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1. Introduction 

 

Extensions of the Hinich (1982, 1996) nonlinearity tests are used to test the residuals of the 

classic gas furnace data studied most recently by Box-Jenkins-Reinsel (2008). This data set had 

been selected by Tiao-Box (1981) when they illustrated a multistep identification strategy for 

identifying a vector autoregression moving average (VARMA) model from an assumed class of 

linear models. Stokes (1997), reported that the residuals of the constrained and unconstrained 

VAR model for the gas data suggested by Tiao-Box (1981) failed the Hinich (1982) Gaussianity 

and linearity test. Although multiple nonlinear models that could be linearized were tried, the 

nonlinearity persisted in the residuals. The present paper first shows that the nonlinearity in the 

residuals is episodic, as measured by the Hinich (1996) test. The multivariate adaptive regression 

splines (MARS) model, first proposed by Friedman (1991), is shown to remove the 

nonlinearities in the gas furnace data model. 

 

After a brief discussion of the Hinich bispectrum test, the gas furnace residuals are tested. Next, 

the model is estimated, using L1 and MINIMAX procedures to determine how sensitive the 

results are to outliers. An alternative Hinich (1996) nonlinearity test is used to determine if the 

measured nonlinearities are episodic. A MARS model was estimated for both the gas input series 

(GASIN) and the gas output series (GASOUT) that produce residuals that pass the Hinich (1982) 

nonlinearity test. Leverage plots were used to illustrate the “cost” of imposing a linearity 

assumption. Validation tests using out-of-sample forecasting tests from 1-6 periods ahead found 

that using the sum of squared errors criteria, the MARS model out performed ACE, GAM and 

Projection Pursuit models.  

 

 

2. VAR model setup and overview of the Hinich bispectrum test 

 

In an influential paper on the identification of VAR and VARMA models, Tiao and Box (1981) 

used the gas furnace data as an example. Their model relating the gas input (GASIN) and CO2 

concentration (GASOUT) was 

 

( )
t t

A B Z e              (1) 

 

where '

t
Z  is a row vector of the t

th
 observation of the two series, '

t
e is a row vector for period t of 

the estimated error vector of the model for the 2 series, and A(B) is the k by k autoregressive 

VAR matrix. Each element in A(B) is a polynomial in the lag operator B which maps 
t

Z  into 

1t
Z


. Successful estimation of equation (1) assumes that the roots of the determinate │A(B)│ are 

outside the unit circle (the invertibility condition), and that the expected value of the error 

vectors is zero and the error vectors are pure white noise. Tiao and Box (1981) only tested the 

error terms for significant autocorrelations and cross correlations. No attempt was made to test 

whether the linear specification was appropriate. 

 

Assuming linearity, Tiao and Box (1981) determined that an unconstrained model of order 6 

would clean the residuals of any measurable autocorrelation. Next, they removed statistically 
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insignificant VAR coefficients and estimated the constrained model, using conditional least 

squares. We have replicated both their constrained and unconstrained models and their results are 

reported in Table 1. We next applied the Hinich (1982) test to the residuals of these equations to 

test for nonlinearity. The Hinich (1982) test uses an estimate of the bispectrum as an average 

value of a square of 2
M  points. For a further discussion of properties of the bispectrum see 

Hinich and Clay (1968), Subba Rao (1984), Priestley (1988) and Hinich and Messer (1995). The 

larger (smaller) M, the smaller (larger) the finite sample variance and the larger (smaller) the 

sample bias. Because of this tradeoff, there is no one unique M that is appropriate to use for 

performing nonlinearity and Gaussianity tests. Hinich (1982) has suggested that a good value for 

M is N . A lower M would be / 3N . 

 

In the models fit to the  gas furnace data, where N=296 for the complete sample, we have 

reported M values from 9 to 18, and averaged the result, to insure that our findings are not 

sensitive to the M value selected. To test the null hypothesis that the error term  is Gaussian, 

Hinich suggests the G statistic, which is normally distributed. To test whether the series is linear, 

Hinich suggests the normally distributed L statistic. For details of this test, see Hinich (1982), 

Hinich and Patterson (1985), Ashley, Patterson and Hinich (1986). 

 

In this paper we report normal approximations of the Gaussianity and linearity tests. Mean 

values for G and L over all values of M are also reported. The Hinich critical values have been 

used to detect the presence of nonlinearity, although Lee (2001) in research involving 

simulations suggests that these values are overly conservative. Hinich-Mendes and Stone (2005) 

as well as Patterson-Ashley (2000) confirmed this finding. Hence, if the mean G and L values 

fail the Hinich test using the original Hinich critical values, it is more likely that the process is 

nonlinear. 

 

Ashley, Patterson and Hinich (1986 p. 174) presented an equivalence theorem which proved that 

the Hinich bispectral linearity test statistic is invariant to linear filtering of the data. This 

important result proves that the linearity test can be either applied to the raw series or to the 

residuals of a linear model. An additional important implication of the theorem is that if X(t) is 

found to be nonlinear, then the residuals of a linear model of the form ( ( ))
t

y f X t  will be 

nonlinear, since the nonlinearity in X(t) will pass through any linear filter. 

 

The above paper also reported tables on the power of the Hinich linearity test for detecting 

violations of the linearity assumption for a variety of common nonlinear models appearing in the 

literature and a table of the power of the linearity and Gaussianity tests  for a number of sample 

sizes and M values. Their findings indicate substantial power for both tests, even when N is a 

small value, such as 256, if the value of M used is between 12 and 17. For this sample size, as M 

increases, the power of the test falls off. This is later illustrated in our test results.  

 

Hinich (1996) proposed another testing strategy that could be applied to two series within the 

sample that was based on the sample cross-correlation at lags r and s, ( , )
xy

C r s  and the sample 

cross bicorrelation, ( , )
xxy

C r s . This test required whitened series and is suitable for the residuals 

of a model but not the raw series. Define max( , )m r s  
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1

( )

( , )



 





N m

t t r t s

t

xxy

x x y

C r s
N m

          (1) 

 

Let c
L N , where 0 < c < .5. Test statistics for non-zero cross correlations and cross 

bicorrelations are 

2

1

( ) ( ) ( )
L

xy xy

r

H N N r C r


            (2) 

2

1

( ) ( ) ( , )
L L

xxy xxy

s L r

H N N m C r s
 

   ,          (3) 

 

where s =/  0. ( )
xy

H N  and ( )
xxy

H N  are asymptotically chi-squared with (2 1)L L   degrees of 

freedom but for the purposes of this paper have been transformed to U(0,1) under the null. The 

Hinich (1996) test has a number of advantages that include being able to test for nonlinearity 

mapping from one series to another and being relatively quick to calculate. This latter advantage 

allows the test to be performed within the sample to test for episodic nonlinearity. In the 

empirical section the probabilities of ( )
xy

H N  and ( )
xxy

H N  are given. For testing one series, say 

x, Hinich (1996, eq. 3.1) recommends using a variant of (1). 

 

Define ( , )G r s  as the r,s sample bicorrelation multiplied by 
1

( )N s
 to standardize its 

variance. The statistic 
x

H , which is defined as 
1

2

2 1

[ ( , ) 1]
L s

c

x

s r

H N G r s




 

   where 0<c<.5 is 

N(0,1), can be converted to a probability of rejection of the assumption of linearity. 
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Table 1 Estimated Coefficients for Gas Furnace Data 

 
           Unconstrained Model                     Constrained Model 

lag   A1,1      A1,2      A2,1       A2,2  A1,1        A1,2   A2,1  A2,2 

__________________________________________________________________________________________ 

1     1.93    -.0508   .0632    1.55     1.982                     1.522    

      (.0581) (.0457) (.0743)   (.0585)   (.055)       (.0571) 

 

2    -1.20     .0999  -.133     -.593    -1.387                 -.568 

      (.126)  (.0843) (.161)    (.108)     (.0998)     (.1063) 

 

3      .17    -.0796  -.441     -.171         .349   -.530  -.159 

      (.144)  (.0881) (.184)    (.113)        (.0551)        (.0741)  (.0997) 

 

4    - .16     .0269   .152      .132                      .1180    .1312 

      (.145)  (.0877) (.186)    (.112)                     (.1631)  (.0431) 

 

5      .38    -.0414  -.120      .0569                  -.0451 

      (.137)  (.0771) (.175)    (.0985)                  (.1734) 

 

6    -.214     .0305   .249     -.0421                     .2091 

     (.0839)  (.0328) (.107)    (.0419)           (.1056) 

 

S     .03408                                .03593 

      .00229   .0557                      -.00290   .056143 

 

_________________________________________________________________________________ 

Standard errors are listed parenthetically. Constants were estimated for the constrained problem and were -.004138 

and 3.9992, respectively, with standard errors .01115 and .8335  for equations 1 and 2, respectively. The constrained 

and unconstrained AR models were selected by Tiao and Box (1981). S = residual error covariance matrix.  

 

Table 2     Z Scores for Gaussianity and Linearity Tests for Unconstrained and 

Constrained 6
th

 Order VAR Model of the GAS Data 
  
           Equation 1                        Equation 2 

 Unconstrained   Constrained     Unconstrained     Constrained 

M    G      L        G      L          G      L       G        L   

___________________________________________________________________ 

9   10.86  5.80     11.76  7.75       11.27  5.53    11.64    5.81 

10  12.07  6.30     12.53  5.91       11.86  4.52    12.05    6.34 

11   7.05  6.77      8.62  7.30       11.24  5.29    11.35    6.00 

12  12.75  3.08     12.77  7.01       12.22  6.27    12.21    4.87 

13   5.99  2.63      6.94  2.74       11.19  4.00    11.41    5.81 

14   7.51  1.45      8.07  1.37       10.92  8.45    11.36    4.75 

15   4.99  4.04      4.98  1.98       11.45  3.27    11.58    6.21 

16   6.47  3.40      6.95  8.19       12.91  3.46    12.91    2.49 

17   7.63  1.11      9.30  6.59       12.05   .17    12.39     .99 

18   6.48   .60      6.90   .63       12.46  4.23    12.67    4.06 

 

Mean 8.18  3.52      8.88  4.95       11.76  4.52    11.96    4.73  

G = Z score for normal approximation for Gaussianity test. L = Z score for linearity test. M = Square root of the 

number of terms used to estimate the bispectrum at the center of the square. The number of residuals was 290. 

Equation 1 is for the gas furnace input data.  Equation 2 is for the gas furnace output data. Coefficients for the 

unconstrained (Model 1) and constrained (Model 2) are given in Table 1. Estimated coefficients are consistent with 

those of Tiao-Box (1981). For further detail on Tables 1 and 2, see Stokes (1997, Chapter 8).  
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3. Results using VAR models 

 

Table 1 replicates the estimated coefficients of the Tiao-Box (1981) gas furnace data example. In 

Table 2 the Hinich bispectrum tests are performed on a grid of M values, going from 9  to 18, to 

test the residuals from the two equations implicit in  both the unconstrained and constrained  

VAR(6)  models listed in Table 1 for both the Gaussianity (G test) and the linearity (L test). The 

G test values are all above 4.99  for GASIN and 10.92 for GASOUT, indicating that both 

residual series, for both constrained and unconstrained models, reject the assumption of 

Gaussianity (G test) at a very high level of significance. For virtually all values of M, the 

assumption of linearity  is also rejected  by the L test. The lower L scores were found only with 

the higher M scores (17 and 18), which have a large bandwidth. For purposes of comparison, 

'e e  for the GASIN and GASOUT residuals was 9.8847 and 16.139, respectively. 

 

As was mentioned earlier, Ashley, Patterson and Hinich (1986 Table 1 and 2) investigated the 

size (number of observations) needed for the Hinich linearity and Gaussianity tests and the 

power of such tests for various values of M and number of observations. Their findings indicate 

that for this example, both G and L tests will give satisfactory convergence and that both tests 

detect nonlinearity with considerable frequency, even in cases in which N=256. These simulation 

results suggest that it is appropriate to use the Hinich tests in the present case in which N=290. 

 

Table 2 documents that our findings of nonlinearity are invariant as to whether the estimated 

form of equation (1) is unconstrained or constrained. In results not reported, we experimented 

with increasing the lag length of the unconstrained VAR model from 6 to 12. The findings were 

similar. We conclude that even though the distribution of the Hinich tests is known only 

asymptotically, the magnitude of the Z scores at a high confidence level indicates that both the 

input series and the output series fail the null hypotheses of Gaussianity and linearity. In an 

attempt to remove the indications of nonlinearity in the test statistics, an exhaustive search of 

alternative nonlinear models that could be linearized was attempted without success. To 

investigate the possibility that outliers were giving the illusion of nonlinearity, L1 and 

MINIMAX models were tried. L1 models minimize | |
t

e   and are less sensitive to outliers 

than OLS models. MINIMAX models minimize max | |
t

e , and are more sensitive to outliers than 

OLS models. Using all three estimation methods, six alternative models of GASOUT  of the 

form 

 

0

0 1

k k

t i j

i j

GASOUT GASIN GASOUT 
 

              (4) 

 

were tried for lags of  k= {1,...,6} and the results are reported in Table 3. Note that in this model 

t
GASIN was included.  Gaussianity is rejected for lags 1-6 for all estimators. Linearity is rejected 

for lags 2-6 for L1 and OLS. The MINIMAX  model rejects linearity for models with 3  lags and 

4 lags. In the MINIMAX model, the cost of reducing the maximum │et│ is reflected by e’e 

values that are two or more times bigger than their OLS and L1 counterparts. MINIMAX models 

with 1, 2, 5 and 6 lags have no indication of nonlinearity, but have 'e e  values that are in general 
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more than two times their OLS counterparts, (32.36 verses 16.44  for lag 5 and 30.41 verses 

16.09 for lag 6). Since L1 models are less sensitive than OLS models to outliers, the poor 

performance of L1 in removing the nonlinearity suggests that outliers are not tripping the Hinich 

(1982) test. 

 

Table 3      Tests on the Residual of Alternative Estimators of a modified Linear Model 
___________________________________________________________________ 

            L1                  OLS           MINIMAX 

Lag G            L          G        L        G        L 

__________________________________________________________________ 
  1   17.11        -0.57           17.19      -0.1                8.16      -3.11 

  2   21.63        10.11           17.15       8.89              18.22       1.56 

  3   26.95         7.31           16.15       4.26              36.48       2.33 

  4   16.41         6.61           13.61       5.17               7.96       2.89 

  5   15.68         7.35           11.54       4.69               9.92       0.28 

  6   14.56         5.10           11.51       4.39              17.03       0.13 

    ____________________________________________________________________________ 
   e’e          max|e|           e|     e’e        max|e|       e|            e’e        max |e|      e| 

______________________________________________________________________________ 
1  76.84    2.49     111.90 76.51   2.47   112.3    160.3     1.73  178.5 

2  20.25    1.53      51.49  19.60  1.54    52.55     52.69     .91  105.3 

3  19.43    1.47      50.23  18.02  1.50    51.32    48.59      .84  104.3 

4  17.26    1.54      47.83  16.71  1.49    48.76    37.61      .79   85.09 

5  17.57    1.55      47.53  16.44  1.40    48.89    32.36      .73   77.66 

6  16.82    1.53      47.06  16.09  1.41    48.28    30.41      .73   74.78 

_____________________________________________________________________________ 
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Table 4   Episodic Nonlinearity Tests on Residuals of VAR(6) Model of the Gas Furnace Data 

______________________________________________________________________________ 
20-Observations Window 

Window Obs Begin  Obs End    Hx       Hy        Hxy       Hyx       Px         Py          Pxy 

    1   1.000     20.00      .9161    .2585     .8313     .1657     .9319      .0298       .8673 

    2   21.00     40.00      .9023    .2420     .9977     .2821     .6265      .5210       .7833 

    3   41.00     60.00      .5499    .1330     .9882     .9550     .4752      .0829       .7788 

    4   61.00     80.00      .3074    .3405     .4314     .7664     .0388      .9000       .7628 

    5   81.00     100.0      .6689    .5759     .1725     .8941     .5412      .9743       .4024 

    6   101.0     120.0      .9445    .9145     .9995     .9837     .4257      .4402       .9271 

    7   121.0     140.0      .1372    .1906     .03957    .0240     .6553      .9899       .1687 

    8   141.0     160.0      .7008    .5053     .4304     .0192     .5055      .7427       .0988 

    9   161.0     180.0      .5193    .8839     .4963     .8676     .9271      .9729       .7095 

   10   181.0     200.0      .7077    .9568     .1443     .8591     .8089      .7413       .7274 

   11   201.0     220.0      .2225    .3257     .5370     .9212     .8503      .9087       .6343 

   12   221.0     240.0      .0353    .4755     .0503     .2564     .4339      .3199       .9025 

   13   241.0     260.0      .0461    .1492     .7665     .8273     .9695      .1152       .9379 

   14   261.0     290.0      .3780    .4675     .0046     .1469     .1768      .9986       .5782 

 

30-Observations Window 

 

Window Obs Begin   Obs End      Hx        Hy       Hxy       Hyx       Px         Py          Pxy 

    1   1.000        30.00    .9401     .5035    .5274     .5016     .8710      .1031       .9428 

    2   31.00        60.00    .1143     .2178    .1715     .8537     .8200      .1457       .9589 

    3   61.00        90.00    .6934     .5751    .3824     .7185     .1962      .9526       .1077 

    4   91.00       120.0     .9829     .8760    .9427     .7067     .2149      .7155       .8948 

    5   121.0        150.0    .4982     .3916    .2873     .5187     .6239      .9851       .1880 

    6   151.0        180.0    .1118     .9450    .5312     .7611     .8083      .9856       .4810 

    7   181.0        210.0    .9247     .9925    .4945     .9901     .8557      .8896       .8737 

    8   211.0       240.0     .2800     .5237    .2165     .2548     .4533      .4997       .9695 

    9   241.0       290.0     .6338     .8891    .9999     1.000     .9579      .8227       .9774 

______________________________________________________________________________ 

x
H and 

y
H  measure the probability on nonlinearity in x and y, respectively. 

xy
H  measures the probability of 

nonlinearity in x being reflected in y, while 
yx

H  measures the probability of nonlinearity in y being reflected in x. 

x
P  and 

y
P  measure the probability of autocorrelation in  x and y, respectively, while 

xy
P  measures the probability 

of cross correlation between x and y. 

 

The next experiment was to test whether the measured nonlinearity varies over time.  Table 4 

uses the Hinich (1996) test to investigate the within-sample properties of the residuals of the 

VAR(6) model of the gas furnace data series given in Table 1. Two window sizes of 20 and 30 

were used. For notational simplicity, define x = the residuals of GASIN and y = the residuals of 

GASOUT. 
x

H  and 
y

H  measure the probability of nonlinearity remaining in the residuals of the 

GASIN and GASOUT models, respectively.  
x y

H  and 
y x

H  measure the probability of there 

being a nonlinear relationship between the residuals of GASIN to the residuals of GASOUT or 

the residuals of GASOUT to the residuals of GASIN, respectively. ,
x y

P P  and 
x y

P  measure the 

probability of autocorrelation in the GASIN residuals, the GASOUT residuals and between the 

GASIN and GASOUT residuals, respectively. 

 

Inspection of 
x

H  and 
y

H  for both windows shows periods of nonlinearity in each series. Using 

a window size of 20, 
x

H  was .92 and .90 for windows 1 and 2, respectively, which included 

observations 1-40. Using a window size of 30,  
x

H  was .94 in window 1, covering observations 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 9  

1-30. For the 20-observations window, 
x

H  and 
y

H  were, respectively, .94 and .91 in window 6, 

covering observations 101-120. For the same window 
xy

H  and 
yx

H  were .9995 and .9837, 

respectively. Using the 30-observations window,  
x

H  and 
xy

H  had values of .98 and .94, 

respectively, for window 4, covering observation 91-120, indicating that there was a relationship 

between the nonlinearity in the GASIN series residual and GASOUT series residual. The 

autocorrelations and cross correlations of the residual series for the complete sample are flat. 

 

For the subsamples, significant values show up.  For the 20-observations window, 
x

P  is 

significant for windows 1 (0.93), 9 (0.93) and 13 (0.97). 
y

P  is significant for windows 5 (0.97), 7 

(0.99) and 14 (0.99). For the 30-observations window, 
x

P  was significant for window 9 (0.96) 

and 
y

P  was significant for window 3 (0.95), 5 (0.99), and 6 (0.99). 
xy

P  was significant for 

windows 2 (0.96), 8 (0.97) and 9 (0.98). The results of the sub-sample estimation suggest that 

there are episodic periods of both nonlinearity and linear memory in the model.  These results 

suggest that it might be promising to attempt a modeling strategy that includes a quite general 

class of threshold models to remove the nonlinearity. The technique chosen was MARS, a 

general data-driven, nonparametric approach, which has had success in other recent applications. 

These results are discussed next. 

 

 

4. The MARS approach 

 

The results in the preceding section indicate that the residuals in both the constrained and 

unconstrained models of the gas furnace data suggested by Tiao-Box (1981) fail the Hinich 

(1982) tests for nonlinearity and Gaussianity. The residuals of the unconstrained VAR model for 

GASIN and GASOUT are graphed in the tops of  Figures 1 and 2, respectively. Looking first at 

the GASOUT series, shown on the top of Figure 2, note the relatively homogenous pattern for 

the first 60% of the series, with larger spikes at observation 193 of .975, observation 230 of  

-0.7526 and observation 259 of 1.431. The GASIN series graphed in the top of Figure 1 shows a 

number of outliers at observation 37 of 1.016 and observation 49 of -0.8851.  The task is to 

select an estimation method having VAR as a special case, but allowing possible level-specific 

function changes, including interactions, that might be able both to reduce the variance of the 

residual and model some of these outliers. 
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Figure 1: GASIN Residuals for VAR and MARS Models 

VAR and MARS Gasout Models

Gasout=f(gasout{1 to 6} gasin{1 to 6}

VAR Residual

Observation

R
e

s
id

u
a

l

25 50 75 100 125 150 175 200 225 250 275
-1.0

-0.5

0.0

0.5

1.0

1.5

MARS Residual

Observation

R
e

s
id

u
a

l

25 50 75 100 125 150 175 200 225 250 275
-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

 
Figure 2: GASOUT Residuals for VAR and MARS Models 
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Leverage plots GASOUT Model for Max Interaction = 1
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Figure 3: Leverage plots for a MARSPLINE model of GASOUT - max interaction = 1 

Leverage plots GASOUT Model for Max Interaction = 2
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Figure 4: Leverage plots for a MARSPLINE model of GASOUT - max interaction = 2 
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Leverage plots GASOUT Model for Max Interaction = 3
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Figure 5: Leverage plots for a MARSPLINE model of GASOUT - max interaction = 3 

Leverage plots GASOUT Model for Max Interaction = 4
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Figure 6: Leverage plots for a MARSPLINE model of GASOUT - max interaction = 4 

 

 

The MARS approach, first proposed by Friedman (1991) and used successfully by Lewis 

and Stevens (1991) in a time series context was shown later by Lewis and Ray (1997,  p. 

883)  to generalize the Tong (1990) threshold autoregression (TR) model  to fit nonlinear 

threshold models that are continuous in the domain of the predictor variables  and allow 

for interactions among lagged predictor variables. Using the MARS method of 
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estimation, it was thus possible to have lagged predictor variable thresholds, thus 

overcoming the limitations of Tong’s approach. Lewis and Ray called their approach 

TSMARS, or MARS related to time series. In related work, Chen and Tsay (1993a) used 

arranged local regression models to model the chickenpox data, the sunspot data and a 

simulated series. Chen and Tsay (1993b) used a nonlinear additive autoregressive model 

with exogenous variables for nonlinear time series model fitting. 

 

The MARS approach can be thought of as a generalization of this approach in that higher 

order interaction terms are allowed. Some years after 1991 Friedman trademarked his 

implementation of the MARS algorithm, the resulting program is distributed by Salford  

and sold as MARS™ . Estimation using the 1991 version of this code was first reported 

in Stokes (1997). 

 

Hastie-Tibshirani released an alternative GPL Fortran implementation of the MARS 

technique with some differences regarding how the knots are handled, that is contained in 

R., that will be referred to as MARSPLINE.  The differences between the two programs 

suggest reporting both to validate the calculations as will be done in Table 5. As a 

preview, note the GASIN and GASOUT residual plots in the bottom of Figures 1 and 2 

that show the magnitude of the residual reduction that was obtained when the linearity 

assumption was dropped and a MARS model was estimated using MARSPLINE 

software. 

 

The MARS technique assumes a nonlinear model of the form 

 

1
( , , )

m
y f x x e  ,          (5) 

 

involving N observations on m right-hand-side variables, 
1
, ,

m
x x , which are column 

vectors in the N by m matrix X. The function f(X) is approximated by 

 

1

ˆ ( ) ( ),
s

j j

j

f X c K X


             (6) 

where ˆ ( )f X  is an additive function of the product basis functions 
1

{ ( )}
s

j j
K X


associated 

with the s disjoint sub-regions 
1

{ }
s

j j
R


 of D 1

( )
s

j j
D R


  and 

j
c is the coefficient for the 

th
j  product basis function. An OLS model is a special case of a MARS model if all sub-

regions include the complete range of each of the right-hand-side variables. In this 

situation, the coefficients  1
{ }

s

j j
c

 can be interpreted as OLS coefficients of the right-hand-

side variables. The MARS approach identifies the sub-regions under which the 

coefficients are stable and detects any possible interactions up to a maximum number of 

possible interactions controllable by the user. 

 

In contrast to other spline approaches that require the user to specify the knots * , the 

MARS algorithm produces an estimate of the knot. If all knots are found to be at the 

minimum of the x variable, then the MARS algorithm has signaled that OLS is the 
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correct estimation procedure. In this case all variables are figuring in the calculation of 

ŷ , no matter what their level. The VAR model maintains this assumption and can be 

thought of as a special case of MARS. The derivative of the spline function is not defined 

for values of x at the knot value. Friedman (1991) suggests using either a linear or cubic 

approximation to determine the exact y value and has implemented this in his code 

MARS™. In contrast, the Hastie and Tibshirani (1990)  MARSPLINE program does not 

make this adjustment. 

 

Models in this paper have been estimated with the original MARS™ Fortran code and 

with the newer Hastie-Tibshirani (1990) MARSPLINE Fortran code. In the results 

reported later in Table 5, both of the Friedman evaluation techniques to calculate 'e e  

have been reported and the one with the lowest sum of squares of the residual has been 

selected.  In setting up a MARS estimation, the user selects the maximum number of 

knots to consider and the maximum order of interaction to investigate. It will be shown 

that the order of interaction makes a difference in removing the nonlinearity. As an aid in 

determining the degree of model complexity, Friedman (1991) suggests using a modified 

form of the generalized cross validation criterion (MGCV). 

2

1

* 2

ˆ(1/ ) ( ( ))

1 [ ( ) / ]

N

i i

i

N y f X

MGCV
C M N









                        (7) 

 

where there are N observations, ˆˆ ( )
i i

y f X and C(M)
*
 is a complexity penalty. The 

default is to set C(M)
*
 equal to a function of the effective number of parameters. The 

formula used is 

 
*

( ) ( )C M C M dM           (8) 

 

The parameter d, which is user-controlled, has been set to the default value of 3 as 

suggested by Friedman (1991) for MARS™ estimation and 2 - 3 for MARSPLINE 

estimation, since Hastie-Tibshirani-Friedman (2009) suggest d=2 if the number of 

interactions is 1 and d = 3 for higher-order interactions. As will be illustrated, 'e e  will  in 

general be larger when d = 3, since from equations (7) and (8) in most cases simpler 

models will be selected. C(M) is the number of parameters being fit and M the number of 

nonconstant basis functions in the model. The MARS approach starts by choosing where 

to place the knots for a non-interaction model. Next, more complex interactions are 

chosen up to a user-controlled maximum number of interactions and maximum number 

of parameters in the model. Once the forward selection is completed, the MGCV statistic 

is used to eliminate parameters that improve the model only slightly. 

 

The MGCV value controls how many parameters finally remain in the model and can be 

used to form an estimate of the relative importance of each xi variable in the model. The 

MARS technique requires that the user select the variables 
1
, ,

m
x x  to use in (6). Since 

the gas furnace data model involves lags, an immediate concern is how to select the 

appropriate lags of GASIN and GASOUT to place in the 
1
, ,

m
x x vector. The technique 
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proposed in this paper is first to use the VAR model, such as proposed by Tiao-Box 

(1981), to determine the maximum number and placement of the lags of x and y to 

estimate a VAR model of the series in the linear domain.  If the resulting residuals show 

evidence of nonlinearity, as measured by the Hinich (1982) test, then these would first be 

used on the right-hand side of the MARS model equation. It must be emphasized that 

such a procedure would not be strictly appropriate if evidence of feedback were found in 

the VAR or VARMA step of the model. In a VAR model, since contemporaneous effects 

(instantaneous causality) are seen in the off-diagonal elements of the covariance matrix, 

contemporaneous values of some X variables must be included on the right-hand side of 

the MARS equation if the VAR model has identified instantaneous causality.  

 

 

Table 5 MARS and MARSPLINE Models of GASOUT in the Gas Furnace Data 

Model                         G   L   e’e 

 

OLS 6th order VAR             11.756    4.518  16.14 

 

Max interaction 1 

MARS model    12.000    4.463       15.00 15.73 

MARSPLINE Model d=2        8.15     5.43  12.28 

MARSPLINE Model d=3       7.66     4.20  14.09 

 

Max interaction 2 

MARS model       7.812    3.925       11.31 13.76 

MARSPLINE Model d=2      .93      .72   6.35 

MARSPLINE Model d=3         -.05      .22   9.14 

 

Max interaction 3 

MARS model       -.736    -.209        7.11 11.61 

MARSPLINE Model d=2    -.86     -.31        5.38 

MARSPLINE Model d=3            -.50      .12   6.02 

 

Max interaction 4 

MARS model               -.637   -1.04        7.14 12.66 

MARSPLINE Model d=2    1.56     1.18        5.00 

MARSPLINE Model d=3         2.27     1.84   5.90 

────────────────────────────────────────────────── 

Note: For MARS™ models the first 'e e  is the  piecewise-linear approximation and the second 'e e  is the 

piecewise-cubic approximation. For MARSPLINE models the penalty is set as 2 and 3, respectively. For all 

models the upper limit on the knots is 80. The GASOUT series is the dependent variable in all cases. All 

models were estimated with independent variables GASINt-1, GASINt-2, GASINt-3, GASINt-4, GASINt-5, 

GASINt-6, GASOUTt-1, GASOUTt-2, GASOUTt-3, GASOUTt-4, GASOUTt-5 and GASOUTt-6.  

 

A MARS model with up to 80 knots and from 1-4 interactions was estimated using the 

MARS and the MARSPLINE code for GASIN and GASOUT. Figures 1 and 2 show the 

MARSPLINE and VAR residuals for the interaction=4, d=2 model. Detailed inspection 

of the plots graphically shows the gains from dropping the linearity assumption implicit 

in the VAR model. Using the Hinich (1982) test note that for interactions 2-4 and d=2, 

the MARSPLINE program removes the nonlinearity as shown by L  values of .72, -.31 

and 1.18, respectively. For the MARS program for interactions 3-4 the nonlinearity was 

removed as shown by L values of -.209 and -1.04, respectively. The differences may be 
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due in part to the default penalty being set for MARS™ at 3.0 and MARSPLINE at 2.0. 

To test for this possible effect, MARSPLINE models were re-estimated for d=3, where 

the Hinich L values were .22, .12 and 1.84, respectively, for interactions 2-4. Note that 

for every interaction setting, 'e e  is lower for the MARSPLINE approach, no matter what 

the d setting. For purposes of comparison, the VAR (6) unconstrained G and L values 

from Table 2 are also shown. In comparison to the VAR results where 'e e  was 16.14, the 

MARSPLINE results for interaction=4, d=2 had been reduced to 5.00. 

 

The MARSPLINE code allows calculation of standard errors, since after ( )
j

k X  has been 

determined, OLS is used to obtain the estimated coefficients 
j

c  and ˆ
t

y  using the 

transformed data vectors that contain knots and interaction terms. The MARSPLINE 

interaction=4, d=2 model contained 48 estimated coefficients, while the more restricted 

d=3 model contained 40. The MARS model had 28 coefficients, making the results 

difficult to summarize without recourse to leverage plots. Define a leverage plot as a 

graph of the forecasted left-hand side variable against each right-hand-side variable over 

its range when all other variables are held at their means or expected value. Leverage 

plots have been calculated for MARSPLINE models for all right-hand-side variables for 

interactions 1-4 and are shown in Figures 3-6. 

 

What is occurring can be illustrated by a number of examples. Consider 

GASOUT{1}(
1t

GASOUT


 ) shown as upward sloping for all graphs. This suggests that 

this variable enters in a positive and linear fashion that is invariant to the number of 

interactions. GASOUT{3} illustrates nonlinear effects. For interaction=1, the plot is flat, 

showing no effect on the left-hand-side variables, given all other variables were at their 

means. However, the plot changes for interactions 2-4 when we see a downward slope 

that flattens out one third of the way into its range. For a linear model estimated by the 

MARS approach, the leverage plots would be  linear, either upward, downward or 

horizontal. The fact that kinks are shown illustrates the cost of imposing linearity that is 

documented in the higher 'e e  values for the linear models and the Hinich (1982) test 

finding evidence of nonlinearity.  

 

5. Alternative models and out-of-sample validation 

 

To investigate if the estimates of nonlinearity in the residuals detected by the Hinich 

(1982) test were sensitive to OLS being used, the more robust estimator L1 estimator that 

minimizes the sum of the absolute values of the residual was tried on the exact VAR 

model estimated with OLS. For the GASIN equation the L statistic was 6.054 and for the 

GASOUT equation the L test was 4.71. Since these equations used the exact VAR 

specification, not a model with a contemporaneous GASIN series on the right as was 

reported in Table 3, these findings are consistent with the view that the estimated 

nonlinearity in the residuals found was not due to OLS, which is more sensitive to 

outliers, being used for estimation. 

 

Nonlinearity tests on the raw series are reported to control for any possible effect of 

estimated models on the nonlinearity finding. Hinich (1982) tests on the raw GASIN and 
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GASOUT series produce G and L values for GASIN of 2.95 and .0980, respectively and 

test statistics for  GASOUT of 8.214 and 4.691, respectively. This finding of nonlinearity 

in the GASOUT series and not in the GASIN series is consistent with the hypothesis that 

the nonlinearity found in the residuals of the GASOUT equation appears to be coming 

from the nonlinearity in the raw GASOUT series that passed through the linear VAR 

model. 

 

The next task is to test out-of-sample performance of the MARS model against OLS and 

other nonlinear estimation alternatives. The results of this exercise are reported in Table 

6, where from 1-6 out of sample forecasts were made for OLS, GAM, ACE, MARS and 

projection pursuit models at the end of the data period. These alternative techniques and 

the results will be briefly discussed next. 

 

The GAM (general additive model) approach, initially developed by Hastie-Tibshirani 

(1990) and discussed more recently in Hastie, Tibshirani and Friedman (2009) and 

Faraway (2006), estimates a model of k explanatory variables 
j

X  of the form 

 

0

1

( )
k

j j

j

y f X


          (9) 

 

where ( )
j j

f X  is the smoothed 
j

X  series estimated using an iterative backfitting 

approach. In the forecasts reported later, the smoothing was done with a third-degree 

polynomial. The ACE (alternating conditional expectations) approach, discussed in 

Faraway (2006), generalizes the GAM model to smooth both the left and right- hand- 

sides of the model to form 

 

0

1

( ) ( )
k

j j

j

y f X 


           (10) 

 

Imposing the restriction that the variance of ( ) 1y  , the ACE model minimizes  

2

0

1 1

( ( ) ( ) )
N k

j i j

i j

y f x 
 

   . The projection pursuit regression model estimation method 

of Friedman-Stuetzle (1981) , discussed in some detail in Hastie, Tibshirani and 

Friedman (2009), can be thought of as a generalization of the GAM specification, where 

for M trees '

1

( ) ( )
M

m m

m

f X g X


 . The M functions '
( )

m m
g X  are estimated along 

directions 
m

 , using a flexible smoothing function. The idea is to form nonlinear 

functions of linear combinations of the k X variables. '

m
  is a unit k-vector of the 

unknown parameters.  As noted by Friedman-Stuetzle (1981),  if M is taken to be 

sufficiently large, the projection pursuit approach is a universal approximation in that any 

continuous function can be approximated arbitrarily well. Note that in the above 

discussion M has been redefined from its use in the discussion of the Hinich (1982) test. 
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Table 6  Out-of-Sample Forecasting using MARS, PPREG, GAM, ACE and OLS Models 
 

Out of Sample   OLS_ESS     ACE_ESS     MARS_ESS    GAM_ESS     PP_ESS 

     1          0.0860      0.0517      0.0106      0.1053      0.0298 

     2          0.0719      0.0443      0.0649      0.0814      0.0608 

     3          0.0857      0.0495      0.0600      0.0811      0.0096 

     4          0.2270      0.1424      0.0589      0.1997      0.0709 

     5          0.2425      0.1780      0.0813      0.2074      0.4428 

     6          0.4119      0.3163      0.4581      0.3765      0.3162 

 

Mean of Col:    0.1875      0.1304      0.1223      0.1752      0.1550 

 

The results of this exercise are listed in Table 6. Out-of-sample tests were performed by 

holding out from 1 – 6 observations, estimating a model and using this model to forecast 

ahead.  The columns represent the average of out-of-sample error sum of squares for 

from 1-6 out-of-sample periods. Note that for the means of the six out-of-sample tests, 

the MARS_ESS value is less. This indicates that for the experiment, the MARS model 

out performed the other methods. Going from best to worst and using the average of the 

columns as a heuristic test statistic, the ranking was MARS, ACE, projection pursuit, 

GAM and OLS. All calculations in this paper have been done with version 8.11E of the 

B34S software built with the Lahey 7.2 Fortran compiler using optimization level 1. 

Graphs have been drawn using RATS version 7.30.      

 

6. Conclusion 

 

The Hinich (1982) test was used to test the adequacy of the linearity assumptions in the 

classic Box-Jenkins-Reinsel (2008) gas furnace data. After finding evidence of 

nonlinearity, various linearizable, nonlinear models were tried without success. L1 and 

MINIMAX estimation models were used to determine if the measured nonlinearity of the 

exact model used to estimate the VAR was sensitive to outliers, where the L1  

(MINIMAX) model is less (more) sensitive to outliers than OLS models. The L1 models 

of GASOUT were found not to remove the measured nonlinearity in the residuals.  In 

four out of six  MINIMAX models, measured nonlinearity was removed at the cost of 

relatively large 'e e  values. The Hinich (1996) test, applied to subsamples of residuals, 

indicated that the nonlinearity was episodic. The MARS approach was shown to remove 

the measured nonlinearity in the model residuals for GASIN and GASOUT and produce 

a closer fit. Leverage plots were utilized to show the nonlinearity in the effects of the 

right-hand-side variables. Out-of-sample forecasts for from 1-6 periods were compared 

using OLS, GAM, ACE, projection pursuit and MARS models, with the latter technique 

giving the smallest error sum of squares. 

  

* A number of comments of the referees of this paper are acknowledged. Their 

suggestions have greatly improved the final product. The authors thank Diana Stokes for 

editorial assistance.  Any remaining errors are our responsibility. 
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