, identically distributed thick-tailed and non-
Gaussian errors. In order to obtain the large sample properties of our
estimators, the stochastic disturbances are assumed to have a symmetric
stable distribution with zero location, scale o, and characteristic exponent
vy < 2.1° The assumption of a stable distribution generating process is
only incidental. The Hinich-Talwar procedure protects against extreme
values of the errors regardless of their distribution if T is large, but some
model for the generating process was needed to compute large sample
variances and to test the procedure with artificial data. The procedure
has been shown to be ‘‘robust’ against large disturbances (including

gross data errors) provided the coefficients « and B are constant over .

time. :

Assuming for convenience that T is even, divide the sample into T/2
nonoverlapping groups of two successive observations (X,y,) and
X, Via), t = 1,3, ..., T — 1. [Note that in models with k variables
(k > 2), the sample would be divided into T/k nonoverlapping groups.]
For each t, compute the equation of the line connecting the pair of
points; i.e.,

Xt+1Yt - Xth+1

XX ©
and \
A _ Yo — Y
Bl B X1 — X I @

(And, of course, there would be a vector of k estimated coefficients in
the k-variable case.) B, ..., B:_, are independent random variables with
the same location @, but with different scales! (or dispersion parameters).
The scale of B, is '

0-2.1/7
g = —_—— t=13,..,T - 1.
| ® = ] }
Similarly, &,, ..., &r_, are independent random variables with location
o and scales
' X, 'Xtvllv
(@) = OTIIE D VEPTET a ) )

|X‘/+/1 - th
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An initial estimate of § is given by
B = median (B,, ..., Br_y),

which is a consistent and_asymptotically normal estimator: T"285! (¢!
— B) converges in distribution to N(0,1) as T — «, where

,_lframag 1"
aT—z[ oy T2 (B)] : (6)

If the X, terms are stochastic, it follows from (6) that for large T, B is
approximately N(j3,5%/T) where

Y21 =112
T'(1/y)

The asymptotic efficiency of B is similar to that for the median estimate
of the location given in a random sample from a parent distribution. The
efficiency of the first-stage estimator can be increased by using a trun-
cated mean (e.g., the mean of the middle 25% of the ordered {3, terms,
instead of the median ). The median was presented here because its
asymptotic properties are easier to derive and express. The first-stage
estimator of & has similar properties.

Once the first-stage estimates of & and B are computed, the residuals,

8 = o (E|Xt+l - th)—]- @)

& = Ve — & — BXU
are ordered and used to compute an estimate of o,

| A .
s = 1.654 (&.2n — &casm))

where £ .1, and € .51, are the order statistic estimators of the 28th and
72nd percentiles of the distribution of €. The estimator s has an asymp-
totic bias of less than .4% for all y in [1,2]. (See Fama and Roll, 1968,
p. 823.)

The sample is then censored by removing all observations (X,,y,) cor-
responding to residuals which are greater in absolute value than some
fixed multiple of s. Here, we used 4s as the cutoff. This value was shown
in the Monte Carlo experiments of Hinich and Talwar to bring relatively
low sampling dispersion to the resulting coefficients over a wide range
of distributions of the raw disturbances. The final estimates of o and B
are the ordinary least-squares coefficients computed from the remaining

observations. They are approximately normally distributed since the er-

rors in the remaining observations have finite variance. As we shall see,
this ability to ‘‘force” the second-stage least-squares estimates toward
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normality is of crucial importance in testing for their nonstationarity.
Furthermore, the Hinich-Talwar technique will provide this result for

‘any stochastic process of the disturbances e, not just for stable non-

Gaussian disturbances. A nonstationarity in the dispersion of ¢, for ex-
ample, will bring about thicker tails in the sampling distribution of €. By
using this robust procedure, however, the least-squares estimates com-
puted under these conditions will also be forced toward normality.

The procedure may at first seem complex and, of course, the asymp-
totic distribution theory is difficult; but carrying out the required com-
putations will reveal the procedure’s basic simplicity. Anyone with access
to a regression program can easily implement this robust regression
method and virtually guarantee Gaussian disturbances if the number of -
data observations is sufficient.

III. MODELING NONSTATIONARITY IN THE
INTERCEPT, THE SLOPE COEFFICIENT, AND
THE MEAN DISTURBANCE

In searchiné‘ for the best technique to model nonstationarity in the pa-
rameters of Eq. (1), there are several useful implications of past empirical
work that should be considered. The previous section outlined an ap-
proach for accommodating nonstationarity in the dispersion of the dis-
turbance term €. Here, we wish to present a treatment of nonstationarity
in the expected value of ¢ and in the coefficients.

For common stocks, several studies have documented temporary de-
viations of E(e) from zero. This seems to occur as a result of market
disequilibria when new and unanticipated information is received by
individual traders. For example, the mean disturbance term is signifi-
cantly positive in the weeks preceding a stock split.'2 In another example,
positive means occur before an announcement of spuriously increased
earnings (caused by accounting manipulations) while negative means
follow subsequent disclosure of the spurious nature of the increase.!?
Nonzero mean disturbances have been associated empirically with sev-
eral other occurrences such as secondary offerings* and dividend in-
creases,'s and there are undoubtedly many other circumstances, as yet
not documented, which have the same result.!®

The same arguments can be advanced concerning o;, the intercept. If
the intercept is interpreted as in the Sharpe-Lintner model as a function
of the riskless rate of interest, it can vary intertemporally, too. There
is probably not as much solid empirical support for its significant vari-
ation; but there is certainly no reason to assume constancy in the absence
of evidence either way. In several other studies (previously mentioned),
the intercept has been presumed to vary with some other stochastic
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factor. Specification (1) permits the measurement and correction of non-
stationarities in both E(g;) and in the missing factors (or the riskless
return) at the same time. The temporally varying intercept can simply
be regarded as a mixture of these influences.

Which time-dependent functions should be chosen to model «;, and
B;.? Several alternatives are available: One of the techniques that might
have been selected is a modification of the Farley-Hinich (1970) or Farley-
Hinich-McGuire (1975) procedures. They allow the coefficients in a
regression equation such as (1) to shift once during the observed record
and the unknown date of the shift can be estimated. This would have
been an excellent method if changes in the coefficients of (1) occurred
discretely (and only once during the period of observation). There may
be cases like this. In fact, such a case would occur for a firm that had
floated a new bond issue and thereby changed considerably its leverage
ratio during the sample. But there are certainly more complex possibilities
and prudence required a more general method.

Another alternative is some type of ‘‘random coefficients’’ technique
such as the adaptive regression procedure of Cooley and Prescott (1973).
In their method, the coefficients are assumed to vary from one period
to the next by following a random walk from their initial positions. Again,
the coefficients of some assets may behave this way but others may take
on discrete, deterministic changes or fluctuate in a predictable pattern.
Besides, the methodology described below is able to track coefficients
which actually follow a random sequence. Since it will track other se-
quences, too, little is lost by its general use. Our idea is to approximate
the sequence of each coefficient by a function of time whose parameters
can be estimated directly. We decided to use a function of Legendre
polynomials for this purpose. The Legendre polynomials are only one
of a wide variety of functions that might be used in different applications.
We do not imply, by using the Legendre polynomials here, that they are
necessarily superior to Chebyshev polynomials, trigonometric polyno-
mials, or many others that could be used to approximate any arbitrary
function of time. However, the Legendre polynomials are easy to vis-
ualize and they provide an adequate expositional device to illustrate the
general principals involved in our technique.

Given any polynomial of time, the time paths of coefficients o; and
B can be approximated as

B.= D bP(t) —I<tsI, )
i=0
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where P(t) is the polynomial of order i at time t and a; and b;; are the
coefficients of the ith-order polynomial for the intercept and slope coef-
ficients of (1), respectively. In this case, P is the set of Legendre poly-
nomials and the first five of these are given in Table 1 below and illus-
trated in Figure 1.
Units of time are chosen so that — 1 to + 1 spans the observed number
- of natural calendar units.!” This particular structure is used because the
Legendre polynomials are mutually orthogonal on the interval [—1,1].'8
- Thus, each polynomial can be introduced as a separate variable in the
estimating regression without having to worry about multicollinearity
(which would be a serious problem if a nonorthogonal polynomial were
used).
The final estimating equation is:
3tz -1
———— +

) -+ BOjl{m,t

ijg = éoj + ﬁ]jt + ézj

3tz -1
+ b,tR,, + by———

5 Ruc 4 m (10)

or more simply
Ri = 2 (@ + BiRn) PO + My (11)

The averages of the sequences of the two coefficients «o;, and B;, in
the original model (1) are estimated respectively by &, and Boj in (11).
These would be estimates of Rg(1 — ;) and B; respectively in model
(1) if the simple Sharpe-Lintner model held with a constant Ry and B;
for all t.

The sequence averages 4, and Boj are not necessarily the best choices
to use in prediction. If the true coefficients are actually nonstationary,
one should use the most recent estimates of b;, and 4;, for purposes of
extrapolation. Thus after estimating (11) with a historical record, returns
in the next period should be predicted by using

Table 1. Legendre Polynomials, Orthogonal in the Range [—1, 1]

Py(t) = 1

Pt) =t

Pt) = 3¢ — 112

Pyt) = (5 — 31)/2

Pt) = (35t — 30> + 3)/8
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Figure 1. Graphs of Legendre Polynomials.

Py P2
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Bj,l-«»m = E)Bijpi(l + At)

and by using a similar equation for &;,,, [wWhere At is the prediction
interval measured in whatever units of time were used to estimate (11)].

There is one feature of this technique which should be emphasized:
the optimal number of high-order polynomials (parameter n above) cannot
be determined objectively. A polynomial of higher order than the number
of sample points is impossible, of course, but this is a trivial fact since
the whole idea is to model nonstationarities with a small number of
parameters. In the following results, we have hedged by trying and
reporting several alternatives, n == 0, 1, and 4. For n = 0, Eq. (I1)
reduces to a particularly simple form of regression model (1) with as-
sumed stationarity in the coefficients (but not necessarily in the dispersion
of the disturbances). For n = 1, the coefficients can take on a linear
trend at most. For n = 4, the coefficients can evolve in up to a quartic
fashion which will admit a changing trend and even a limited cyclic
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pattern. In each case, the estimated coefficients of the higher-order poly-
nomials might turn out to be insignificantly different from zero. This
would imply stationarity.

Finally, note that a test for the existence of nonstationarity itself during
the observed sample period can be made very easily. The composite
hypothesis, b;; = by = -+ = b, = 0, using all except the zero-order
estimated coefficient in an F test, provides a means of determining the
probability that §;in (1) (the risk coefficient) has actually varied in some
way. Similarly, a;; = a; = --- = 0 is a hypothesis that neither o; nor
E(e;) has changed.

IV. EMPIRICAL RESULTS

A. The Data Sample?

The data chosen for illustration here are rates of return (including -
dividends, if any) for New York Stock Exchange (NYSE)- and American
Stock Exchange (AMEX)-listed securities beginning in July 1962. Ob-
servations were available daily but were aggregated to weekly intervals.2
The last observations were for July 1969, and a total of 365 weekly
returns were available for a large number of securities. Since there were
more than adequate :data, we decided to use only a subset of securities
and observations, dividing the total period into subperiods and using
only those stocks which had a full record of observations. Furthermore,
since the computations were done on a commercial computer, we ar-
bitrarily decided to limit the major production run to a fixed number of
minutes of CPU time. This had the effect of eliminating American Stock
Exchange securities whose names ranked low in alphabetical order since
these were positioned last on the magnetic tape.

The final sample consists of 930 securities which have full records
during the first 160 weeks (from July 5, 1962, through July 22, 1965). Of
the 930 securities, 84 were listed on the American -Stock Exchange (and
the remainder were on the NYSE). There were some stocks eliminated
due to bad spots on the tape.?!

The reason for choosing 160 weeks was that the robust technique
requires the sample size divided by the number of variables to be an
integer. Originally, the number of variables was 2, 4,.and 10 so that the
sample size had to be a multiple of 20. Since 160 was a reasonably large
number and a multiple of 20, and since 'we wanted to reserve at least
one-half the available observations (around 365) for prediction and post-
sample testing, 160 was chosen. For reasons to be discussed shortly, we
later decided to do the robust trimming with the two-variable model only,
so we could have chosen a slightly larger sample (and not a multiple of
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.
4 and 10); this seemed hardly worth the extra programming effort, so
we did not change the originally chosen sample size. There is no reason
to suspect that this rather haphazard technique for choosing the sample
had any influence on the results.??
The market index used in all cases was the Standard & Poor’s (S&P)

500.

B. An Outline of the Results

Since the results comprise a rather large amount of information on
several different empirical questions, the following outline will serve as
a guide to the most interesting part for each reader:

Section ) Contents
Iv.C Ordinary least squares (OLS) and Robust (ROB) results for individual
stocks for the period July 1962 to July 1965
1IVv.D Tests for stationarity in beta coefficients and other parameters for the
sample as a whole
IV.E Analysis of individual securities with many outliers
IV.F Analysis of individual securities with strongly varying parameters
IV.G Tests with portfolios; results for the first 160 weeks and postsample
refitting
IV.H Tests of the two-factor model with portfolios

C. Characteristics of Individual Securities, July 1962-July 1965

Table 2 presents cross-sectional statistics (across 930 securities) for
regressions calculated with time series for each security. For each time
series six different regressions were fit, .one set with ordinary least
squares (OLS) and another set with the robust technique (ROB). In each
set, the three regressions are for (1) the simple index model; (2) the
model with linear time trends in the coefficients; and (3) the model with
up to a quartic polynomial of time in the coefficients [these three rep-
resent model (11) with n = 0, 1, 4]. The table presents the calculated
coefficients and t statistics for a;; and BOJ- from Eq. (11). These coefficients
represent the portfolio risk (8;) and the intercept q; for the simple (two-
variable) model. For the models with nonstationary coefficients, 4, and
Boj are the estimated values of the portfolio risk and the intercept on
average over the time series.

For the other coefficients (4; and b; for i > 0) only the t statistics are
reported in order to save space. Since the entire interest in these coef-
ficients is in their possible déviations from zero and not in their absolute
values, reporting the t statistics is sufficient. For each statistic, the cross-

" sectional arithmetic mean, standard deviation, minimum, Sth percentile,
median, 95th percentile, and maximum are given.
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Serial correlation in the residuals was insignificant for all models and
securities. Over the six different models and the 940 securities, the min-
imum computed Durbin-Watson statistic was 1.55 and the maximum was
2.76, a range that can be attributed to chance. The mean cross-sectional
values of the Durbin-Watson ranged from 2.15 to 2.20 across the six
models. This indicates a small and insignificant negative serial depen-
dence in the estimated disturbances (w1th a first-order correlatlon of less
than .1).

The major differences between ordinary least-squares and robust
regression are evident in the table. As mentioned in Sec. II, the robust
technique is intended to guarantee that the residuals, and thus the es-
timated coefficients, follow a Gaussian probability law. The success of
this aim is measured by the Studentized ranges calculated from the
residuals of each model. For ordinary least squares, the entire cross-
sectional distribution of the Studentized range lies to the right of the
distribution calculated from the robust residuals.

In the 2-variable model, for example, the 95th sample percentile Stu-
dentized ranges are 8.34 for ordinary least squares (OLS) and 5.61 for
robust regression (ROB), respectively. Tables of the Studentized range
show that the 95th percentile of the null distribution (Gaussian) is near
5.75 for a sample size of 160. This is quite close to the observed value
for the robust case but is far below the observed OLS value. For OLS,
even the median observed Studentized range is far above the 95th per-
centile of the null distribution in all these regressions. This indicates, of
course, that the observed residuals are quite non-Gaussian when ordinary
least squares is employed with these data. Thus the computed OLS t
statistics are not necessarily reliable measures of significance. With the
robust technique, however, the residuals do not violate the assumption
of normality. Thus tests of significance based on the normality assump-
tion have face validity. This is very important in testing for the presence
of nonstationary coefficients, as we shall see in the next subsection.

One other fact about the Studentized range should be noted: Its cross-
sectional standard deviation is three times larger for OLS than for ROB.
This is no doubt due to some extremely large values (the observed
maximum for OLS is 12.7), which indicate gross departures from nor-
mality for some securities. Whatever the source of these departures, be
it non-Gaussian stable probability laws, data errors, or nonstationarities
in the parameters, the results make a strong case in support of the use
of the robust technique, particularly for securities with very large ob-
served values of the Studentized range (and correspondingly large po-
tential errors in estimated parameters).

The explanatory power of the regression seems also to be improved
by the robust technique. This is shown by the observed cross-sectional
distribution of R2, which is shifted to the right from the OLS distribution.
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Table 2. Index Models with‘Possibly Nonstationary Parameters for New Yofk and American Stock Exchange
Securities,» July 1962-July 1965°

Standard

Estimated Refers to Regression _ 95th
Parameter Coefficient  Technique® Mean Deviation ~ Minimum 5th Percentile  Median Percentile  Maximum
2-Variable Model¢ (Assumes Stationary Parameters)

Intercept R OLS - .151 15.3 -71.0 25.4 .390 24.6 57.1

(%/Annum) % ROB -8.94 19.7 —98.0 —47.6 -5.18 17.7 55.9
t (Intercept) &, OLS .0371 .950 - 3.02 - 1.50 .0338 1.56 2.90
ROB - .574 1.30 - 5.02 - 2.84 — .469 1.39 3.39
Slope Bo OLS 1.05 442 - 1.04 415 .1.04 1.79 2.59
ROB .955 .448 - .552 .329 .969 1.78 2.76

t (Slope) OLS 5.17 2.14 - 2.57 1.85 5.06 8.78 14.7

bo ROB 5.53 2.29 - 2.75 2.00 5.44 9.43 15.8

Adjusted R? OLS .143 .0959 - .0127 .0109 129 .320 .574
ROB .163 .105 - .0136 .0132 .151 .357 .614

Studentized OLS 6.40 1.11 4.4 5.04 6.21 8.34 12.7

Range ROB 5.09 .303 3.89 4.62 5.07 5.61 6.21
Mean Coefficients, 4-Variable Model® (Linear Trend)

Intercept R OLS - .333 15.5 -724 —26.8 152 24.5 58.4
(%/Annum) % ROB -9.17 19.9 -97.8 —48.5 -5.43 17.5 55.9
Slope . OLS 1.04 450 — 1.08 .394 1.03 1.82 2.77
bo ROB .995 .456 - .617 334 .968 1.79 2.70
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Statistics, 4-Variable Model:

.0152

1.58

t (Intercept) 8 OLS 0255 961 307 - 155 2.97
ROB ~ 589 1.32 - 500 - 292 - 474 1.41 3.37
t (Intercept) 4, OLS 204 866 - 28 - 122 234 1.50 283
Trend ROB 243 938 - 284 - 133 276 1.78 3.02
t (Slope) A OLS 4.82 2.03 ~ 275 1.64 4.70 8.24 13.6
bo ROB 5.20 2.19 - 2.89 1.85 5.12 8.92 14.8
. OLS T 126 - 438 - 222 - 173 1.83 3.57
t (Sl b : :
Rie0s) ‘ ROB - .146 1.25 - 425 -2 ~ 100 1.88 4.36
Adjusted R? oLS 145 0972 — 0241 00926 130 326 579
ROB 166 106 — 0229 0124 154 361 619
Studentized oLS 6.40 111 4.44 5.04 6.21 8.34 12.7
Range ROB 5.12 304 . 3.85 4.66 5.11 5.66 6.24
Mean Coefficients, 10-Variable Model¢
Intercept 8 OLS 581 155 -74.7 ~25.7 1.25 24.4 56.1
(%/Annum) ROB ~8.54 19.9 ~979 -48.0 —4.82 17.1 54.7
Slope B0 OLS 101 471 — 186 327 976 1.83 2.70
: ROB 969 469 - 929 292 925 1.82 2.72
! Statistics, 10-Variable Model
t (Intercept) 8 OLS 0950 949 - 312 - 143 100 1.56 2.99
ROB - 521 1.30 - 479 - 27 - 431 1.42 3.24
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Table 2. Index Models with Possibly Nonstationary Parameters for New York and American Stock Exchange
Securities,* July 1962—July 1965°

Estimated Refers to Regression Standard 95th
Parameter Coefficient Technique® Mean Deviation Minimum 5th Percentile  Median Percentile  Maximum

Statistics, 10-Variable Model

t (Intercept) 8, OLS 239 886 ~ 281 - 124 245 1.58 2.91
Trend) ROB 27 946 - 281 ~ 128 315 1.76 3.26
t (Intercept) 4, OLS ~ 0293 833 7 - 132 - 0572 1.34 3.06
Quadratic) ROB 0220 926 ~ 245 ~ 142 — 00402 1.54 3.42
t (Intercept a, ' OLS - .213 844 — 2.81 - 1.58 . - 221 1.17 2.58
Cubic) ROB - — .180 872 ~ 277 — 154 ~ 178 1.20 225
t (Intercept a OLS — 200 774 ~ 286 - 152 a7 1.06 2.97
Quartic) ROB ~ 201 822 ~ 26l ~ 158 ~ 185 - 116 2.62
: OLS 420 1.90 ~ 265 1.34 4.08 7.35 12.5
t b .
(Slope) ’ ROB 4.57 2.04 - 1.99 1.41 4.50 8.06 13.7
t (Slope) 6 OLS ~ 14 115 - 416 — 207 ~ .0999 1.74 3.44
Trend) ROB — 0859 - 118 ~ 419 - 2.00 — 0805 1.72 3.70
¢ (Slope 6 oLS 374 1.10 - 331 - 1.48 363 2.12 4.08
Quadratic) ROB 331 1.10 ~ 331 - 145 351 2.11 3.58
t (Slope 6 OLS 0416 1.01 - 337 ~ 160 0642 171 3.84
Cubic) ROB 0609 1.3 ~ 313 ~ 1.54 0671 1.76 3.86
¢ Slope 6 OLS — 169 1.09 — 408 — 1.97 ~ 162 1.67 3.06

uartic) ROB - .148 1.07 - 3.67 - 1.86 - .167 1.65 2.93




L1

Adjusted R? OLS 144 .100 - .0517 00111 132 327 .588
ROB .166 .108 - - .054] . .00842 153 .366 616

Studentized - OLS 6.39 1.10. - 4.50 5.04 '6.20 8.33 12.7
Range ROB . 5.18 324 4.32 4.67 5.17 5.72 6.52

2930 individual securities.

b 160 weekly observations.

¢ This refers to the coefficient from the fitted equation (11).

4 QLS = ordinary least squares; ROB = Hinich-Talwar robust regression.

¢ The 2-, 4-, and 10-variable models are Eq. (11) with n chosen as 0, 1, and 4, respectively.
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Of course, this is hardly surprising since the robust technique has the
effect of throwing out observations that do not conform well to the
estimated regression hyperplane. One should be very careful to note that
this supposedly higher -explanatory power is really just a bias in the R2
computed by the robust technique. If the discarded observation had been
added back to the computation of R? (using estimated residuals for these
observations that were calculated with the robust coefficients), the result
would be a value for Rz much closer to the OLS value. For the same
reason, the predictive ability of the ROB equations will not be better
than the OLS equations to the extent of the ‘‘improvement’’ in R2. This
is because the same processes which generated outliers during the fitted
sample period can generate outliers in the postsample period. If there
is any improvement in predictive ability by going from OLS to ROB,
it will only be because the ROB coefficients have less estimation error.
We began the study by using the robust method to compute outliers
for each model (2, 4, and 10 variables) separately. Unfortunately, this
is a very treacherous procedure for the 4- and 10-variable models, as we
soon discovered. The reason stems from the orthogonal polynomials
employed as regressors in these models. Recall that the robust technique
first partitions the sample into N/k subsamples, where N is the total
sample size and k is the number of variables. A regression is then com-
puted for each subsample and the medians of these coefficients are taken
as the first-pass estimates. Unfortunately, even though the polynomials
are ‘orthogonal over the full time span of 160 observations, they are far
from orthogonal within each subperiod.
This is quite apparent from a glance at the graphs of the Legendre
polynomials (Figure 1). If the subsamples for the robust method are
chosen by a natural partition along the time axis, the intercorrelation
among the polynomials within each subsample will be quite high. For
the 10-variable case, the axis is partitioned into 160/10 = 16 equal sub-
“sections. A 1/16th subsection of the time axis, chosen anywhere at all,
will result in extremely high interdependencies among the polynomials.
The 4-variable case is not as troubling because only the first-order poly-
" nomial and the first-order polynomial multiplied by the market return are
used. However, the subsections are smaller, each being 1/40th of the
total sample. Thus, some nearly singular matrices have a high probability
-of occurrence, simply because four successive market returns of ap-
proximately the same magnitude are rather likely to occur at least once.
. We tried to remedy this induced multicollinearity first by choosing
subsamples by some method other than the natural ordering along the
time axis. For example, we tried using observations numbered 1, 11, 21,
..., 151 for the first subsample, 2, 12, 22, ..., for the second subsample,
-etc. in'the 10-variable.case and 1, 5,9, etc. for the 4-variable regressions.
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- This alleviated considerably the multicollinearity problem for the 10-

variable case but it did not help the 4-variable case at all, and there were
still some subsamples in both cases whose moment matrices had ex-
tremely low determinants.

Finally, we decided to do the first part of the robust technique, the
determination of outlier observations, with the 2-variable model alone.
Then the second pass, which consists of computating ordinary least
squares on nonexcluded observations, was done for the 2-, 4-, and 10-
variable model but using the observations determined by the 2-variable
first pass. Admittedly, this is a somewhat arbitrary procedure and one
would expect a priori that it would understate the true worth of the
robust technique relative to OLS for the 4- and 10-variable models.
However, the special nature of the independent variables in these models
made it necessary and we can do no better than to keep it in mind when
interpreting the results.

D. Testing for the Existence of the Nonstationary Parameters
~ A First Pass

One of the basic attractions of our method is its capability to provide
a statistical test for the existence of nonstationarity. We illustrate this
by tests of stationarity of the coefficients of (1). In particular, the stability
of “‘risk’’ parameter [B; in (1)] over time is a matter of great importance
to portfolio managers and other investors. They would like to be able
to use historically estimated risk parameters for current portfolio selec-
tion and would also. like to be able to extrapolate them safely. In addition,
the intercept term «; is sometimes related to an ‘‘extraordinary’” return -
for a stock, above and beyond the normal compensation for its. risk.
Thus, it too is important in some contexts. We will report evidence on
the stationarity of both parameters.

The central problem in testing for the overall existence of nonstation-
arity is the a priori lack of knowledge of the direction of change. During
the sample period, we might be lucky and observe risk coefficients on
all securities drifting together. Certain reasons for drift, such as changing
attitudes toward risk on the part of all investors, might reasonably be
supposed to cause such a general and concurrent movement. If this did
occur, we would observe that some or all of the coefficients associated
with polynomials of time in the estimating equation (11) were significantly
Nnonzero on average.

Other reasons for nonstationarity, such as changes in individual firms’
capital structures, would produce nonconcurrent movements in risk coef-
ficients. Some coefficients might increase and others decrease, depending
on the specific circumstances of each firm. Since the average value of
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the risk coefficient must be very close to unity, these nonconcurrent
nonstationarities would not cause the mean cross-sectional values of the
polynomial coefficients of (11) to deviate from zero. They would, how-
ever, cause the estimated polynomial coefficients to follow a different
cross-sectional distribution than that expected under the null hypothesis
of nonstationarity. The distribution might very well be located at zero
but the cross-sectional dispersion would be larger than the anticipated
null dispersion.

This implies that tests for nonconcurrent nonstationarity are highly
dependent on a knowledge of the distribution of the estimates from (11).
We have already seen, however, that ordinary least squares applied to
our data produces regressions with non-Gaussian residuals (and thus
with *‘t ratios’” that do not necessarily follow Student’s distributions).
In contrast, the robust regression technique guarantees asymptotic nor-
mality. Furthermore, Studentized ranges reported in Table 2 support the
contention that our chosen sample size is sufficient to make valid an
assumption of Gaussian disturbances from the robust models. Therefore,
we will use the robust results in testing for nonstationarity since we can
be reasonably confident about the sampling distribution of the t ratios
for this technique.

Under the null hypothe51s of totally stationary coefficients, the higher-
order robust-estimated coefficients of (11) (4, &y, ..., B,J, 621, ...) are
normally distributed with mean zero and standard deviations estimated
by their computed standard errors. The t ratios are distributed according
to the Student law with about 146 and 140 degrees of freedom for the
4- and 10-variable models, respectively. (Degrees of freedom differ across
securities according to the number of rejected outliers.) This Student law
is very close, but not exactly equal, to the standardarized Gaussian law.
For df = 120, the 90% interfractile range is 3.316 for Student while it
is 3.290 for standardarized Gaussian. The difference is smaller for all but
one of the 930 securities since the minimum sample size is 128 and the
next lowest sample size is 134. Therefore, using the Gaussian approxi-
mation will result in only a trivial numerical bias.

The 90% range is itself asymptotically normal with standard deviation
approximately equal to

12 .
L1 [20049]"
bro = fm[ N ] = 234

where f; is the standard Gaussian ordinate at the 5th percentile and N
is the sample size (which we have taken equal to 155 in this calculation).?’

Confidence regions for the ranges of estimated coefficients can be
constructed with these numbers. For example, the range 3.290 =+
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- (.234)(1.96), or [2.83,3.75] is the 95% acceptance region of the observed

90-percentile range for the null hypothesis of stationarity. If the observed
range falls within this interval, the null hypothesis cannot be rejected.
Table 3 presents test statistics associated with this idea. The table gives
computed-valtes of a ‘‘standardized’” 90-percentile range, z, defined as

R, — 3.290
234

where R , is the estimated 90-percentile range (computed as the difference
between the 95th and Sth cross-sectional percentiles of the t ratios of
Table 2). Values of z are starred if they imply an observed range outside
the 95% acceptance interval and thereby reject the hypothesis of
stationarity.

The table also presents tests labelled t/(6/\/N) for the significance of
the cross sectional mean t ratio and é/(6./\/N) for the significance of
the cross-sectional mean coefficient. The symbol t denotes the arithmetic
mean t ratio in Table 2 and &, denotes the cross-section standard deviation
of the observed t ratios. ¢ is the arithmetic cross-sectional mean of the

zZ=

Table 3. Tests for the Presence of Nonstationary Parameters among
930 NYSE and AMEX Securities, 1962—-1965 (Robust Regression) =

(Y]

Estimated No. of Variables Standardardized .9 ]
Parameter in Model Range (z) é/VN 6JVN

Imercept 4 - 769 7.90* 9.00%
rend, 4, —

Slope ) 4 3.54* —3.56* —2.65*%
Trend, f)l ‘ ’

Intercept 10 : -1.07 8.93* 9.74*
Trend, 4,

Intercept 10 —-1.41 725 1.91
Quadratic, 4, '

Intercept 10 —2.35*% —6.29* —5.63*
Cubic, 4, o

Intercept 10 —2.35% . —7.45*% —5.69*
Quartic, 4,

Slope 10 1.83 ] —2.22% —1.47
Trend, B, :

Slope 10 1.15 9.18* 7.94%*
Quadratic, Bz

Slope 10 0427 1.80 - 1.49
Cubic, 133 )

Slope 10 .940 —4.22% —3.19*
Quartic, f),

* Rejection of the hypothesis of stationarity at the 95% level of significance.
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estimated coefficient and &, is the cross-sectional standard deviation. *
Values significantly different from zero at the 95% level are starred.

In comparing these tests with the range test, one can think of the range
as measuring nonconcurrent changes (across securities) in the model’s
parameters while the mean t ratio and mean coefficient measure con-
current changes.

In both the 4-variable and 10-variable models, there seems to be evi-
dence of significant nonstationarity of both types. For example, the
‘‘slope trend’’ [associated with the first-order polynomial coefficient
B,j in (11)] has a t ratio which is, on average, significantly negative. The

10-variable results indicate that the average drift in the risk coefficient

was not a simple linear function of time (as it must be regarded by the
4-variable model which can accommodate only the first-order poly-
nomial). Both the quadratic and the quartic polynomials associated with
slope changes had significant mean t values in the 10-variable model. In
fact, the cross-sectional mean slope trend is only marginally significant
in the 10-variable model, which means that most of its variation was
nonlinear.

The mean intercept also seems to have changed significantly (and
nonlinearly) during the sample period. This is of course not too surprising
since the intercept should be a negative linear function .of the slope
according to some theories. Indeed, the first-order polynomial coeffi-
cients are in agreement, since they are positive for the intercept change
and negative for the slope change. They are more significant for the
intercept than for the slope, however, and this could indicate a nonsta-
tionary riskless rate of interest or the movement of some other omitted
factor.

The time paths implied by these mean coefficients are given in Figure
2. This plot simply assumes that mean estimated coefficients of the
higher-order polynomials accurately depict the actual paths of the slope
and intercept during the sample period. We must enphasize that this
graph is biased toward showing no movement. If the index used as the
explanatory variable had been composed of the stocks in the sample,
the mean cross-sectional 3;, would have been unity for every period, by
construction. Thus it could not have been nonstationary. Figure 2 shows
movement only because the index was not composed of the sample of
securities weighted in the same proportion.

The tests for nonconcurrent changes also find a few significant values.
The slope trend in the 4-variable model, for example, has a larger 90%
range than one should have expected under the hypothesis that all coef-
ficients are stationary. This agrees with the first two polynomials from
the 10-variable model. (They are significant together but not individually.)
Evidently, in addition to many securities displaying concurrent drift,

K3
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A

= Figure 2. Time Paths of Mean Coefficients, 930 Securities, 1962-1965.-
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there were also some which drifted significantly in ‘a direction opposite
to the average. This implies that the concurrent drift was actually more
substantial than the average coefficient indicates since the average coef-
ficient contains seme securities which moved in opposition.

There is unfortunately a statistical problem with these tests: they as-
sume that the cross-sectional distribution of estimated coefficients con-
stitutes a random sample. If there is interdependence among the esti-
mates, both tests will be biased (but in different directions). For example,
if there is positive dependence .among the estimates, the computed stan-
dard error of the mean t value (6/VN) will be lower than the standard
error that would have been observed in a genuine random sample. This
will overstate the significance of the mean t value for all securities (and
thus will make the concurrent -drift appear more significant than it really
is). On the other hand, the standard error of the sample .9 range does
not depend on the observations. (It is computed from the known dis-
tribution of a random sample of order statistics from a Gaussian law.)
Therefore, positive dependence among the estimates would cause this
test statistic to understate the true significance of nonconcurrent move-
ments (because the observed range would be smaller than a range ob-
tained from a random sample). The actual interdependence, if any, would
depend on the cross-sectional dependence in the disturbances. King
(1966) found a very small degree of positive cross-sectional dependence
in the disturbances from.a version of the 2-variable model but even a
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small degree of covariation can cause a large bias in the estimated sig-
nificance of the mean coefficients or the mean t ratios. However, since
the presence of interdependence would bias the range test in an opposite
direction, and since both types of tests indicate some significant non-
stationarities in the coefficients, we are safe in concluding that some
kind of nonstationarity was present during the sample period, even
though we should be hesitant to state that it was concurrent rather than
nonconcurrent. In Section IV.G this question will be reexamined with
estimates obtained from portfolio returns, which will be used to obtain

an estimate of the cross-sectional interdependence.

E. Detecting Unusual Observations

Another potentially useful capability of the technique is the identifi-
cation of unusual cases. When the same model is applied to a large
number of cases, an automatic method for detecting departures from the
norm would be highly valuable. For example, a portfolio manager could
automatically detect alterations in the return process that would prompt
a more extensive investigation via fundamental analysis of the company.

Our technique provides two indications of such ‘‘unusual’ circum-
stances. The first, to be derived in this section, relies on observations
detected by the robust procedure as lying outside the normal range. The
second, to be discussed in the subsequent section, involves unusual
movements in the estimated coefficients of the linear model.

Again reverting to our example model (1) with stock return data, the
cross-sectional distribution of the number of nonexcluded observations
from the first-pass robust regression is given in Table 4.

Figures 3 and 4 provide further information about the effect of robust
regression. Figure 3 gives the cross-sectional frequency distribution of
the number of outliers (which is 160 minus the number of included
observations). This shows that 58 of the 930 securities had no excluded
observations. For these securities, of course, the OLS and robust esti-
mates were identical. The most frequent number of outliers was in the
range 2 to 4, which is a very small percentage of the sample. There were

Table 4. The Number of Nonexcluded Observations® Using the
Robust Method on 930 NYSE and AMEX Securities,
July 1963-July 1965

Standard Sth 95th
Mean  Deviation Minimum Percentile Median Percentile Maximum

155. 3.50 128. 149. 156. 160. 160.

2 Maximum possible is 160.
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Figure 3. Frequency Distribution of Number of Securities vs.' Number
of Outliers: 930 NYSE and AMEX securities, 1962-1965.
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some securities, however, with a significant proportion of excluded ob-
servations. They will be the subject of further analysis in Section IV.E.

Figure 4 presents the number of outliers as a function of time. The
interest in this chart derives from possible nonstationarities in the dis-
persions of individual security disturbance terms. If such nonstationar-

Figure 4. Number of Outliers by Week from 930 NYSE and AMEX
stocks, 1962-1965.
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ities are interrelated across securities, we should observe a pattern in
the time path of the number of outliers. Indeed, Fig. 4 shows that the
"5 weeks with the most outliers occurred before week 30 (which ended
January 24, 1963). There is also some serial dependence over time in
the number of outliers. This would be consistent with, for example,
nonstationary but slowly varying dispersions of disturbances for all
securities.

To check whether part of this is due to unusual movements in the S&P
500 index, caused by abnormal: changes in one or more of its component
securities, we calculated the following relation between the natural log-
arithm? of the number of outliers, N, and the current and lagged absolute
values of the index return, R, (the absolute value of the market index
return is a proxy for its dispersion):

log.N) = 3.05 + 5.81 R.|+ 9.14 R..,| t=2,...,160,
(50.1)  (1.39) (2.20)

where Durbin-Watson (DW) = 1.15; Studentized range (SR) = 5.79; the
numbers in parentheses are t ratios.
Because of the low Durbin-Watson, the regression is misspecified. As
a rough remedy, we added a lagged dependent variable as a regressor.
This resulted in

log.N) = 1.74 + 3.96 R, |+ 5.66 R, ;| + .425 log.(N,_)|i-2. 160}
(7.82) (1.05) (1.49) (6.08)

DW = 2.13, SR = 5.79.

The significance of the lagged value of the number of outliers justifies
our previous statement about serial dependence. This regression shows
also that the influence of the market on the number of outliers is not-
very strong, which implies in turn that most of the outliers are due to
events specific to individual securities or specific to groups of securities
in the sample and are not due to unusual changes in the general market
index. Note well that the average value of R,,, is about .008 while the
average value of log,(N,) is about 1.6. Thus, even though the coefficients
of |R,,|'and |R,,_,| are larger than the coefficient of the lagged value of
the number of outliers, their average affect on the dependent variable
is only about 1/20th as great. ,

Thus, we have demonstrated that the robust technique eliminates, by
a systematic and prespecified method, sample observations which are
not congruent with the majority of observations. The actual number of
““outliers’’ varies across securities. To a certain extent, part of this
variation must be ascribed to chance, since random differences among
the 930 securities are bound to occur. It is also true, however, that

'S
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‘securities with a large proportion of rejected observations are more likely
than other securities to have experienced unusual and unique events
with greater frequency during the sample period. In an effort to identify
such unique circumstances, we have separated out-for detailed analysis
all securities with more than 10 outliers (out of 160 observations) during
the sample period. There were 48 securities in this class, or slightly more
than 5% of all securities. They are given by name in Table 5, along with
the numbers of outliers observed for each one. (In any other application,
of course, the percentage of cases to be singled out for further analysis
could be different. Here, we are merely. illustrating the semiautomatic
nature of the culling process.)

The subsample consisting of these 48 high-outlier stocks differs in
some important respects from the total sample. Some differences could
have been foreseeable. For example, the mean Studentized ranges of

Table 5. Securities with Many Unusual Observations, NYSE and
AMEX, July 1962-July 1965

No. of ' No. of
Name Outliers ] Name Outliers
Acme Precision Products* 17 General Portland Cement 13
Allied Control Co.* 13 ) Ginn & Co. 15
Amerace Corp. 12 Gordon Jewelry* 14
American Bakeries 11 Great Basins Petroleum* 17
Ancorp Nat’l Services 13 Great Northern Iron Ore - 15
Argus, Inc.* . 18 ! Hartfield Zodys, Inc.* 11
Atlas Corp 19 |- Indiana General Corp. 14
Baltimore & Ohio RR 14 Libby, McNeil & Libby 16
Bausch & Lomb 1 . Meritt-Chapman 32
Beatrice Foods 11 ! Minn Enterprises 14
Bell Intercontinental 15 | ‘Monon RR (B) 15
Briggs Mfg. 13 ‘ J. J. Newberry 11
City Stores 17 i Oklahoma Gas and Elec 13
Colt Industries 14 Pacific Tin 15
Continental Materials* 11 ] Random House, Inc. 11
Countrywide Realty* 15 Rapid American 18
Dorr-Oliver, Inc. 11 Reliable Stores 15
Electronic Commun.* 11 Standard Oil of Ohio 13
El Paso Natural Gas 11 1] Stone & Webster 12
Esquire, Inc. 1 | Texas Pacific Land 11
Family Finance 1 i Tractor Supply Co. 12
Federal-Mogul 12 Transwestern Pipe Line 13
Fischbach & Moore 12 . Udylite Corp. 12
Forest City Entreprises* 11 ] Welbilt Corp. 26

* American Stock Exchange-listed security.
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residuals computed by ordinary least squares (OLS) are 7.22, 7.22, and
7.21 for the 2-, 4-, and 10-variable models respectively. This is .82 higher
than the OLS mean Studentized ranges for all securities (see Table 2),
which implies that disturbances for these high-outlier securities deviate
further from Gaussian than do all securities. After application of the
robust (ROB) method, the mean Studentized ranges across the 48 se-
curities drop to 5.08, 5.08, and 5.16. These are very close and even
slightly less than the mean Studentized ranges computed with the robust
method on all 930 securities. Thus, even though the disturbances seem
to have been very non-Gaussian over the full sample record and more
non-Gaussian for the high-outlier group than for all securities, the re-
jection of a relatively large number of observations seems to have brought
the desired result of Gaussian-distributed estimates. The high-outlier sub-
sample also differs from the sample of all securities in ways that could
not have been foreseen. The average proportion of explained variation
(R?) is much lower for these securities, being less than .07 for OLS and
about .08 for ROB. This is only half the proportion of explained variation
for all securities.

Table 6 presents evidence on still another significant difference, the
absolute magnitude of the mean portfolio risk coefficient (). For this
48-security subsample, the mean risk coefficients are significantly lower
than for all securities (cf. Table 2). Furthermore, the estimates obtained
by the robust method are significantly less in absolute magnitude than
those obtained from OLS. This is not matched, incidentally, by lower
t values for the robust coefficients.?* In fact, the robust estimates are
slightly more significantly different from zero than the OLS estimates
although both are less significant than the average coefficients for all
securities. This is a somewhat puzzling result. For a group of securities
with relatively large numbers of unusual observations, we might have
guessed that ROB would have provided more accurate estimates of risk
coefficients than OLS.? But we would not have expected to find a sig-
nificant difference in their absolute values. Furthermore, one can easily
see from Table 6 that the difference is not caused by just a few unusual
estimates out of the 48. Every fractile (except the minimum) is lower
for ROB than for OLS.

F. Strongly Varying Parameters

The second type of individual case that could be regarded as “‘unusual’’
involves highly significant changes in the coefficients. Table 7 lists se-
curities for which estimated higher-order polynomial B coefficients had
t ratios in either the OLS or the robust regressions greater than 3.5
during the 160-week sample period. These securities displayed more
significant nonstationarity than all others.

.




Table 6

Estimated Risk Coefficients for the 48 High-outlier Securities, NYSE and AMEX, 1962-1965

» L

Model (No. Regression Standard i
of Variables) Technique Mean Deviation Minimum 5th Percentile Median 95th Percentile Maximum
2 ~ OLS .823 438 -1.04 .0918 .904 1.33 1.64
3 . ROB .596 .345 — .502 —.219 627 1.00 1.43
4 OLS .808 .451 -1.08 .0598 .819 1.33 1.58
ROB .603 . .344 - .501 —.0369 606 1.05 1.35
10 OLS .743 .540 ~1.86 .0478 772 1.45 1.54
ROB .564 .365 - .929 —-.00750 573 1.36

.00

* L.e., Estimated coefficients Bo‘j of the zero-order polynomial in model (11).

n
My
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Table 7. NYSE-listed Securities with Strongly Varying Parameters, 19621965

Estimated Change in Beta Linear Significance

Change in
(Robust) Markj. DIE le| > 2.0
Security 4-Variable 10-Variable Ratio, 1962-1965 OLS ROB
American Commercial Lines 2.12 2.16 171 J v
American South African
Investment - 413 2.64 0.
CCI Marquardt =51 —5.81 - .0935 J J
Crescent Corp. - 785 1.70 - .823
Dan River Mills 1.78 2.00 — .0947 J J
Dorr-Oliver - 0736 .556 - 0747 '
Florida Power -1.36 -1.33 - .038 v J
W. R. Grace -1.74 —1.18 - 173 J J
Madison Fund - .862 - .664 0. J J
N. Y. Central 2.56 2.25 ~2.62 J v
Niagara-Mohawk Power - .0574 1.07 - 217
Pacific Tel. & Tel. - .853 - .896 088 J J
Peoples Gas, Light & ~
Coke —-1.04 - 877 - .036 v J
Proctor & Gamble -1.24 —1.13 - .0019 J J
Richardson-Merrill - .353 - .973 0.
Tractor Supply Co. - 872 - .270 0776 J
Univ. Leaf Tobacco -1.90 -2.10 - 775 J J
Zapata Norness Inc. 3.42 2.04 - 166 J J

Some of these securities may have entered this group by chance.
Whenever the extreme values of a sample distribution are isolated, some
members of the group will be there simply from random variation. We
know, however, from the general tests for the existence of nonstationarity
reported in Sec. IV.D, that some securities really did have changing
coefficients. .

There are two possible ways to determine whether a particular security
had genuine nonstationarity. First, if a polynomial coefficient is signif-
icant in the OLS and not the robust regression, the probability is greater
that the measured nonstationarity has arisen by chance. This conclusion
is based on the fact that the OLS t ratios do not necessarily conform
to Student’s distribution and are not, therefore, necessarily subject to
a known acceptance-rejection region. In addition, the robust coefficients
are more reliable because data errors, bad spots on the tape, or grossly
abnormal observations are censored by the robust calculation.

The second possibility for discriminating genuine from false cases is
a detailed analysis of peculiar events for each security. As we mentioned
early in the chapter, there are known influences on the beta coefficient
and these can be examined directly for change. If, for example, a major
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issue of new debt brought about significantly greater capital leverage
during the period of observation, we should find this corresponding to
a positive change in the beta.

The numbers in Table 7 give the total estimated change in beta, the
portfolio risk coefficient from the first date to the last date in the sample
period (July 12, 1962-July 29, 1965). For the 4-variable model, which
permits a linear change, this is simply twice the estimated slope of the
change with respect to time.?” For the 10-variable model, it is the dif-
ference between the estimated time track of the coefficient at the last
and first dates. Also noted in the table are significant (with [t| > 2.0),
linear polynomial coefficients (B,j) for ordinary least-squares and robust
regression.?® This table is our attempt to present compactly the salient
facts from the 6 regressions and 32 coefficients estimated for these 18
securities. The facts are these:

1. For 12 of the 18 securities, there is evidence of a strong linear
change in the beta coefficient. These securities have linear coeffi-
cient absolute t ratios in excess of 2.0 for both OLS and robust.
In most of these cases, the absolute coefficient changes over the
sample period, estimated with the 4- and 10-variable models, agree
quite closely. Nine of 12 differ by less than 15%..

2. One security, Tractor Supply Company, has significant OLS linear
coefficients but the corresponding robust coefficients are not sig-
nificant at all.® The estimated negative change in the coefficient is
3 times larger for the 4-variable than for the 10-variable model and
the R2? is only about .07 in the several regressions. We think that
the probability is high that this security had a spuriously significant
OLS linear trend.3

3. There are five securities which seem to have had 51gn1ﬁcant non-
linear changes in risk that brought the beta coefficient back close
to its original level. American-South African, for example, had a
trivial linear coefficient but highly significant quadratic, cubic, and
quartic terms which imply large deviations of the beta coefficient
during the sample from. its beginning and ending values. (This se-
curity is a curiousity, for its estimated mean beta coefficient was
negative and significant in all regressions). For the five securities
in this group, the minimum difference between the estimated 4- and
10-variable absolute changes was about 175%. This means, of
course, that the 4-variable model completely missed what must have
been the complex path taken by the coefficient.

4. The estimated changes in beta coefficients are not always due to
capital structure changes. As rough support for this assertion, Table
7 includes estimated changes in the debt-equity ratio between July
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1962 and July 1965, the beginning and ending sample points. These
are market values whenever possible. Normally, the debt/equity
ratio is the market value of the bonds plus the book value of non-
marketable debt divided by the market value of equity for a given
date.

For reasons which we cannot explain, there were no t ratios in excess
of 3.5 for the intercept polynomial coefficients of any security. This is
mild evidence against both the Sharpe-Lintner and Black versions of the
capital asset pricing model because a significant movement in the beta
coefficient should be reflected in an opposite and significant movement

in the intercept unless changes in the riskless return or in the zero-beta

return just happened to be offsetting. The riskless rate or the zero-beta
return cannot offset the risk coefficient movements of all securities be-
cause (1) some securities had implied negative and some had positive
changes; and (2) some of the negative changes were associated with high
beta coefficients and vice versa.3! Coupled with this fact is a danger that
sampling variation was responsible for the selection of some of these
securities with highly varying parameters. Thus, we do not want to assert
that a definitive test of any theory has been provided by these last resuits.
In the next section, portfolios will be used to provide a more powerful
examination of models which require the intercept to move in a direction
opposite to the slope.

Another seeming anomaly is that none of the 84 securities listed on
the American Stock Exchange had t ratios as high as 3.5 for any poly-
nomial coefficients. However, if the probability of a security having such
a coefficient is equal to the observed frequency, 18/930 = .00194, the
probability is roughly 10% that none would be observed in a random
sample of 84. This probability would not justify an inference that NYSE-
and AMEX-listed securities were truly different.

G. Discriminating Between Aggregate and
Individual Nonstationarity

We will now discuss additional tests for the existence of nonstationarity
in the overall universe of available data. In Sec. IV.D we demonstrated
that our expositional vehicle, a sample of returns on individual assets,
did indeed display some kind of nonstationarity. In the application of
our method to an individual series, there would be no need to go beyond
Section IV.D. Equation (11) would yield as much information about the
nature of the nonstationarity as the single series could disclose. In other
applications, however, as with our data here, the availability of multiple
time series might permit a finer degree of inference about any possible

Lin
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' .nonstationarity common to all the series. This could be of considerable
practical interest. For example, it might not be very interesting to a
portfolio manager that some stocks were departing in one direction from
previously estimated parameters while other stocks were departing in
the opposite direction; but it would be highly interesting to know if there
- were a common change in the parameters which might signify changes
in general market conditions, (e.g., increased general uncertainty).

With many time series, inference about aggregate stationarity and dis-
crimination between individual and aggregate nonstationarity is indeed
possible. Going back to the data we have been using here, their aggre-
gation would imply the formation of portfolios of assets and the returns
on these portfolios would become the object of our aggregate emplrlcal
enquiry.

There are actually two advantages to using portfolios rather than in-
dividual securities in data analysis of returns. The first advantage is well
known in the asset literature, going back to the original work of Blume
(1970) and being refined by Black et al. (1972) among others. This is to
average out, by a cross-sectional collection, events peculiar to individual
securities. The structure of any data-generating process can be discerned
more clearly after such an aggregation because the signal-to-noise ratio
is higher. Of course, some care must be taken to assure that the portfolios
formed actually differ a priori in their characteristics. This is the same
thing as saying that the experiment should be designed to maximize the
cross-sectional variation in the parameter of interest.

The second advantage of portfolio formation, which is noted here for
the first time to our knowledge, is to smooth out changes in the model’s
parameters which are unique to individual firms. We might find, for
example, that the dispersion of the disturbance term for a portfolio is
much more stationary than for individual securities. On the other hand,
changes in the market price of risk or in the riskless rate of interest
would be common to all firms and would thus affect portfolios of any
size to the same degree. Since individual parameter nonstationarity would
tend to wash out, the ability to perceive common nonstationarity must
be enhanced by the portfolio aggregatlon

The number of portfolios formed is a matter of Judgment Since the
total number of securities is fixed (in our case at 930), the larger the
number of securities included in each portfolio, the smaller must be the
total number of portfolios. Ideally, one would like to have a very large
number of portfolios of very large sizes. We decided to partition the
sample into 15 equal-sized portfolios of 62 securities each. Securities
were assigned to portfolios based on the relative rank of the average
beta coefficient, by, in model (11), from the 4-variable robust regression,
estimated over the 160 weeks from July 5, 1962 through July 22, 1965.
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If b, was the jth largest of these 930 coefficient estimates, the security
was assigned to the INT (j/63) +1st portfolio, [where INT (x) is the largest
integer less than or equal to x]. Thus, portfolio 1 was composed of the
62 securities with the smallest estimates of the beta coefficient, portfolio
2 of the 62 next smallest, etc. Some characteristics of the securities
within each portfolio are given in Table 8.3

The dispersion of coefficients within each portfolio is quite uniform
across portfolios except for the two extremes. This is to be expected,
of course, since the extreme portfolios catch the tails of the cross-
sectional distribution. The median coefficient in each portfolio differs
from the mean only in the third significant digit except for portfolio 1,
whose median b, is .285. For portfolio 15, the median is 1.88, and for
most other portfolios the median agrees with the mean to the fourth digit.

The portfolios thus formed were followed through a second sample
of 160 weeks, beginning August 5, 1965 and ending August 22, 1968.%
This permits a direct replication of tests for the existence of nonstationarity.

For these portfolios and two sample periods, Table 9 reports some of
the results of the regression calculations. A full set of results for each
period, analogous to Table 2 for individual securities, is available on
request. For reasons of space, it did not seem worth reproducing here.

In addition to a small drop in the average explanatory power of all
regressions from the first to the second period, there was a wholly an-
ticipated decline in the cross-sectional dispersion of estimated beta coef-
ficients. In the 4-variable robust model, for example, the minimam and
maximum estimates of b, were .274 and 1.92 respectively for 1962-19653
and .589 and 1.52 respectively for 1965-1968. This is of course attrib-
utable to the fact that some securities were incorrectly ranked, and thus
assigned to inappropriate portfolios, because of sampling errors, during
the first subperiod. Low-ranking portfolios tended to contain a dispro-
portionate number of securities with negative sampling errors and vice
versa for high-ranking portfolios. Indeed, this is the very rationale for
the technique: to obtain an unbiased estimate of risk for each portfolio
during the second period while maintaining a reasonable degree of cross-
sectional dispersion.

The only noteworthy and unexpected result in Table 9 is the large
decline in significance for beta coefficients estimated with the 10-variable
model during the second period. Since this is not matched by a corre-
sponding reduction in R2, it must imply that nonlinear nonstationarities
have been responsible for a significant proportion of the observed vari-
ation in portfolio returns.

On the subject of nonstationarity in the dispersion of the disturbance
term of the simple model, the portfolio results offer some interesting
evidence. For individual securities, the robust method determined that

]
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Table 8. Estimated Average Beta Coefficients® by Assigned Portfolio, 19621965

Portfolio 1 2 3 4 5

6

7

8

9

10

11

12 13

14

15

Mean b 206 438 535 630- 719

.801

© 885

.968

1.06

1.14

1.22

133 1.46

1.62

-1.91

Cross-

“sectional

Standard 219 0300 .0256 .0245 .0236
Deviation

of b,

.0264

.0220

.0241

.0253

.0223

0271

.0320-  .0383

.0578

157

2 For the 4-variable robust model.
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- Table 9. Regressions on Portfolios for Two Sample Periods of 160

Weeks Each
OLS Robust OLS Robust
No. of
- Variables 1962-1965 1965-1965
Median® value of t ratio for average risk coefficient b,
2 22.3 22.4 18.3 19.7
4 21.2 21.5 18.2 19.7
10 . 18.6 19.2 12.4 12.8
Median® coefficient of determination, R?

2 .756 759 .678 714
4 .756 .760 675 712
10 757 .765 .679 713

8 Thé average of the seventh and eighth largest sample values out of 15.

about 3.0% of the observations were outliers. (The average number of
nonexcluded observations was 155 out of 160 possible.) For the portfolio
calculations, only 30 outliers in total were computed in each subperiod
(out of 2400 possible). This is only 1.25%, less than half the percentage
of outliers found with individual securities.3 An implication follows that
a substantial part of the observed thick-tailed non-Gaussian nature of the
distribution of residuals from the individual regressions is due to non-
stationarity and not to a basic underlying non-Gaussian stable law. Since
there is very little difference between robust and ordinary least squares
calculations for portfolios, the more straightforward sampling properties
of the OLS methods can be relied upon.

Table 10, a companion to Table 3, reports a test for the existence of
nonstationarity. It contains the cross-sectional mean t values of the
higher-order polynomial coefficients of model (11) divided by their es-
timated standard errors. Only the robust estimates are used because the
sampling distribution is known to follow the Student law in this case,
(see Section IV.D) under the null hypothesis of stationarity. Coefficients
which are significantly different from zero provide evidence that the
basic model did not have stationary parameters during the sample pe-
riod.? The table also reports the mean coefficients divided by their stan-
dard errors as computed from the cross-sectional standard deviations of
the coefficients (6.).

Table 10 indicates that nonlinear terms in the 10-variable model dis-

played the most measured significance during the second period. Al-

though the average estimated linear trend in the 4-variable model was
statistically significant, it was not large (.041) and was neither as large

-
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Table 10. Tests for the Presence of Nonstationary Parameters in 15
Portfolios Formed from 930 NYSE and AMEX Securities, 1962-1968
‘(Robust Estimates)

No. of ~ 1962-1965 1965-1968 7
Estimated  Variables in #/(G/VN) (t  é&(6/VN) HG/VN)(t  éSIVN)
Parameter Model Ratio) (Coefficient) Ratio) (Coefficient)
Intercept 4 3.72* 6.91* .0175 - 1.13
Trend, 4, . :
Slope 4 -1.56 - 1.85 2.44% 3.88*
Trend, b, _
Intercept h 10 4.88* 8.34* - 1.99* — 3.88*
Trend, §, .
Intercept 10 -1.35 - 1.04 2.94% 5.28*
Quadratic, 4,
Intercept 10 -6.77* - 15.3* - 8.20* —15.2%
Cubic, 4, :
Intercept 10 —5.96* —-11.5* 3.98* 8.94*
Quartic, a, ' ‘
Slope 10 - .901 - 1.00 5.17* 11.0*
Trend,, 5,
Slope . 10 5.69* 10.1* 1.16 1.35
Quadratic, b, . _

Slope 10 .824 2.43* 10.5* 15.0*
Cubic,'b, : v .
Slope B (1 —2.96* - 3.78* - 7.06* —13.4*

Quartic, 6, .

* Rejection of the hypothesis of statibnarity at the 95% level of significance.

in absolute value nor as significant as the nonlinear coefficients in the
10-variable model.?®

There appears to have been significant changes in parameters during
both subperiods but there seems to be little connection between the two.
Of the 10 pairs of coefficients computed, only 2 pairs are significant with
the same sign and the remaining pairs have either one nonsignificant
member or are significant with opposite signs.

In comparing the portfolio t ratio results for the first subperlod
(1962-1965) with the same computations for individual securities (the
next-to-last column of Table 3), the portfolio coefficients are smaller in
seven of the eight cases which were ‘‘significant’’ for individual secu-
rities However, in only two cases did the estimated coefficient become

“‘insignificant’’ at the 95% level and both of these cases retained the
same sign. As we argued in Sec. IV.D, this test statistic will tend to
overstate the significance of nonstationarity if there is positive depen-
dence cross-sectionally in the estimated coefficients. The comparison of
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Tables 3 and 10 strongly suggests that such positive dependence is indeed
present.

The correction of this bias turns out to be a rather difficult task because
there is no a priori information about how the covariance itself might
differ across. pairs of securities (or portfolios). In order to explain our
solution to this problem as simply as possible, let us use only the simple
two-variable ordinary least-squares model in deviation form. (The dis-
cussion generalizes readily but tediously to the more complex models
and the calculations were actually made for them).

With the simple model in deviation form, we have for portfolio j

R, — R = by;(R,., — R,) + g,

where the bars indicate intertemporal means [cf. Eq. (1)]. If, for com-
pactness, we denote X, = R, — R, and the sample vectors x’' = [x;;
Xz; ...; Xg] and € = [g;13€ j,; ...; €] where T is the sample size, then
the least-squares estimate of b, ; is given by

Bo,j = bO,j + (X,X)_IX’SJ'.

Now assume that each true coefficient (not its estimate) is generated by
deviations about a mean coefficient, that is,

by; = b, + §;

where b, is the mean cross-sectional coefficient, whose estimation is the
object of our procedure, and &, is a stochastic error for which we assume
standard spherical properties. Thus, the estimated coefficient can be
considered the dependent variable in a regression function with no ex-
planatory variables:

60j =bo+ ] _]= 1,..., 15

where
B =& + (X'X)"X'g;.

The problem in estimating b, arises because the disturbances of this
model, the w terms, are not necessarily independent. However, one can
observe from the model’s structure that an estimate of the complete
covariance matrix of its disturbance, E(up’), can be obtained from a
combination of the cross-sectional variance in the estimated coefficients
plus the estimated covariance matrix of residuals from the original regres-
sions. In other words, making the reasonable presumption that & and
g; are uncorrelated,

E(umd = E(§&) + (xX'x)7'x'E(gig)x(x'x) !

o

%
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“with the additional presumption that lagged cross-correlations of the

residuals are uncorrelated [that Cov(ey,e,._) = 0fori # 0], this expres-
sion reduces to '

E(um) = E(§€) + (x'x)~'E(g;en)
or in vector notation
E(pp') = E(E') + (x'x)"'E(e'e)

where ¢ is the (160 x 15) matrix of disturbances from the 15 separate
regressions for individual portfolios [and thus E(e'e) is the concurrent
cross-covariance matrix of disturbances].

Since & is by assumption a standard spherical error, the off-diagonal
elements of E(&¢') are zero and all diagonal elements are the same con-
stant, denoted of. An estimate of o} is given, therefore, by

(69 = (1/15)2 1'd'a1 — 1'(x'x)-'¢'el

where 1 is the 15-element unit vector, £ is the matrix of residuals from
the 15 separate portfolio regressions, and 0 = b, — b, is the vector of
deviations of coefficients about their cross-sectional mean, b,

Given this estimate of the cross-sectional variance of the true coef-
ficient, an estimate of the covariance matrix of disturbances in the regres-
sion model above is

Q = EB(up') = 621 + (x'x)"'8'¢

where I is the 15 x 15 identity matrix. Then an estimate of the true
mean beta is obtained from the Aitken estimator (or by generalized least
squares) as

=101 (1'Q-'by)
and the standard error of b is obtained as
s = VI,

Generally speaking, this estimate of b, can and does differ from the
simple cross-sectional mean of the b, terms (which we denoted bo and
used to estimate the disturbances 0 above). It is therefore natural to
reestimate the 0 terms using this new and presumably more precise
estimate of b,. We did this and then iterated the procedure until the
estimate b changed by less than .01%. This was accomplished in at most
eight iterations. The resulting estimates and their t ratios using the stan-
dard error calculated as above (but with the final iteration) are given in
Table 11. These t ratios are in principle accurate measures of significance
for the average coefficient after taking into account the cross-sectional
covariation.
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Table 11. Tests for the Presence of Nonstationarity, Aitken-estimator
) Correction for Cross-sectional Covariation

1962-1965 1965-1968
"No. of Variables in :
Estimated Parameter Model t Ratios from Aitken Procedure
Intercept Trend 4 .528 .481
Slope Trend ] 4 —2.04* 1.25
Intercept Trend 10 1.47 - .853
Intercept Quadratic ] 10 -1.22 .925
Intercept Cubic 10 —3.12* —-2.37*
Intercept Quartic 10 —-2.87* : 993
. Slope Trend ° 10 S Wk 1.92*
Slope Quadratic 10 4.11* 1.02
Slope Cubic 10 - .267 2.92*
Slope Quartic 10 —2.16* -2.17%
Coefficients and t Ratios from Aitken Procedure
Mean Slope, b, 4 1.02 .999
) (8.92) (12.5)
Mean Slope, b, 10 1.00 .945

(8.93) S (133)

* Rejection of the hypothesis of stationarity of the 95% level of significance.

The general impression of these results, on comparing them with Table
10, is a reduction in the significance level. With one or two exceptions,
the signs remain unchanged but the absolute size of the estimated t ratio
for the higher-order polynomial coefficients is reduced. Nevertheless,
there are still indications of significant nonstationarity in both periods.
The slope trend estimates for the 1962-1965 period have actually in-
creased in significance, marginally, in both the 4-variable and 10-variable
models. We can be fairly certain that these results are purged of all bias
introduced by cross-sectional dependence. Thus an inference of signif-
icantly concurrent nonstationarity in the coefficients of model (1) would
be very reasonable.

H. Using Aggregated Data to Detect Presence of an Underlying
' Common Generating Process

As a final topic in this chapter, we wish to present a suggestion for
using the presence of nonstationarity to examine the structure of the
data-generating process. Imagine that all of the time series available to
an investigator have been generated by an underlying process of identical
form but with different parameters. Imagine further that the parameters
wander over time but that their paths are tracked by the methodology
outlined in the preceding sections. We assert that these estimated time
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) paths give. an opportunity to infer something about the generating pro-

cess, if it is indeed common. Intuitively, the cross-sectional relationship
among the tracked parameters at a given time should have as its coef-
ficients the values of the factors in the underlying process at that same
time. If the form of this cross-sectional relation were not stationary, the
investigator would be obliged to deny the validity of the particular gen-
erating process he had hypothesized.

As a concrete example, we now use the cross- sectional sample of 15
portfolios in a simple investigation of the two-factor, “‘zero- -beta’ gen-
erating process, the process in which the coefficient oy in (1) is equal
to R, (1 — B;,) where R, is the return on some zero-beta portfolio. This
model has a very special structure, as it implies that the intercept estimate
from (1) will be given by

o= do + di(1 = B (12)

where &, and f, are estimates of (8) and (9) for portfolio j in time t. An
appropriate procedure would be to fit (12) for any value of t and test the
two-factor null hypothesis:E(d,) = 0, E(d,,) = R,,. The second part of
the hypothesis is not easy to test because R,, is not directly observable.

Black et al. (1972) give an estimating method but their estimate has the
property that E(d,) = 0, even when the true value of d, is nonzero. One
way to avoid this problem is to form a long-term average of &; and Bit
and then estimate (12) using these averages without specifying R, at all
(letting its average.-value be estimated by d).

If the averaging period is chosen equal to the range of orthogonahty
for the polynomial estimates, then the average value of &;, will be &g
from (11) because the average polynomials of order greater than 1 will
be zero. The second term on the right side of (12) will consist of two
parts: d, (which will be equal to R, if the hypothesis is true) and

—d,p; 1B;, which is the 1ntertempora1 average value of —@;, + R,, under the
null hypothesis. If the market is efficient, the zero-beta portfolio return
should fluctuate unpredictably and thus not be correlated over time with
the fluctuations in B;, (the risk of a particular nonzero-beta portfolio).
If this condition is satisfied, E(B;, - R,) = E(B;)E(R,,). But when the
period is chosen such that the higher-order polynomials are orthogonal,
E(B;,) is just by, the zero-order polynomial coefficient. This finally pro-
vides a testable cross-sectional model

g = 8 + 8,(1 — By) + g (13

where E(5,) = 0 [and E®,) = I_{Z]‘ if the two-factor generating process
is valid. ' .
The estimated coefficients of (13) will be asymptotically biased because
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the explanatory variable contains an error, being an estimate itself. There
are two possible ways to alleviate this: (1) we could use the estimated
regression standard error of Boj to correct the bias; or (2) we could use
unstrumental variables to obtain consistent estimates. Table 9 shows that
the t ratio for by is on the order of 20.* Since the mean value of by; is
on the order of unity, the standard error is on the order of .05. (Over
the 6 models and 15 portfolios, the actual maximum standard error was
.0818.) Since the cross-sectional standard deviation of BOJ- is on the order
of .25, the maximum percentage decline in the absolute value of 8, caused
by the error in by, is around 10.1% and it will probably be less than half
this amount. The bias in the intercept of (13) is likely to be much smaller
than the bias in the slope. In fact, the bias in 8, would be exactly zero
if the cross-sectional average of Boj were exactly unity.

Results for model (13) applied to the cross-section of 15 portfolios are
given in Table 12. Two estimates are given for each coefficient, the first
being computed by ordinary least squares and the second using instru-
mental variables. As instrumental variables, we used estimates of by; for
the period 1962-1965. These were natural instruments since they were
computed for the same portfolios but in an earlier period.

The results indicate a highly significant nonzero value for §, which is
strong evidence against the two-factor zero-beta market model. The es-
timates of §, obtained with the instrumental variables are very close to
those obtained with the classical method. , v

As for the slope, supposedly an estimate of the mean zero-beta port-
folio return, it is significantly negative in all cases. Notice, however, that
the effect of the error in the explanatory variable shows up in the dif-
ference between ordinary least-squares and instrumental variable esti-
mates. In every case, the instrumental variable estimate is greater than
or equal to the OLS estimate in absolute magnitude. The maximum
difference is 14.8% for the 10-variable model using the OLS method to
estimate Boj.4° This conforms very well to the anticipated errors-in-
variables bias.

The highly significant intercept cannot be explained by errors in vari-
ables. In the 10-variable models, the bias would actually work in the
wrong . direction since in these cases the average value of 1 — by; is
positive (and thus an error adjustment in the slope §,, making it smaller,
would move §, even further from zero). For the 2- and 4-variable models,
even if the error in §, were 25% (ard it is certainly much less than this),
the decline in the estimated intercept would be only on the order of .1,
leaving it essentially unchanged and still over 20 standard errors from
Zero. _

We can only conclude that the stochastic process generating asset
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V. CONCLUSIONS

We have presented and explained a methodology for using linear models
that display nonstationary parameters. The time paths of slope and con-
stant terms were estimated by orthogonal polynomials of time. Nonsta-
tionarities in the distribution of the disturbances were expurgated by the
- technique of robust regression. The method was applied to the one-factor
market model (MM1) of asset returns (1) and the principal empirical
results were as follows:

1. There is substantial evidence that MMT’s disturbances are non-
Gaussian and there is good evidence that this is caused, at least
partly, by nonstationarity over time in the distribution of distur-
bances. The methodology handled this problem adequately in the
sense that it provided parameter estimates which followed closely
the Gaussian law. '

2. There is strong evidence that MMI1 has nonstationary parameters..
The principal type of nonstationarity (or better said, the most sig-
nificant type) seems to be common across all securities. This is
consistent with the hypothesis that there are significant factors
omitted by the simple model. There is some evidence also that
nonstationarity is present on the individual security level. Since this
could not be caused by the omission of a common factor, it must
be due to changes in the characteristics of individual firms..

3. There have been episodes of unusual activity on the New York and
American Stock Exchanges. During our sample period, 1962-1965,
the number of outliers (unusual observations) clustered in the early
weeks of the record; and there was strong intertemporal dependence
in the number of outliers. This did not seem to be caused by vari-
ations over time in the market index but rather by comovements
across securities in the distribution of disturbances.

4. The method was able to identify securities with particularly large
changes in parameters over time. This was true of all parameters.
Securities that have displayed extremely large changes in the port-
folio risk coefficient over time were identified by name, as were
securities which had unusually large numbers of outliers (and thus
displayed strong nonstationarity in the disturbances or marked de-
parture from Gaussian disturbances).

5. Refined investigations of nonstationarity and investigations of the
data-generating process were presented with aggregated data as
examples of extensions of the basic method to multiple time series.
Our method can be employed profitably under many circumstances
as a data-screening_ device, for the identification of individual cases
with particular nonstationarities, or to test hypotheses which pur-
port to predict such changes.
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Table 12. Tests of the Zero-Beta Two-factor Process with 15
Portfolios, 1965-1968

Number of
Variables: 2 4 10 : 2 4 10
Method: OLS Robust
8,, Intercept (%/year) 17.5 17.5 21.1 17.7 17.7 21.3
) 27.5) ?27.7) (26.1) (21.0) (21.0) 22.9)
3, Intercept® 17.5 17.5 21.1 17.7 17.7 21.4
8,, Slope (%/year) —6.64 -7.15 —-12.0 -10.1 -10.6 —15.5
t) (2.70) (~2.95 (-3.61) (-3.05 (-3.23) (—4.01)
3,, Slope® —-6.83 -7.29 —-14.1 —-10.1 -10.7 —17.4
Adjusted R? 311 .355 .462 372 .403 519
Studentized Range 3.55 3.56 3.77 3.7 3.80 3.88

of Residuals

a Using as instrumental variables the corresponding estimated coefficients for 1962-1965 (see text).

returns during 1965-1968 on the New York and American Stock Ex-
changes was definitely not the two-factor, zero-beta market model with
the index we used. (Recall that it was the Standard & Poor’s 500 Index.)
The principal reason for these results is the exceedingly bad performance
of this index. While randomly selected portfolios had average monthly
returns in the neighborhood of 25% per annum during this sample period,
the S&P 500 had an average monthly return of only about 9.0%. Since
the average risk coefficient of a randomly chosen portfolio was near
unity (the average by; for the 15 portfolios used in this paper ranged
between .995 and 1.02 over the six regressions computed), the poor
performance of the S&P Index cannot be attributed to a lower level of
“risk’’ as measured by b,. This “‘risk’> measure was not lower. Thus,
our test of the two-factor generating process is equivalent to the finding
that a particular well-diversified portfolio (the S&P Index) did not provide
returns commensurate with its level of risk.* ’

It is possible to use the entire time paths of estimated coefficients
including the higher-order estimates of changes in parameters. in similar
computations. In fact, if it can be presumed that R, the zero-beta value,
follows a random walk with constant drift, then the two-factor generating
process implies that any of the higher-order coefficients in the equation,

a; = O + 8nbij + g i=1 (14)
should satisfy the hypothesis E(8,) = 0, and E(§,) = —R,. (See note

42 for proof.) Due to space considerations, we do not report these em-
pirical results.
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NOTES

1. See, for example, Francis and Archer (1971, chap. 5), Sharpe (1970, 1980), Mossin
(1973), Fama and Miller (1972), Black (1972).

2. Some of the events which have been studied are stock splits, secondary offerings,
dividend changes, accounting mampulatnons and mergers. Brealey (1971) glves a reference
list and other examples. '

3. See, for example, the theoretical papers by Chen (1979), Huberman (1979), Jarrow
and Rudd (1980), Garman and Ohlson (1978, 1979), and the empirical paper by Gehr (1978)
and Roll and Ross (1980). )

4. For an extensive analysis of this factor’s influence, including empirical testing, see
Beaver et al. (1970), Hamada (1972), Boness et al. (1974), and Blume (1975).

5. See -Arrow (1971, chap. 3).

6. There may be other influences on B;. Rosenberg and McKibben (1973) list over 30

" and present empirical evidence that at least some of them actually have been influential.

Schaefer et al. (1974) present alternative models of the B; as a stochastic process. Blume
(1975) found a tendency for extreme values of B to disappear over time.

7. Rosenberg and McKibben (1973) found six accounting measures, and two historical
measures, which seem to have had significant ‘influence on the variance of &

8. Evidence on the non-Gaussian nature of asset returns seems to have been given af™
explicit (and thorough) treatment first by Mandelbrot (1963). Other evidence has accu-
mulated over time. See, e.g., Fama (1965), Roll (1970), Schwartz and Altman (1973).

9. Press (1967), Mandelbrot and Taylor (1967), Officer (1972), Clark (1973), Barnea and
Downes (1973), Hsu et al. (1973), Blattberg and Gonedes (1974) offer alternative expla-
nations to the basic phenomena that asset returns are too thick-tailed to have been generated
by a stationary Gaussian process, i.e., that they have too many extreme observations.
Data errors are another source of econometric troubles which may result in seemingly
thick-tailed residuals from an ordinary least-squares fit of model (1). In a recent paper,
Rosenberg and Houglet (1974) present striking evidence on the effect of errors and suggest
the use of ‘“‘a statistical method that minimizes the effect of outliers,”” by discarding or
truncating them or by using a procedure ‘‘more ‘robust’ than the quadratic methods” (pp.
1308-1309). As we shall see, the methodology employed in this chapter has exactly this
aim.

10. The characteristic function for a symmetric stable distribution with zero location,
scale @, and characteristic exponent v is: ’

b (1) = exp(—|at]Y).
11. For details see Hinich and Talwar (1975).
12. Fama et al. (1969).
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13. Kaplan and Roll (1972).

14. Scholes (1972).

15. Watts (1973). In this case, the size of the nonzero mean disturbance seems to be
quite small.

16. A number of other events, as well as some of those already mentioned above, are
summarized in Brealey (1971).

17. For example, if the observed period included two years of weekly data (104 weeks),
the time variable would run —1, —51/52, —50/52, ..., 51/52, 1.

18. See Abramowitz and Stegun (1964, chap. 22).

19. We wish to thank the Management Science Department of Wells-Fargo Bank for
making the data available in a covenient form.

20. The Thursday closing prices of each week were used. If Thursday was a holiday,
no observation was used for that week.

21. We began the study in Pittsburgh with an earlier version of the tape. At that point,
we had 1042 stocks in a sample selected similarly. On continuing our work in Belgium on
the same tape, the records for only about 100 securities could be read. Evidently, the tape
had been damaged in transport. Wells-Fargo kindly supplied another copy. On this tape,
we obtained the sample size of 930.

It is interesting to note that a number of securities which had been read. successfully
on the Pittsburgh system and which the Belgian system designated as faulty records on
the second tape were securities with a very large number of outliers computed by the
robust technique. As an example, Benguet had 87 outliers in the first 160 observations in
the Pittsburgh runs. The Belgian system rejected Benguet as a bad record. We think this
is evidence that the original tape, from which both tapes were copied, actually had a bad
spot in the Benguet record that is acceptable on some systems. It is quite likely that
Benguet’s data record is free of error in its original form, but when tapes are copied and
recopied, shipped, and used frequently, physical damage can occur. This suggests that the
robust technique is particularly valuable for large data banks that are distributed widely.
Even if a given machine installation accepts the physically damaged record as ¥alid, the
technique may reject it as an outlier.

One other disquieting piece of evidence: In the ordinary least-squares runs in Pittsburgh,
the average standard deviation of regression residuals across 1042 securities was 10 times
as high as the average for 930 securities in the Belgian runs. We later discovered that this
was due to a single security! The mean standard deviations for the robust cases differed
only in the third decimal place in the two runs. These comments are very similar in spirit
to Rosenberg and Houglet’s (1974). '

22. In fact, most choices in empirical work are made in such a sequential and stochastic
manner; even when the final paper describes the choices made as having been preordained
by logic. The actual procedure for sample selection and consolidation really makes no
difference provided that the results observed at an intermediate step do not influence the
results reported in the final paper.

23. The formula for the asymptotic standard deviation of a sample range is obtained
from known formulas for asymptotic variances and covariances of order statistics. See,
e.g., Cramer (1946, p. 369).

24. The logarithm was taken in order to reduce skewness in the dependent variable.

25. The mean t values for the coefficients in Table 6 are as follows:

Technique 7 No. of Variables
2 4 10
OLS 3.23 2.94 2.42

ROB 3.39 3.24 2.72

{4

hs

woe

¥



”
-

=
g

.

: Nonstationarity in Market Model 47

.

26. That is, estimates with higher t values.

27. It is twice the slope because time has been normalized to span —1to +1.

28. In all cases, the 4-variable and 10-variable estimates -agreed .on the level of
significance.

29. The t ratios are on the order of —1.4.

30. One other piece of supporting evidence for this assertion is the sizable -difference,
1.245 versus .686, between the beta coefficient estimated (with the 2-variable model) by
OLS and robust, respectively. (The t ratios were 5.12 and 3.52, respectively.) This strongly
suggests a bad and very influential sample observation. ‘

31. All four cases are present among the 18 securities of Table 7. For examples:

Direction of Risk Estimated Mean Risk

Security Coeff. Change Coeff. (10-Vbl. ROB)
Amer. Comm. Lines + . .801
Zapata-Norness + 1.74
Florida Power - 525
W. R. Grace - 1.25

32. Using by, from the 4-variable robust model is also a somewhat arbitrary choice. We
believe, however, that the robust estimators are better than the OLS estimators and that
some nonstationarity is present in the data. Thus, only the 4- and 10-variable robust
estimates of by would be good candidates for the portfolio assignment criterion. The final
choice of the 4-variable rather than the 10-variable estimate was completely arbitrary but
the similarity in these estimates implies that the choice did not matter.

33. The portfolios were formed with an equal weighting on each security’s return in
every period. This is known as an equally weighted, rebalanced portfolio formation method.

34. During the second subsample, some securities had missing observations. When this
occurred, the portfolio for that week was composed of an equally weighted average of the
securities which did have observed returns. In no case was a portfolio composed of fewer
than 57 securities (out of 62 possible).

35. N.B. The estimated risk coefficients for a-portfolio can differ from the mean estimates
for its component securities with the robust model. This is because the outlier observations
can be and were different when performing the robust calculation on individual securities
and on aggregates. Thus, for example, the cross-sectional mean individual estimates for
1962-1965 were minimum, .206, and maximum, 1.91 (see Table 8).

36. The difference between the two results is highly significant. For the individual
securities, given that the number of outliers is computed from a true random sample, the
standard error of the sample proportion is on the order of .0004. For portfolios, the
associated standard error is about .002. Thus, the difference in proportions is at least 8
times its standard error.

37. Another test included in Table 3 involved the cross-sectional 90-percentile range.
(This was a test for nonconcurrent nonstationarity among individual time series.) It was

~not repeated here because there are only 15 values (portfolios) in the cross-sectional

distribution and order statistics are only asymptotically Gaussian. Besides, it is quite likely
that changes in parameters which are nonconcurrent across securities would cancel out
in the -process of .portfolio aggregation. Thus, in all probability, they would have been
undetectable anyway in the portfolio data, even if they were present in individual security
data. : .

38. Average cross-sectional robust estimates of b, and b, for the 15 portfolios during
the second period were .340 and —.320, respectively. These are the coefficients of the
cubic and quartic polynomials of ‘the change in the estimated risk coefficient, dex)oted
“slope cubic’’ and *‘slope quartic’” in Table 10. : :
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39. For the second subsample, however, it is only on the order of 12 for the 10-variable
model.

40. The differences between ordinary estimates of 9, and instrumental variable estimates
suggest that the 10-variable model does not provide as accurate estimates of the Bo; as the
2- and 4-variable models. However, the closer agreement of the §, estimates using the
robust method relative to the OLS method again shows the robust method’s superiority.

41. This is not all that surprising since indexes which may seem to have very similar
properties can give quite different results for model (1). See Roll (1977) for a more complete
analysis of the index’s consequences.

Another -possibility, however, is bias in estimated risk parameters arising from non-
synchronous trading. See Dimson (1979). We have not had a chance to investigate this
possible explanation.

42. According to the two-factor generating process, the intercept and slope coefficients
of (1) are given by

o, = (1 - Bj.t)th- (12')

Define the vector P, containing as elements the orthogonal polynomials of Table 1 evaluated
at time t. That is,
P = [P(t):Pi(1): ... :P,(1)]

where n is a number sufficiently large to guarantee a good approximation such that
o = a P,
Bir =~ b P,

contain only trivial errors and where a; and b; are column vectors of constants whose
estimation is the object of the empirical fitting,

aj = [ag:ay: ... a,), bj = [boi:by;: ... :byl.
This means that the two-factor generating process (12') can be written as
aP, = (1 — bP)R, 13"

and we note that since

f. () = {z fori =0

Ofori=1

we can integrate both sides of (13') to obtain a, =1 - boj)Rz, which is equivalent to the
fitted equation (13) in the test (with 8, = 0 and &, = R,). This operation presumes that
R,, is unrelated to P(t) (i = 1), which is satisfied if R, fluctuates randomly.

To obtain a similar test with the full vector of polynomial coefficients, we défine the
integrated outer product matrix of P, with itself as

[}
PELP‘P(dt

and we note that P is a positive diagonal matrix. (The integrals of off-diagonal elements
are identically zero because the polynomials are mutually orthogonal over the range
[—1,1]). Premultiplying (13') by P,, rearranging, and integrating over t [while assuming that
R,, and P(t) (i = 1) are unrelated], results in the equation

Paj = (LI - ij)Rz

where ' = {2:0:0 ... :0]. Since P is positive diagonal, its inverse exists and a = (P-W
— b)R,. But the first element of P-! is %, so that :

[ ¥
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ay = (1 — by) Rz
and
a; = —byR, i=l.
This last is Eq. (14) of the text (with 8, = 0 and &, = —R,) while the first equation is

again (13) of the text.
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