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INTRODUCTION TO FOURIER ANALYSIS OF DATA

The purpose of this paper is to introduce to economists and data processors
the basic clements of Fourier analysis of a time series which is a sum of
deterministic components and a stationary random process. Techniques are
discussed for Fourier decomposition -ofthe deterministic components of a time
series and for estimating the power spectrum of the stationary random component.
The various, mathematical concepts relating to Fourier analysis are presented in a
basically intuitive manner. The goal of this JXl.peris a reasonably clear exposition
of a rather complicated body of material which has been developed primarily for
physical science and engineering problems. Mathematical rigor and completeness
have been sacrificed for the sake of inthitive understanding. Several theorems
are stated and proved, but the proofs are instructive in nature and are not rigorous.
The reader is required to understand the statistical and mathematical concepts
of multiple regression and the linear model.

Fourier analysis techniques can be an important tool for economic time series
analysis if the concepts and methods are properly understood. It is easy to
misuse and misapply the techniques.

1. LINEAR MODELS AND PERIODIC FUNCTIONS OF TIME

The trigonometric functions cos ut and sinu1t playa fundamental role in
the analysis of periodic functions of time and stationary random time series.
The parameter (Jl is called the angular frequency (figure 1). A function f(t)
is called periodic with period Tif for every t,

, ..... ....,. ..•...•-....•...•.__ ...
'iI' "iit .

f(t + T) = f(t ) • (1)

It is easy to check that cosu't and Sinlllt are periodic with period 2 TT / UJ •

If t is measured in discrete units of time, the unit of Ul is radians per time
unit, e. g., if t = nowhere n is an integer and S = 1 second, the unit of
';' is rad/sec. For t = nowhere 0 is a fixed observation interval (such as
one second or one month), Fourier's classic theorem proves that if f(t) is
periodic with period T, f(t) can be written as a trigonometric polynominal as

follows: Let lJI =
k
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(T-l)/2 0
f(t) = a(O) + 2 ~ [a «(Ilk) cos rlk t + b C"k) sin "'kt]

k= 1

If T / 0 is odd, <Jlldfor even T / 0

(2a)

T /2 It -1
1'(t)= a(O) + 2 ~ [a(rok)coS(lk t + b(llk) sin wk tJ + a(t' T/2 0) (_l)t

k=l

For notational simplicity let us select the time unit so that the observation
interval 5 equals one time unit, e. g., 0 = 1 month for monthly observed data.

The length of the day is a periodic function of time with a period of 12 months,
or 365 days depending on the time unit chosen. The mean value of almost any
economic time series has a yearly periodicity called a seasonal. However,
there may be longer period cycles such as 17 year cycles in the series, or
shorter period, cycles such as a monthly cycle. Most seasonal cycles are not
a simple sine or cosine function, but instead have flatter peaks and valleys than
the sine or cosine. The higher frequency (shorter period) terms in equation 2,
COSC:'ktand sinu'kt for k > 1, are required to describe the seasonal fluctuations.

Of course, if only quarterly observations are available, dummy variables
provide an adequate model of the seasonal changes assuming that the period is
12 months and the peak and valley in the year falls in the middle of the quarter.
Fourier analysis provides a more flexible method for finding periodicities in

time series.
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As an extreme exa mple of a cycle which has flat peaks and valleys,
consider, for 5 = 1 week, t he following periodic function whose period is six
months:

f(t) = L: - 6 + 26m ~ t. ~ 6 + 26m

7 + 26m ~ t <' ] 9 + 26m

(4)

4 ., ",_,
•••• ---..,.-:.;~ •• oj

where m = 0, 1: 1, +? (figure 2). Since f(t) = f( -t) and sin wt = sinrJ~( -t)
whereas COSll't= cosc:J( -t), it follows from (2) that b(rPk) = a for each

25
k = 0, ... , 13. Moreover, a(O) = a since L: f(t) = a and it can be shown that

t=0

f Ii [1 - 1 ] if k is oddsin TIk/26
a(U'k)t~ if k is even

L e. , a(w 1) = -0.56, a(UI
2) = O.08, a«(1'3) = -0.14,

a(tJ'4) = O.08, a('" ) = -0.06, a(06) = O.08, a(!17) = -0 ..03 ....-'5
., .•.

•
In general if f(t) ~s an even function, L e., f(t) = f( -t), then b('Jk) = a for all

k and if f(t) is an odd function, Le., f(t) = -f(-t), then a (Uk) = a for all k.

By very elementary use of complex variable theory, f(t) can be expressed
as a sum of trigonometric functions in a form which is algebraically simpler
and computationally more efficient than (2). The following definition of

eil1S is the key element in the discussion:

Letting i = '~for any angle l1S

exp (is6) = coss6 + i sinl1S

-4-
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I
It follows from (4) that for any integer t, exp (i2 TT t) - 1. Now for any
w, define the complex variable

A(w) 1
= T

T-l

2:
t=O

f(t) exp (i wt) • (5)

Since exp (i wt + i2 TTt) = exp (i wt) for any integer t, we have A(w + 211)

= A ( w) for any W, i.e. A( w) is a periodic function of w with period 2 TT .

Moreover A( -w ) =.A("W), where the oo.r denotes the complex conjugate, since

exp (- i wt) = exp (i wt)

Thus for each ~ = 2TT kiT,

~.;JI .••.~.:.~--.....~..,.

since w T-k ="" wk + 2 -'-T. If T is even, A(w T 12) = A(w T/2) from

and thus A(WT/2) is real.

The following theorem essentially proves (2).

T-l

THEOREM 1 f(t) = 2: A(U1c) exp (-i ~ t)

k=O
and thus from (2) , (3), and (6) with b(O) = I:X:TT)= 0

(6)

k = 0, 1, ..• , [T12] (7)

where [T12] denotes the closest integer less than or equal to T12.
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PROOF: For z -I- I,
Tl-z

l-z Setting z = exp (i2TTm/T) for

integer m, we have

T-l

L exp (i2 n ~ k) = 0

k=O
~

From (5),

T-l

L A(w,J exp (-i wkt)
1

= Tl\.

k=O

1
= T

m -I- 0 (H)

T-l T-l

L L f(s) exp (i wk(s-t»)
k=O s=1

T-l T-lL l::: f(s) exp (i2 n s;t k)

s=O k=O
......•.•.' ...•....•.-._ .•~_....-
• At" . 'it Ij"~ h

= f(t)

since the sum over k is zero for s -I-t by (8), and for s=t the sum is T.

Thus A(Wk) = A k exp (i 8 k). From the theorem,

T-l
f(t) = L Ak exp (-i (wk t-8 k»

k=O

or alternatively due to the symmetry given by (6)

(Figure 3)

(9a)

f(t) = a(O) + 2

T/2-1l::: Ak cos (wkt - 8 k)
k=1

-7-

t+ a (n) (-1) (9b)



~•. t .'n... 1
_____ -~ .• -~ •• ,!ktI> •••

.0

-8-

•...
z
w
U
u..
u..
wo
U
0::
w
a:
::>ou..
.s::•..
.::t!.
W
:I:•...
u..o
w
(I)«J:
Q..

C
Z«
w
c
::>•...
..J
Q..

:iE«
M

CJ
u..



For each frequency wk = 2 nk/T. Ak is called the amplitude and 8
k

is

called the phase. The frequency wI = 2 niT is called the fundamental since

the period of cos (W 1 t-81) is T, the period of f(t). Higher frequencies u.:
k

are integer multiples of Lt.'l and are called the higher harmon ies of the

fundamental frequency. Given the observation interval b = 1 unit. the highest
harmonic possible in the trigonometric sum representation of f(t) is n rad/unit.

Now consider the linear stochastic model

Y(t) = f(t) + f (t) t = 0.1 •...• n-l (10)

where € (t) is a stochastic disturbance with the usually assumed properties,

Le., E '" (t) = 0, E",2(t) = cr2 for all t, and E t:: (t) ~ (t') = 0 for t:f t' .

From (2) it is clear that the independent variables in the model are cos w k t and

sinw k t for k =0, 1, ... , [T12J. If n, the number of observation of Y(t),

is an integral multiple of T, the independent variables are orthogonal, Le.

n-l ~
}' cosw.t cos ~t, L' sin W]. t sin (Jlk t = 0 for j :f k, and
~] t=0

n-l

L sin W]' t cos Wkt = 0 for all j, k. By solving the set of normal equations
t=0

for the linear model, we obtain the following results.

.... '. ,

:... •....• ....-.....--._---:~
eo' .••. 1. $'_.

~ (w) = 1
n

THEOREM 2. Consider the estimator
n-l

L: Y(t) exp(iWt)
t=0

(11)

For n=mT where m is an integer, the least-squares estimators of the

coefficients a( Wk) and b ( Wk) for wk = 0, 2 niT, ... , 21" [T/2] I'T are

n-l
2: Y(t) cos wk t
t=O

-9-



FIG. 4: SINUSOIDAL COMPONENT OF FREQUENCY w
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n-1

2: Y (t) sin W k t
t=O

(12)

Since these estimators are least-squares, they arc unbiased, and thus
1\ . . A 1\ ;\E A (W

k
) = A (WIc) smce A (W) = a (W) + ib (W). The variances and covarianccs

of ~(Wk) and 0'( W
k
) are

-\\ 02
V [a (Wk)] = V [b (Wk)] = 2n

except that since ~(O).; 0, its variance is zero, and

For j 1k, ':'''''~'~.: .. ; .

~..".•.•...~...-.--....-
.•. "'.c. .2

1\
Letting f(t) denote f(t) with the ak and bk replaced by their estimators,

the estimator of the variance 0
2 is just

"2 1o ;::
n-T

n-1L [V (t) - 1(t)] 2
t=0

(13)

It is not necessary to compute cos Wk t and sin wk t for each k in order

to compute A( W
k
). There exist several versions of an algorithm, called by

Tukey and Cooley (1965) the fast Fourier transform, for fast and efficient

computation of L Y (t)exp (i Wk t). The finite discrete Fourier transform, the

algorithm for its computation, and its applications are discussed by Alsop and
Nowroozi (1966), Binghain et al. (1967), Gentleman and Sande (1966), Hinich
and Clay (1968), and Welch (1961), among others. The algorithm makes feasible

1\
the computation of A (Wk) for large n.

-11-
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If n, the number of observations of Y, is not an integer multiple of the
period T, the model is not orthogonal and the least-squares estimates are in
general correlated across frequencies and between the sine and cosine variables
for each frequency. As long as n > T, one can orthogonalize the model by
merely dropping observations to make the sample size be an integer multiple of
T. If the period is unknown, however, the situation is no longer simple. An
operational method for detecting periodic components in an observed time
series will be presented in Section 4. However, it is instructive to indicate

~ .how the estimator (W), calculated at frequencies W. = 2 TT j/n for j=O, ... ,
J

[n/2J ' can be used.to estimate T.

For simplicity, assume that the function f(t) has no harmonics, i.e.
f(t) is the sinusoidal periodic function

f(t) = 2acos W t + 2bsin W to 0
w =~

o T

4 .. ~••. ~. ,.".i..-.!'-....w •.....•~ ~

Suppose that n is not an integer multiple of T. Let '~(Wj) and ~(Wj') be

defined as i~ (11), but with Wj = 2 n j/n for j=O, .•. , [n/2]. Then the
1\ .expected value ofa (W.) IS

J
n-1 n-1

E ~ (W.) = 2a L: cos W t cos W. t + 2b ~ sin W t cos W. t
J n t=O 0 ] n t=O 0 J

From Chapter 2 of Courant and Hilbert, Vol. 1 (1953) it can be shown that for
sufficiently large n, there exists an integer sequence fj*(n)} such that

Iw. w - W I < n -1 andr 0

(15)

(14)

n-l

1:t=O
2-n

1-n
and

cos wot cos W{ = 11+~n~)if j=j*

0(01 U:j-Wol) if j;;lj*

sin Wo' cos Wi'= 0 (nj W( Wol}

-1 -1
where 0 (x ) denotes that lim x 0 (x ) = c, a constant.

-12-



if j=j *

ifjfj *

Thus for sufficiently large n, there exists a j*(n) slIch that w. = w +
-1 J u

O(n ) and

la +O(n -2)E a(w.) = -1
J Q(n)

2 1\ 2Since the variances of these estimators is a /2n .and the variance of a
is of the order n-] , the precision of the estimates is very high for large n.
Thus the w. whose anlplitude is significantly non -zero will be close to the

J
true w o. If f(t) is a periodic function with harmonies, as n ..• O'J the

fundamental frequency and the higher harmonics can be estimated with a
probability arbitrarily near one, i.e., consistently. Moreover the amplitudes
and phases of the sinusoidal components of f(t) can be estimated consistently.
Note however that although the estimators ~ and 1>, the natural estimators

of the amplitude and phase, A2( u.:)+t2 (w) and tan -I (ti (w) i~(u.:», are
non-linear, the asymptotic properties of these estimators can easily be de-
rived using standard large-sample techniques (Walker 1968).

2. SERIALLY CORRELATED DISTURBANCES

The problem of detecting hidden periodicities in data''is i'elatively straight-
forward for the case of uncorrelated disturbances. If the disturbances are
serially correlated, the variance of the ordinary least-squares estimator of
A (wJ will depend on the frequency "1:' In order to simplify the exposition,

let us assume that the time s0l".ies of disturbances is a jth order stationary
Gaussian Markov process. To be explicit, consider the process [Y(t)},

.•..•..•....•._ ..•.~ •...•..
•". "1t .*

Y (t) = f (t) + u(t) (17)

where the disturbance terms u (t) satisfy the stochastic difference equation

OfL h (s) u(t-s) = dt)
s=o

(18)

with h (0), ... , h (Q') as fixed constants, and for any integers t and T, [dt),

..• , e;(t+ T -I)} has the T-variate normal distribution N(0, a2I).

The process [u(t) J is called a ath order stationary normal or Gaussian
Markov process. For example, consider the first order process with h(O) = I
and h (1) = y f:. :!: 1, .i. e.

u(t) - y u(t-I) = €(t)

-13 -
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It is easy to check that the process
co

u(t) =.2: \s f;(t-S)

S=O
(20a)

satisfies (19), provided tha:: lvl< 1. If Iv I> 1,
co

u(t) =2: v-s i::(t+S)
s=1

satisfies (I9). The process is 1st order Markov since

E [u (t) I u (s), s < t] = y u(t-l)

(20h)

Further t u(t), •.. , u(t + T- 1)J has the T-variate normal distribution
N (0, L:) where L: is the covariance matrix whose j, kth element is

yh-kl
l-y 2. (21)

, •.. ".'I.t)llj
i __ -..~.~

Fro~ (21) it is clear that as y -+:t 1, the variance of the process goes to
infinity. For an Q'th order process, the variance will be infinity if anyone
of the Q' roots of the polynomial.
Q'

~ h(s)zs is on the unit circle z = e iw in the complex plane.
s=O

Q'

Let us restrict the h(s)'s such that L h(t) exp (iWt) ::J 0 for all CAl •

. t=Q

Not all stationary Gaussian random" processes are Markovian. A process
[u(t)} is called stationary if the joint distribution of [u(t1), ..• , u(tn)} is

the same as the joint distribution.. of {u(t~ + T), •. " ,u(tn + T)} for all T, n, and points

t1, "', tn' Thus, the mean value Eu(t) and the Tth covariance E [u(t + T)u(f]

do not depend on t if {u (t)} is stationary. Unless otherwise spedfied we
will assume that Eu(t) = O.

The assumption of the stationarity for a process does not specify the form
of the joint distribution of the u (t) for various t's. A process is called Gaussian
if the joint distribution of [u(t1), •.. , u (tn) J is normal for all n and t

1
, •.• ,

-14-



t. TIlliS, if a process is both stationary and Gaussian,n
the multivariate normal distribution N (0, L) where the
the covariance matrix, has the form

-, .. "- - •.... "

?~"""'-"'-

[u(tl), •.. , u(t
n
)} has

j, kth element of Y'

i. e., the elements on the diagonal or any off-diagonal of r. arc equal.

Now let us recall the estimator

"A (W)
n-l

==*L: Y (t) e
iwt

t==O
(22)

from Theorem 2. Since Eu(t) ==0 for all t, for n==mT the estimators

~ (W) ==Re ~ (Wk)], the real part of it, and t( ''''V ==1m [~(~) 1, the

imaginary part of ~, are the ordinary least-squares estimators of a(~)

and b(~) respectively. However, these estimators arc not minimum variance

although they are unbiased. The generalized least-squares estimators, which
are a function of the covariances of the disturbances, have the minimum variances
of the ordinary 1. s. estimators approaches the minimum variances as n ..•CD •

The linear model in qyestion is the one defined by (I7) for t ==0, ... , n-1.

THEOREM 3. ~ (Wk) and b ('1:) are asymptotically minimum variance

linear unbiased estimators of a (Wk) and b (W
k
) respectively as n ..• CD •

F or large n these estimators are approximately independent normal random
variables with means a(Wk) and b(Wk) and identical variances

0'2
== 2-n-I-H-(-'1:-)-->'<12

where

~ .-....-..-.~..•..-..-".. .~

Ct

H (W) ==L h (t) ei wt
t==O

for k ==0 and k ==T/2 where T is even

(23)

Moreover the estimates at different frequencies are asymptotically independent.

-15-



Proof: Consider the process f Z (t)} where
Ct

Z(t)£h(S) Y(t-s)
s=O

From (I7) and (I 8)
Ct

Z (t) =L h(s) f(t-s) + e(t)

s=O
The function L: h(s) f(t-s) is also periodic with period T.

s

(24)

The kth complex Fourier coefficient of this function is H(W k) A (W
k
) since

from (5) and (23)

T-1[Ct ~
~~ ~ h (s) f(t-sJ

T-1
h(s) eiWS'L: f(t-s) eiw (t-s)

.. t=O.

.e ..• ,...---,'--~.

=H(w)A(w)

which is minimum variance since the disturbances in equation (24) are spherical.
We will now show that for large n,

A
B(W)*(Wk) ~ H(:- ) and thus ~ (Wk) is asymptotically the minimum variance

k
estimator of A. ('1:) in the sense that the real and imaginary parts of ~ (~)

are asymptotically the minimum variance estimators of the real and imaginary
parts of A (Wk).

For the sake of exposition, let [u(t)} be first order Markov with h(O) = 1
and h (I) = - y, Iyl < 1, as before. The proof for Ct >1 is a straightforward
extension of the proof for Ct = 1. If w is an integer multiple of 2 n/n,

-16-



The variance of Y(n-I) - Y (-1) is

E [u(n-I) - u(-I)J'2 = 1 - yn 20-2 (26)1 - y2
1\

from (21).. The covariance between Y(n-I) - Y(-I) and nA(W) is less than

q2 since
1 - yl

n-]

B(W) = ~. L [Y(t) - yY(t-I)]ciwt

t=Q

1\ .w 1\= A (W) - yc 1 A (W) - f [Y ( -1) - Y (n-1)]

=H(W) A(W) ++ [Y(n-I)-Y(-I)]

since from (23),

H(W) = 1 - yei W

n-I

IE [u(n-I) - u(-I)] nA(w)1 =I~;
1 - yn 2

~ I_YZ (]

(25)

(27)

......•..•,...•..-~._-_.•..•..
(iii' ' •• ,_ Zi_. .

-17-
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The variance of the real and imaginary parts of B(W) is ""1il from Theorem 2.

Dividing both sides of equation (25)"by H(W), it follows from (26) and (27) that

(]2 2
V[S(W)]- ---- + O( (] )

- 2n /H(W)/2 n21 H(W )12 (1-0)

and similarly for b (W). If n »(I-y) -1/2 the variances of ~ (w) and

A q2 1
:( w) are equal to 2111 H (w) 12 + 0(ll2')' The :ar~ces are minirimm since

B is the minimum variance estimator of HA and A ~ B .
H

/\

Since the real and imaginary parts of B.....are uncorrelated and have equal
variances, the real and imaginary parts of B are uncorrelated. Thus, from

H I'
(25) and (26), the covariance between the real and imaginary parts of A is of

the order 0(_1_). Similarly, the covariance between Fourier coefficients of

different freq~;ncies is 0 ~) .



In most applications, the function H (W) is tmknown, as are the para-
meters h(1), ••. , h(Q') of the Markov disturbance. Note that similar to
A(W), H(w+2TT) = H(W) and H(-W)= H('W"). In the next section we wi11

2/ ., -2discuss the problem of estimating f! H (w) •

3. POWER SPECTRA

The variances of the estimators ji(2 TTk/T) and 'b (2n kiT) .depend on

0'2 HI(2TTk/T) 1-2. It is possible to obtain a consistent and asymptotically normal

estimator of 0'2 IH(2 TTk/T)I-
2

for each k, based upon the same sample
which is used to estimate the Fourier coefficients. Note, however, that if the
disturbances are serially uncorrelated with h (0) = 1, then Q'= 0 and H (W) = 1
for all W. In that case the estimator of the variance is the normalized sum of
squared residuals.

Suppose that we observe Y(O), , Y(n-1) with n = mT as before. From
now on let Wj = 2 TTj/n for j = 0, , n -1. With this notation, the harmonic
frequencies of f(t)-are Wk ' k = 0, ... , T-1. Consider, now, the estimator
" mA(W.). From (8), (17), and (22), •.

. J n-1 T-l

E ~(W_) =.1... ~ kA (Wk ) exp (-iw• t) exp (iwt)
J n. m Km J

t= =0

-..',.....
•..6"!"'-.......-..-"""'!" •. 1

T-l n-l

= *LA( Wkm~ exp (i2TT

k=O t=O

j-km
n

if j=km

if j r!km

From Theorem 3 with m=1 and n=T, the variances of the real and imaginary,.,.
parts of A are

(28)

except that since b(O) = 0, its variance is zero. Since-a(wj) and b(Wj)

are independent and normally distributed with zero means for j r! km and the
above variances,

-18-



(29a)2n('T-2 IH(W.) 1(WI) /2 ~ X~
J J I

for j I km, where X ~ denotes a chi -squared variable with two degrees of

freedom. For j = km such that k 1"0 or T/2

(29b)2ncr-2 JH(Wkm)' 2/ ~(Wkm)-A(Wkm)/2

w=O or n, ncr-2IH(W)/21-a(w) -a(w>/2For has a X 2 distribution.
1

Let S (w ) = cr 2/ H(W )'1-2 since H (W ) 10, S (W) is defined for all w. Note that
S(w + 2n) =S(w) for all w, and S(-w) =S(w). Thefollowingtheorem
presents the properties of a consistent estimator of S( w. ).Km

( 30)

THEOREM 4. Given an even integer M < m where n = mT, define the
-'\

estimator S ( W km) for 0 <wkm < n by

M/2
--::I n ~/ A 2
~ (wkm) = M L...JIA (Wkm+j)/

j=-M/2

,- ••.•••.•.•••..••• _ .•••._ .•••••Il..e- ••••••••• -

•••.. '.J ""-:' . d

where the prime denotes that the j=O term, /A(W
km

)/2, is not included
in the sum.

Let m and M- ex> such that M/m -0. Then in the limit

,1M [5 (2nk/T) - S(2nk/T)] ~ N(O, S2 (2nk/T» (31)

where S(w) =cr2IH(W)I-2._ For wkm =0 or n, (31) holds with M re-
placed by M/4 and

M/2

S (0) = t;.E IA(Wj) 12 ,

j=l

Proof: Since E(X~) = 2, V(X~ )=4, and since A(W.) and '1(W.)

independent for j 11., from (29) J.R

. M/2

E~ (Wkm) = ~2 L I IH(W
km

+ W
j
) 1-2

j=-M/2
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since Wkm+j = Wkm + Wj' and

M/2

V[S(Wkm)]= ~~ ~IIH(U1cm)+Wj)I-4

j=-M/2

(33)

Since IH (w) I -1 is a bounded continuous function for - n --- W ..- n, as both
M... (Xl and M/n ..•0 we have

lim E [S (Wkm)] = lim 2 ;MM-oo
M/n-Q

f TIM/n
S (W + w) dW

km
-nM/n

'•• I '~.b..•..•...._...,;...,-_._~.,......

= S (2TIk/T)

Bya similar argument for (33), the variance of'S has the follcwing property

. lim Mvt~(Wkm)]=S2 (2TIk/T)
M-oo

The asymptotic normality of S follows from the central limit theorem.

The function S(W) = (J'2IH(W)I-2 is called the power spectrum of the .
process t u(t)}. In order to better understand the concept of a power spectrum,
set f(t) = 0, i.e., let Y(t) = u(t). From (28), 1/2 S (w.) is the variance of

" J ----
the real and imaginary parts of In A (w.). From Theorem 1 we have

n-l J

u(t) =~'l\ (wj)e -i Wjt (34)

~

(35)

where

A(W.)
J

/I A

A (W .) = A (w.) and w. = 2nj/n. Thus by the independence of
n-J J J

and A(W.,), jfj', from (34) we have for all t that
J n/2

2 1 2 ~Eu (t) =- S(O) +- S(w.)n n J
j=l

Letting n ..• (Xl in (35), the variance of the disturb~nces is
n

Eu2 (t) =..!.-f S(W) dW2rT -TI (36)

by the definition of an integral as a limit of a sum. Thus, the power spectrum
of a process indicates how its total variance is distributed over various frequency
components of its Fourier Stieltjes in~egral representation.
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n

u (t) =f c iW tdU (W )

-n

where for each point W

dU (W) = lim A(W .• )
n-+CXl J

W .• =
J

r.

1,

and t j. (n)} is a sequence of integers such that w .• -+ W as n -+ CSJ. Thus
J

EldU(W)/2 = ~ S(W)dw

since nE/ A(Wj.)12 = S(W) by (28), and ~ ~ dW.

If the disturbances are serially uncorrelated with h (0) = 1, S(W) = (] 2 for
all W. A process whose power spectrum i.s constant for all W is called
white noise.

Assumingthil-i Y (t) = u (t), it is possible to obtain a consistent estimator
of S (w) for any W. Define

M/2

S(W) = M~l L /A(Wj• + Wj)/2

j=-M/2

Letting M and n -+ CXl such that M/n -+ 0, it can be shown from the proof of
Theorem 4 that in the limit

1M [s (W) - S (W) J '"" N (0, S2 (W».

The fast Fourier transform algorithm has made practical the estimation
of spectra by direct use of the computed Fourier coefficients. Until this algorithm
was developed, the computation of the Fourier coefficients for large n required
a great deal of computer time in order to obtain numerically accurate values.
The spectral estimation method which has been widely used until now involves
the computation of lagged products. Let us briefly. discuss this standard method.

First let us present another expression for the power spectrum of [u(t)J.
Since the process is stationary and Eu (t) = 0, the 1th covariance

P ('I) = E [u(t + 'I) u(t)]

is independent of t. The natural unbiased estimator of p('1) forT> ° is
the sample covariance

-21-
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n-l-T
p(T) = n:T ~ u(t +T) u(t)

t==O

By straightforward algebra, we have

n-1

I'" 12 ~ IT' -iwTn A (W ) =£..J (l - .~) p (-r) e
t=-n+1

( .17)

where -p( -T) ==1l(T). Taking the expected value of equation (37) and using
a result from Courant and Hilbert (1953), it follows that

n-1

nE/A(W)1
2

==~(l-~)ph)e-iWT (.38)
T==n+1

n

== ~nf
. -n

s (W-W')
. 2 ,SIn nu.l

__ ---",__2-.-__ dW ,.
2 w'nsin T

where

S (W) ==L
T=~

() -iWT
pTe (39)

W. == 2:.L
J m

q :., ••.•
~~.~<jIj = p(O) +2 L p(T) Cos WT

t=1

The function sin
2
nW/2 is called the Fejer Kernel. Its integral is one

nsin2 w/2
Jar w= 0 and ~ otherwise,_ and the right hand side of equation

~ ~
(38) goes to S' (W). Howev:::.r, n E IA (w ) I. is equal to S (W) for W an integer
multiple of 2n/n. Thus, S:= S and equation (39) becomes an alternative def-
inition of the power spectrum of [u(t)} which holds for non-Markov stationary
process.

The variance of the estimator 'p (T) increases with T since there are fewer
lagged products u(t + T) u(t) to average over the sample. Let us modify

equation (37) by cutting off the 'tails' of the 'O( T) function and define the follow-
ing statistic: m

A L -iw TP(w.) = (3(T)e J'
J '

T=-m

-22-



A-
for m «n and j = 0, .•. , m. The expected value of P( W) is

m
E P (w) =2: p( ,.) c-iWJ

T=-m

--21nfn S(w-w')
_n

sin (m+ 1/2) w' dW'•. w
sm 2"

is called the Dirichlet Kernel. It is similar
sin (ill + 1/2) w',
sin ~

2
to the Fejer Kernel in its asymptotic properties and thus

"The function

A
lim E P(W ) = S (W )
m ...•co

/I

Barlett (1955) has shown that if m/n ...•co, the variance of P (w) is approx-
im.ately

"V P(W) ~ 2m
n

"'"""~..-~~....-
. '11 i. "'.."

.: .....::,..

In practice m is generally between 10 percent to 20 per~ent of n.
A

The precision spectral estimates based on P can be improved by smooth-
A

ing the P~(Wj) as follows:
'" /\ A

c_1P(Wj_1)+CO P(WP +c1 P(Wj+1)

where' <:_1+ Co + c1 = 1.- If Co = 1/2 and c1 = c_1 = 1/4, this smoothing

operation is called Hanning by Blackman and Tukey (1959).
, -/\ - -

The eStimates P(W / require the computation of only m Fourier co-

efficients instead of- n/2, but the computation of the p (T) is time consuming.
A

The direct _Il1ethod of .estimation using the A(W j) is now faster than the lag

product method if n is large. In addition the computation of all the Fourier
coefficients provides greater flexability in the analysis of a sample of a time
series.

4. HIDDEN PERIODICITIES

Let us return to the model Y(t) = f(t) +u(t) where [u(t)} is Markov.
If T, the period of f(t) _is known, we have shown that we can obtain precise
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estimates of the coefficients a (2nk/T) and h (2nk/T) if we havc a sufficiently
large number of consecutive observations of [Y(t)}. Moreover we can obtain
precise estimates of the powcr spectrum S (w) of the disturbance process. If
the spectrum is slowly varying about the fundamental and harmonic frequencies
of f (t), we can derive ind~endent F -tests for the null hypothesis that .
A(Wkm) = 0 for k=O, ... ,L(T/2~. To be more precise, suppose that IH(W)I

. 1 1 " h f d (-I!.M. nM for eachIS s ow y varymg m t e requency ban w
km

- ,w, + _)
-2 n Km n

k. Then for w, in the hand, (J 11-1 (W, +,)12 is approximately equal toJ Km J

~ 2and from (29), 2M S (Wkm) /S (Wkm) roJ X 2M for Wkm::J 0
1

S(W
km
)

or n. If wkm = 0 or n, the degrees of freedom is M. Since S (W
km
) and

A (W 1 ) are independent,Km

1
/\ 12n A (w

km
)

A

S ('icm)
~ ...1F2, 2M <A'k)

FI,M 0'0)

if ~m
::J 0, n

= 0, TT

(40)

(41)

'...---~#-..~

where F 2, 2M (Ak) is the non-central F distribution with 2, 2M degrees-

of-freedom and non-centrality parameter
2nAk

Ak = S(w
km

)

= IH(Wkm) I~A~
a2

.,;;:'-.,

.. '.:-"'~':.

Thus the larger the amplitude Ak = IA( Wkm) I of the kth sinusoidal component

of f(t), the greater the probability of detecting it in the observed time series.
The denominator degrees -of -freedom is only M for the cases of W

k
= 0

" m
and n, since the sum in the definition of S is taken over only M elements.

A

1\ The F statistics for different k's are independent since A(W
j
) and

A (WR) are independent for j::Jx..

Now suppose that we do not know the period of the function f(t). For
sufficiently large n we still can obtain precise estimates of the Fourier co-
efficients of f(t). Even for a moderately sized number of conservative obser'"
vations of Y(t), we can determine a great deal about the structure of f(t), pro-
vided the power spectrum of the disturbances is not too large in the vicinity of
the fundamental frequency and the first few harmonics of f(t). The power
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(42)

spectrum will be large if (12, the variance of the [e:(t)} disturbances, is

large, or if H (w) is near zero for w in the bands of interest. We will dis-
cuss the problem of H (w) ~ 0 later.

It would be helpful in the discussion of hidden periodicities. to consider an
example. Suppose that we have ten years of weekly data for some variable Y(t).
Thus the sampling interval is 6 = 1 week and n = 520. Let Y(t) = f(t) + u(t)
where f(t) is a seasonal periodic function. For sake of discussion, let us
assume that we have no a-priori knowledge about the true T, the period of f(t).
Of course, T = 52 weeks is a natural assumption. For 'T = 1 week, the Fourier
sum representation of the seasonal is

f(t) ~t A(~;k) exp (-i 2~t)
k=O

where

25
=a(0)+'2 L

k=l
(2Tlkt) tAkcos 5'2-ek +a(Tl) (-1)

r-'" ~-_.-.....--~.' .'...t_~..h

:

t'>-"
for k=O, .•• , 25 and wk=2Tlk/52 and A(W26) = a(Tl). Note that the zero

frequency component A(O) = a(O) is just the mean of f(t) over the year, ie. ,

51

a (0) ~ s~ 10>t)
Let us assume that a(O) = O.

The highest harmonic component in the representation of f (t) has the
angular frequency TI radians/week, or 1/2 cycles per week, i. e., it has a
period of ,+' days. The limit for the highest harmonic is a property of the
sampling interval fl. The shorter the time between successive observations,
the higher the frequency possible for the highest harmonic component of the
representation of f(t). However, suppose that f(t) really is of the form

2Tlt 2Tlt
f(t) = Al cos (52 - 8 1) + A 0 cos (177 - e D) (43)
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i. e., f(t) consists of a yearly cycle plus a daily cycle. Since cos 14TIt= 1 and
sin 14 TIt = 0 for any integer t, equation (43) becomes

(44)

---._-~

If Y(t) is regressed on the functions cos wkt and sinwk, and the qstimators

'1«(.I:k) and b (W k) computed from (44) and l11Corem :3, it follows that

E '3.(0) = AD COSAD

Thus for small 0'2 we will make the false inference that the mean of Y(t)

is non-zero (unless 80= n or ~n and we will be unable to detect the presence

of the daily cycle because we have sampled the process insufficiently often.

Given any frequency W , cos W t = cos (w + 2nm)t and sinw t = sino 0 0 0

(w + 2nm)t for any integers m and t. The functions cos (w + 2nm)t ando . 0

sin(w +2nm)t are aliases of cosw t and sinw t respectively. In ordero --- 0 0

to resolve the ambiguity, the sampling interval 0 must be less than a half

cycle of the frequency component, i. e., Ft:o:;~ For example, suppose we
woo

have quarterly observations of a,series which contains a four week cycle. This

cycle has a frequency of 2n 1~ radians/quarter. Thus, the alias which is

detected by Fourier analysis is the cycle whose frequency is ~ radians/quarter,
i. e., a cycle of a year.

Returning to our original example, suppose that A( 2~) = 0 for 6 :o:;k~26

for sake of argument. The highest harmonic has a period of 10 2/5 weeks. The
periods of the lower harmonics are 26, 17 1/3, and 13 weeks. Assume that we
do not know the fundamental period is 52 weeks. If we hypothesize that T= 52
weeks, we can use the previous results to make independent F -tests for wheth-

er or not A (2;;k) = 0 for k = 1, .•. , 5. However, the use of F -tests restricts

our attentions to the discrete frequencies we assume in our null hypothesis. For
example, if we make a mistake and guess T= 26 weeks, and if the amplitudes
AI" .• , A 5 are not too small or if the power spectrum of the disturbances is

not too large, we will detect the higher harmonics but we will miss the detect-
able fundamental periodicity. Moreover, if we gues s that T = 51 weeks, it can

be shown from (16) that we will accept the hypotheses that A (2~~) 10 for

k = 1, .. " 5 and, thus incorrectly infer that the fundamental is 51 weeks. Since
the basic problem here is one of estimation, there is an uncertainty band around the
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estimate of the fundamental frequency for a fixed n. It is clear that we should
look at all the Fourier coefficients we can estimate from the sample.

if j = 10k k = 1, ... , 5A~ + 5~0 S (Z;2
k
)

Suppose that we have computed the :A (;~J), j =0, ... , 259, from the

sample of fY (t)1 consisting of 520 consecutive weekly observations. From
(29), for each j'

E 1~(w.)12 =
J

otherwise

and for all j

VdA (Wj) 12) = [5~0 S (Wj) J2

Thus, if A ~ »5~0 S (wj), large valu~s of IA (Wj) 12 indicate the Wj

corresponding to the fundamental and harmonic periods. Moreover, we can
obtain an estimate of the power spectrum S (w) of the disturbances for the
frequencies W= W ., using the statistic defined in Theorem 4.

J
The easiest method to spot large values of F~.(w .) 12iS to plot it as a function of (Xj.

The plot of I'A fw .) I2 are independent random variab{es whose coefficients of"J' ------
variation are one, the periodogram will be jagged and have many false peaks which
correspond to true hidden periodicities (Bartlett (1955), Priestly (I962a), and
1962b».

f" •••..•••. __ .-....-. _

~.•• l , ••

For example, suppose we divide the frequency band (0, n) into N equal

parts or bands B l' ... , BN' and then average IA ( Wj) 12 over the W j in

the bands. The plot of the N averages yields a smoothed periodogram. In

order to illustrate this simple type of smoothing, let N=20 and thus Bk (rr k;t '
n ~O) for k = 1, ... , 20. There are 13 estimated Fourier coefficients in each
piece. The smoothed periodogram ordinates are

S k = ~3t IA (2n 13 (~;~) + j »)2 (45)

j=l
.... /' k-l/2 . n

From (39), 520Sk = S (n 20 ) WIth M=12. In general there are 2N Wj

in each band and thus if ~N were not odd, uSk and S(n k;; /2) would be

slightly different.
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L

The funadmental frequency is in B1, the first harmonic 2TT/26 is in B
2
,

the second harmonic 2TT/13 is in B3, and the third and fourth harmonics arc

in B4 (figure 5). Assuming that the power spectrum S(w) is slowly varying,

from (29) and Theorem 4, we have

1 A2 1 k-l/2 if k=l, 2,3
13 k + .520 S (TT 20 )

A 1 2 2 1 7rrESk ~ 13 (A4 + AS) +520 S(40 ) k=4

1 S(k-l/2)
520 20 k = 5, ..• , 20

and

" 1 1 k-l/2.12
V(Sk)~13 [520S(TT 20 ~

Thus, the smoothing reduces the true peaks in the periodogram, but it also
,reduces the variance of periodogram ordinates.

. It is Wise. to smooth using several different bandwidths since the amount of
variation of the spectrum over different frequency bands is generally unknown.
The. analysis of a sample of a time series which is made up of deterministic and
random components is not a one shot deal. One has to try several variations of

the basic type of analysis. The n/2+1 random variables A (2TTj) for j =0, ••• ,.
n

[n/2] are the fundamental elements in the analysis. However, it is often im-,
portant to modify the dependent variables Y(t) when trends and discontinuities
are present in the series will be discussed in Section 6. First, let us discuss
several misconceptions which are commonly held about Fourier analysis.

5. TRANSIENTS AND RANDOM PERIODICITIES

It is a common misconception that the only application of Fourier methods
to time series analysis is for determining hidden periodicities. These periodic-
ities are assumed to be periodic functions of time which repeat themselves in-
definitely over time with a fixed period, such as the position of the earth around
the sun or the height of tides. Fourier analysi s, however, can be successfully
applied to the analysis of transients in the mean of a time series.

Suppose that the series Y(t) = f (t) + u (t) is observed at the n consecutive
times t , ... , t + (n-1) ft, where f (t) is the function defined by equation 2ao 0
or 2b and t == 0 for convenience. All of the results in the previous sections areo.
valid for the problem of estimating the Fourier coefficients a (Wk) and b (W k)

and the power spectrum of the disturbances. The question of whether or not
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4 ~.51p.
;-.e.o:*-'_---' __

f(t) repeated itself in the past (t <t ) or will repeat itself in the futureo
(t >t + nl) can not lx' answered by an analysis of the sample; the answer musto
be assumed in the extrapolation of the model. We can use the estimates of
a (Wk) and b (Wk) to predict f (t) in the future. The best predictor is just
A

f (t). However if f (t) + u (t) is not a reasonably accurate model for Y(t) in
the future, then f(t) is not a useful predictqr of the expected value of the de-
pendent variable. If, on the other hand, there are time periods in the future
when f(t) + u(t) is appropriate, then l' is again a good predictor of the ex-
pected value of Y.

For example, Suppose that Y(t) is the interest rate at time t and f(t)
is a characteristic transient fluctuation in the mean rate after a discrete change
in the money supply. That is, if a change occurs at t , f(t) for t ~ t + nl'

000
describes the transient behavior of the mean rate as it moves from the old
steady-state position to the new steady-state. If f(t) is a sum of several
damped sinusoidal functions, Fourier analysis of the sample of yet) taken
after to can yield good estimates of the periods of the.damped oscillations
and can even determine the rate of decay of the transient. The resulting esti-
mate of f(t) can be used to predict the transient response in the interest rate
after a future change in the money supply. The subject of transient response .
analysis for a linear system is discussed in almost any book on linear systemsin engineering. _ . ,

Another common misconception is that any significant peak in the estimated
power spectrum is due to the existence of a sinusoidal component in the time
series which will repeat itself indefinitely with a fixed period. It is true that
a large peak at W in the estimated spectrum indicates that there is a sinusoidalo
variation in the data whose period is about 2nl W. However, there is no way

o
to infer that the period or the amplitude of the sinusoidal will remain constant
in the future, even if the underlying parameters of time series remain stationaryover time.

As an example, consider the Gaussian Markov process [u(t)} where (}'= 2
and h(O) = (1-6)2, h(1) = 0, h(2) = 1 where 6 is a small positive number.

lLe., (l-~) u(t) + u(t-2) = f(t).

Thus from (24)

H(w) = (1-6)2 + ei2w

and

222 2IH (w) I = (cos2w + (1- 6) ] + sin 2W •
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Since IH~) I = /\ 1/1,-21, for small

of t u (t)} has a large peak of height

2
1

I -2t, the power spectrum (J H(w) ,

(J2/4t? at ,JJ = ~. As 1\4 0, the
2

height of the peak goes to infinity whereas for w i= ;T . S(w) 4 2(I-:os2 W ) •

,Nonetheless, there is no sinusoidal component of period 4 time-units in the
Markov process since Eu(t) = 0 for all t. Actually there are no determin-
istic sinusoidal components in any stationary random process.

iW.t'
u (t)e J

I'" . I ".... ..... tA (w.) cos(w.t-8 (w.» +a (iT) (-1)
P J J P J P

(47)

There is an intuitive explanation of why the above process docs not con-
tain the deterministic sinusoidal component whose frequency is the point where
the power spectrum has a large peak. Suppose that we have a non-overlapping
set of samples of n consecutive observations of t u (t)} . Let t denote the

p 2iT'
starting point for the pth sample. with tI < t2 <••.. For Wj = n J • the

real and imaginary parts of

t -tn-I

A (W.) =.! ~
p J n ~

p

are independent identically distributed N (0, -21 S (w .» variables, where. n J
2 -2S(w) =(1 IH(w) I . From theorem 1and (9b), we can write u(t) for ....-

tp < t <:: t + n as the sum .- p ,
n/2-I

u(t')~= ap (0) + 2 L
j=I

,.~....--.-...--"
1'11'. t_~..k. 1

and thus from (47),

For each frequency w= w.. the phases
J

-1
where '8 (W) = tan

p

1m [A (w)]p
Re (1\ (w)]p

'8p (W) have the uniform density ~iT for 0 < e < 2iT, and the amplitudes

1
1 (W)I have the expected value[~ S(WjI/2 and variance (1 - ~)S(w) for large

! p 4 n 4 n

2 2-1 iT (J n
n. If we then let t, = n , S (2) ~ 4

'u(t)=:~ cos(1I't-~) tp~t<tp+n (48)
p '4 p

1\ ,~/? /\ TT na2
whereE(Ap) = v; vn(1<- and V(Ap) = (1- "4) T-

If the t are sufficiently far apart, the phases (J are uncorrelated.p p
-31-
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Over a time duration of several periods the process Iu(t) I resembles the

sinusoidal periodic function A cos (-f- t - 8). HowcvcI; as the process is

observed ovcr a longer tirnc. the amplitude and phase appear to vary~jn a purely
random manner. Since the expected value and standard deviation of A arcboth

. "- p
approximately\/fia, the hcights of the peaks of the sinusoid varies between zero

and vUeJ. The phase vary bctween zero and 21r radians, making the peaks and
valleys move randomly with regards to the time origin t = O. Thus it is only
possible to predict u(t) with any precision for a period or'two in the futurc.

As an example of the concept of phase, consider an c1ectric clock. If the
clock is exact and is working properly, the motion of the hour hand around the
dial is periodic with a period of exactly 12 hours. It is possible to accurately
predict the position of the hand well into the future. Suppose, however, that
the clock has a defect which causes the hour hand to speed up and slow down
slightly in a purely random manner. Once this clock is set, it will show the
correct hour for a certain period of time, but after a few days the position of
the hour hand will be uncorrelated with the true time. The phase is the differ-
ence in r.adians between the true hour position and the position of the hour hand
on the dial. The phase divided by the angular--frequency is the time diffe.rence
between the true hour and the clock time. If the phase is random and uniformly
distributed over (0, 2TT), the time difference will vary in an incoherent manner
over time.

A large peak, then, in the estimated power spectrum of a time series in-
dicates that the sample has a sizable sinusoidal component with the indicated
frequency. The only way to infer whether the amplitude and phase of the com-
ponent are fixed or are random is to measure their variability over time. This
requires a sample length which is many times the period of this sinusoid. A
relatively small variance of the phase indicates that the component is determinis-
tic. The phase variance would be zero if the component is a sinusoid with fixed
amplitude and phase and if there were no random disturbances, i. e. , u(t) == O.
If the phase drifts between 0 and 2TTin a random manner over time, the com-
ponent is a random process. In many applications exogenous information leads
the investigator to assume that a large spectral peak at frequency W k = 2TTk/n
indicates that the amplitude of the deterministic component cos (Wkt - 8 k) in

the linear model y(t) == f(t) +u(t) is significantly different from zero. For
example, for economic time series a large peak in the estimated spectrum at
the frequency corresponding to a 12 month period indicates a deterministic
seasonal cycle, based upon the exogenous information that the cyclic behavior
is caused by the weather.

6. LINEAR TRENDS

Most economic time series contain trends. Suppose that the trend is linear
and enters the model additively, i. e., Y(t) == c + dt + f(t) + u (t). The presence
of the trend will bias the estimates of the Fourier coefficients of f(t) since
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c + dt is not orthogonal to the independent variables coswkt and sinWkt.

The bias is greatest for the low frequency or long period components, and is
negligible for the high frequency or short period components. It is important
to reduce the bias effects of the trend as much as possible. Moreover, the
slope of the trend is generally of interest. The simplest approach to estimating
the trend and removing its effects from the series involves estimating c and
d by regressing Y(t) on c + dt, and then computing the residual time series

Y(t) - 2 - dt. The Fourier coefficients of f(t) are computed from the residuals

(Durbin 1962). However, the estimates a( W
k
) and b( Wk) are still biased

since the trend function and the independent variables are not orthogonal. None-

theless the biases of the estimates a-( Wk) and 'b( Wk) computed from the re-

siduals are smaller than the biases of the estimates computed directly from the

Y(t). Bear in mind, however, that these a (Wk) andb (Wk) are not the least-

squares estimators of a (Wk) and b (Wk) for the model with the linear trend.

If the disturbances are white, i. e., uncorrelated and homoskedastic, the
least-squares estimators of d and A (Wk) = a (CJ.k) + ib( W

k
) are easily derived

from the normal equations of the model Y(t) = dt + f(t) + e;(t). The intercept
c is not necessary in the m()del since a(O) = c and b(O) = O. The least-squares
estimators are:

.•..•....•--..-- •.•....
,'.a'iM.

r d' rL~ iw t
2:t He 1

A (0) .: ..."2:t
n 0

A -iw t
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. -iw t

lit (W T) Lte T 0 0 .•• 0

-1
. ttte lWT

o
o

o
n

2:Y(t)

-i~ tI (49)

~ .. '.

Note that all the sums in (49) can be computed by using the fast Fourier trans-
form algorithm.

It should be clear that the two-stage technique for estimating the Fourier
coefficients of f (t) can be extended to the case of an additive polynomial trend,
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or any trend of known functional form.

and d2 are estimated by regressing
A A 2

Y(t) - dl t - d2t are then computed.

from the res iduals.

For example, if the trend is d1t+d2t
2, d

l
Y(t) on d]t + d2t

2 and the residuals

The Fourier coefficients are computed

A multiplicative trend model, however, poses special problems. Suppose
that we have the model

Y(t) = (c + dt) f(t) dt) o ~t < n

! ow •..
•......~._~

We can use the above procedures for flog Y(t)} if we assume that (log E: (t)}
is a white Gaussian process and that d/c is small enough so that

dlog (c + dt) ~ log c + - tc

The presence of an undetected trend causes a specification error in the ordinary
least-squares estimation of the Fourie~ coefficients of a periodic mean of a time
series. In addition, a trend will produce a bias in the estimate of the power spec-
trum of the disturbance. The bias is most severe for the low frequency spectrum
estimates.

For the case of estimating the power spectrum of a stationary random. process,
another source of bias is the presence of discontinuities in the beginning and end
of the sample. The estimates of the low frequency part of the spectrum will be
biased if there is an appreciable difference between the sample mean and the. first
few or last few observations in the s~mple. In order to reduce this effect, the
beginning and end of the sample should be tapered One of the simplest tapering
methods is to multiply the first n/20 observations by k/20n for k= 1, ... ,n/20
and to multiply the last n/20 .observations by 1 - k/20n. This type of tapering
effects 10 percent of the sample. The investigator, of course, is free to taper
the sample more or less as he chooses. Tapering, however, produces a bias in
the estimates of the Fourier coefficients of the periodic mean f(t) if it is present
in the data. This bias is less than the bias produced by the discontinuities at the
ends of the record.
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