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Detecting Nonlinearity in Time Series:
Surrogate and Bootstrap Approaches∗

Melvin J. Hinich, Eduardo M. Mendes, and Lewi Stone

Abstract

Detecting nonlinearity in financial time series is a key point when the main interest is to
understand the generating process. One of the main tests for testing linearity in time series is the
Hinich Bispectrum Nonlinearity Test (HINBIN). Although this test has been succesfully applied to
a vast number of time series, further improvement in the size power of the test is possible. A new
method that combines the bispectrum and the surrogate method and bootstrap is then presented
for detecting nonlinearity, gaussianity and time reversibility. Simulated and real data examples are
given to demonstrate the efficacy of the new tests.

∗E. Mendes acknowledges the support of CNPq under the grant 301313/96-2. The fortran program
which runs the bispectrum code is available from authors



1 Introduction

All economic systems are inherently stochastically nonlinear since preferences are
assume to be convex and the economy is subject to various exogenous random
shocks. The stochastic nonlinearity is usually lost in the highly aggregated time
series that are generated by governmental agencies. Financial time series such as
high frequency stock returns and currency exchange rates are nonlinear. M.J. Hinich
and D.M. Patterson (1989) were the first financial data analysts to present evidence
of nonlinearity in daily data from the New York Stock Exchange using the Hinich
Bispectrum Nonlinearity Test (HINBIN). The original HINBIN, the related Hinich
test of Gaussianity and the Hinich-Rothman test of time reversibility were based
upon asymptotic properties of the normalized bispectrum.

Since the introduction Efron’s boostrapping in the late seventies (B. Efron,
1979), much attention has been attracted in both theoretical and applied sides of
Statistics. The bootstrap approach attempts to retrieve more information from sam-
ple data so as to solve problems that are not easily solved by some traditional meth-
ods. It is known that most test statistics do not have a known finite sample distribu-
tion. One either uses asymptotic theory to compute a critical value or some form of
resampling known in statistics as bootstrapping. In practice, one cannot determine
the validity of critical values determined by asymptotic theory since the rate of con-
vergence of the central limit theorems used in the theory is a function of unknown
parameters. Bootstrapping (also known as the resampling technique) is presented
as a way out but standard bootstraps do not fit into time series problems since they
are formulated on the assumption that time dependence can be ignored. In cases
where there is linear dependence, alternative bootstrap methods are available in the
literature. See, for instance, (R. M. Vogel and A. L. Shallcross, 1996; P. Hall et al.,
1995; Hidalgo, 2003) for the moving blocks bootstrap. The surrogate method of
Theiler et al. J. Theiler et al. (1992) is a type of bootstrapping that takes advantage
of the statistical properties of Gaussian time series and has the potential to be a very
useful tool since it is appropriate for data that is time-dependent.

The surrogate data method (J. Theiler et al., 1992) tests whether an observed
time-series is consistent with the null hypothesis of a linear gaussian process (LGP).
This is implemented by first generating a set of surrogate data sets whose spectra
are identical with the observed time series and which are by construction LGP. It is
then possible to test whether the observed time-series has statistical properties that
are significantly different from the "random" surrogate data sets. If so, the LGP
null hypothesis is rejected. This technique is recognized as a powerful method (D.
Prichard and J. Theiler, 1994) and has formed the basis of a large number of studies
with the aim of detecting nonlinearity in physical (J. Theiler and D. Pichard, 1997)
and biological time series typically including ECG, EEG, neural, epidemiological
and climate signals (Y.-J. Lee et al., 2001; F.X. Witkowski et al., 1995) as well as
for detecting unstable fixed points (P. So et al., 1996).

Although the surrogate method has been widely used in the literature as pointed
out before, it has been shown that the surrogate method has major drawbacks and
can often fail to maintain reasonable significance levels when testing null hypothe-
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ses based on even the simplest of test statistics (M. J Hinich et al., 2002). The LGP
null hypothesis is particularly restrictive when used to test against the alternative
hypothesis of nonlinearity. In the real world most linear processes are nearly al-
ways nongaussian. Hence for this important and large class oflinear nongaussian
processes, tests based on the surrogate method can routinely reject the linear null
hypothesis even though the time-series is purely linear.

In this paper, alternative bootstrap methods are introduced for detecting nonlin-
earity in time series data, and examine diagnostic tools that test for three impor-
tant characteristics, namely: i) linearity, ii) gaussianity and iii) time-reversibility.
The tests make it possible to discriminate between those linear processes, which
are gaussian, and those, which are nongaussian. Detection of time-irreversibility
provides complementary information, since all stationary Gaussian processes are
time-reversible.

This paper is divided as follows. The background material is given in Sec. 2.
The new tests for nonlinearity, gaussianity and time reversibility are introduced in
Sec. 3. Examples using simulated and real data sets are given in Sec. 4. Sec. 5
summarizes the results presented in this work.

2 Background Material

Before proceeding to the description of the proposed tests, it is important to define
what is meant by a stochasticlinear process. A random sampled process{x(tn)} is
linear if it is of the formx(tn) = ∑∞

k=−∞ h(tn−k)ε(tk) where{ε(tn)} is a sequence
of independent and identically distributed random variables,∑∞

k=−∞ |h(tk)|< ∞ and
tn = nτ for a fixed sampling rateτ−1. Using signal processing terminology{x(tn)}
is the output of a stable linear filter whose impulse response is{h(tn)} and whose
input is thepure white noiseprocess{ε(tn)}.

We restrict the null hypothesis of linearity to the class of linear processes that
can be whitened using a least squares fit of an autoregressiveAR(p) model where the
maximum lagp is much smaller than the sample sizeN of the data to be analyzed.
This class includesAR(p) processes wherep << N but the restriction is inherently
empirical since the user will fit a model using one of the various methods to yield
white residuals based on some whiteness criterion. The residuals do not have to
mimic a pure noise process as is required for the M.J. Hinich (1996) bicorrelation
test for third order dependence since the shuffle bootstrap will destroy any higher
order dependence in the residuals.

The signal’s bispectrum is

B(ω1,ω2) =
∞

∑
τ1=−∞

∞

∑
τ2=−∞

cxxx(τ1,τ2)exp[−i2π( f1τ1 + f2τ2)] (1)

whereB(ω1,ω2) is the bispectrum of the signal (M. J Hinich and C. S. Clay, 1968)
andcxxx(τ1,τ2) is the bicorrelation.

The bispectrum is computed using conventional nonparametric methods. When
computing the bispectrum we take advantage of two properties: 1) Bispectrum val-
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ues are approximately normally distributed (M. J. Hinich, 1982), and 2) Bispectral
estimators are approximately independent across frequencies (M. J. Hinich and H.
Messer, 1995).

Suppose that we have a sample{x(1) , ...,x(N)}that we partition intoP= [N/L]
non-overlapping frames of lengthL where the last frame is dropped if it has less than
L observations. Thepth frame is{xp(1) , ...,xp(L)}= {x((p−1)L+1) , ...,x(pL)}.
The discrete Fourier transform of thepth frame isXp(k) = ∑L

t=1xp(t)exp
(
−i2πkt

L

)
and the periodogram of themth frame is 1

L

∣∣Xp(k)
∣∣2 = 1

LXp(k)Xp(−k). Because
N ' LP the frame-averaged estimate of the spectrum at frequencyωk = 2πk

L is

Ŝ(ωk) =
1
N

P

∑
p=1

∣∣Xp(k)
∣∣2 (2)

ThenE
[
Ŝx( fk)

]
= S(ωk)+ O

(1
L

)
where the error term of order 1/L is due to

the frame windowing of the spectrum, and the variance of the estimate for large
values ofL andP is 1

PS2(ωk).
Similarly, the frame-averaged estimate of the bispectrum at frequencies(ωk1, fω2)

is

B̂(ωk1,ωk2) =
1
N

P

∑
p=1

Xp(k1)Xp(k2)Xp(−k1−k2) (3)

with E
[
B̂(ωk1,ωk2)

]
= B(ωk1,ωk2) + O

(1
L

)
and variance for largeL and P ex-

pressed asLPS(ωk1)S(ωk2)S(ωk1 +ωk2).
The ideas briefly laid here are the base for the well-known Hinich test for gaus-

sianity and linearity of stationary time-series (M. J. Hinich, 1982) and the tests
proposed in this work.

3 Linearity, Gaussianity and Time-Reversibility tests

Specific statistical properties of an estimate of the bispectrum are now discussed
in order to understand the logic behind the tests (M. J. Hinich, 1982) of linearity
and gaussianity and the Hinich-Rothman test for time reversibility (The Fortran
program written by Hinich, available, upon request, findsK for whatever band is
selected. In (R.A. Ashley et al., 1986),q = 0.8 is used but a more robust test uses
theq = 0.9th quantile based upon numerous tests of the method on various real and
artificial data.).

Let {x(tn)} denote a zero mean strictly stationary random process that is ban-
dlimited and sampled at a rate sufficient to avoid aliasing withtn = nτ. To simplify
notation letτ =1. The bicorrelation of the process iscxxx(τ1,τ2) = Ex(n)x(n+τ1)
x(n+ τ2) and its bispectrum is the two-dimensional Fourier transformBx(ω1,ω2) =

∞
∑

n1=−∞

∞
∑

n2=−∞
cxxx(τ1,τ2)exp[−i (ω1τ1 +ω2τ2)]. For further details see (B. Efron,

1979; M. J. Hinich, 1982; M. J. Hinich and H. Messer, 1995).
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For linear processes, it follows thatBx(ω1,ω2)= µ3εH (ω1)H (ω2)H (−ω1−ω2)
whereH(ω) is the Fourier transform of h(k), andµ3ε = Eε3(n) is the skewness of
ε(n).

In what follows a detailed description of the proposed tests for linearity, gaus-
sianity and time-reversibility is given.

3.1 Testing Linearity

Under the linear null hypothesis, as long as the sample sizeN >> p, all the serial
correlation in the data {xk} will be removed by the initial AR(p) fit. The criticalnull
hypothesisfor the linearity test is that the residuals {ek} obtained from the AR(p)
fit are independently distributed. Thus statistically significant sample bicovariances
due to nonlinearities will falsify the null hypothesis.

Let B̂e(ω1,ω2) denote the estimate of the bispectrum of the residuals at bifre-
quency(ω1,ω2) using a resolution bandwidth of∆. Using Theorem 5.3.1 of (D.
Brillinger, 1975) it can be shown that the real and imaginary partsN

1
2 ∆[B̂(ω1,ω2)−

B(ω1,ω2)] are independently distributed and gaussian with mean zero and variance
σ2

e/2 asN goes to infinity. Thus the large sample distribution of thenormalized
skewness functiondefined byV(ω1,ω2) = 2N∆2σ−6

e [B(ω1,ω2)]2 is χ2
2(λ), a chi

squared with two degree-of-freedom and non-centrality parameterλ = 2N∆2σ−6
e [µ3e]2

for each bifrequency for the null hypothesis of independence. This parameter is
estimated bŷλ, the average skewnessV (ω1,ω2) for all bifrequencies in the bispec-
trum’s principal domain.

Let F(υ|λ) denote the cumulative distribution function of aχ2
2(λ) and letU(ω1,

ω2) = F [V(ω1,ω2)|λ]. The normalized skewness values are then transformed into
uniform (0,1) variates under the null hypothesis by this transformation. Then the
modified Hinich test for linearity (independence of the residuals) is to compute the
qth quantile of the sortedU statistics for all K bifrequencies in the principal domain,
where the user selects q. If the whole bandwidth up to the folding frequency is used
then there are approximately K=116∆2 bifrequencies in the principal domain (R.A.
Ashley et al., 1986). The qth quantile is approximately gaussian with mean q and
varianceσ2=q(1-q)/K under the null hypothesis, and we use the q=0.9th quantile
(R.A. Ashley et al., 1986).

Using these estimates of the mean and variance, the asymptotic gaussian distri-
bution the 5% critical value for the one tailed test of linearity is easily found to be
0.9+ 0.492/

√
K. If the 0.9th quantile is larger than this value the null hypothesis

of linearity is rejected at the 5% size level. Thus under the null hypothesis 5% of
such statistics would be larger than the above value. Since the gaussian distribution
is only a large sample approximation whose accuracy for a given N is unknown,
simulations are needed to determine how well the approximation works. Unpub-
lished simulations run by Hinich shows that the test is conservative, that is its false
rejection rate for the nominal 5% level is around 2%. This makes the test less pow-
erful than a test that has a true 5% level. To improve the power of the test to detect
nonlinearity, some sort of bootstrap is required.
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The bootstrap method using surrogates will be described next.

3.1.1 A Surrogate based Test for Nonlinearity

Although the surrogate method was shown to have major drawbacks (M. J Hinich
et al., 2002), it is nevertheless possible to make use of surrogate based approaches
for detecting nonlinearity. In particular we will make use of the Hinich test for non-
linearity, which although already proven to be an effective test, has been shown to
be conservative (Douglas M. Patterson and Richard A. Ashley, 2000). A surrogate-
based approach has the advantage of providing a more exacting test.

We first appeal to the fact that a large subset of linear processes are contained in
the set of stable and invertible AR(p) processes of the form

p

∑
k=0

β(k)x(n−k) = ε(n) (4)

whereβ(0) = 1. Consider a sample(x(1),x(2), . . . ,x(N)) from an AR(p) process.
Note that the residuals(e(1),e(2), . . . ,e(N)) obtained after fitting an AR(p) model
(via the Yule Walker equations) to such a sample are approximatelyiid and will be
close approximations to the unobserved pure noise input{ε(n)} whenN » p (T. W.
Anderson, 1971).

The test proposed here requires the following steps:

i) The time series(x(1),x(2), . . . ,x(N)) is initially “whitened” by fitting an AR(p)
model to the data and separating out the residuals of the fit(e(1),e(2), . . . ,e(N))
.

ii) A set of M surrogates or bootstraps of the residuals {e(k)} are created to yield
the surrogate residuals (e′(1),e′(2), ..,e′(N)). (Alternatively, if surrogates of
the original time-series are required, they can be constructed by driving the AR
model found in i) with the surrogate residuals {e′(1),e′(2), ..,e′(N)}.

iii) The surrogates allow determination of the 5% critical value for the given test
statistic, whether it tests for linearity, gaussianity, or time reversibility etc.

3.2 Testing Gaussianity

If the density of the noise variates {ε(n)} is symmetric about its mean (zero) then
the skewness is zero, and its bispectrum will not be statistically significant from
zero. The Hinich test statistic (M. J. Hinich, 1982) to test for input symmetry is
the sum over theV (ω1,ω2) for the K bifrequencies. Since the bispectral estimates
are approximately independent across the bifrequency grid, this sum will be ap-
proximately distributed as aχ2

2M (0). The non-central parameter is zero for the null
hypothesis since the skewness is zero. The null hypothesis is rejected if the sum
is greater than a one tailed threshold that is determined by the size probability re-
quired by the user who employs the above large sample chi squared distribution for
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the sum. Note that a gaussian density is symmetric and thus the Hinich test for gaus-
sianity is really a test for the more general hypothesis of noise density symmetry.

3.3 Testing Time Reversibility

If the purely random process is time reversible then its bicorrelation function will
have the symmetryEε(n)ε(n+τ1)ε(n+ τ2) = Eε(n)ε(n− τ1)ε(n− τ2) for every
τ1 and τ2. This implies that the imaginary part of its bispectrum is zero. The
Hinich-Rothman test statistic (M.J. Hinich and P. Rothman, 1998) is the sum of
R(ω1,ω2) = 2N∆2σ−6

e |ImBe(ω1,ω2)|2, which are distributed as aχ2
M (0) under the

null hypothesis of time reversibility. Thus the test is similar to the Hinich test for
noise density symmetry but withM degrees-of-freedom.

4 Applications

The above tests have been successfully applied to a variety of different nonlinear
models, and have also been used to test biological, environmental and economic
time series. The next three examples will illustrate the application of the proposed
tests.

4.1 Gaussian, Uniform and Double Exponential Innovations

Using simulations, we first check the size of the nonlinearity test using three boot-
straps a) the Theiler surrogate; b) the temporal shuffle (also called resampling with-
out replacement) and c) Efron’s bootstrap (resampling with replacement) for gaus-
sian, uniform and double exponential innovations.

In the analysis that follows, we make use of an initial set of S=4,000 random
(gaussian, uniform and double exponential) ‘control’ time series(e(1),e(2), . . . ,e(N)
(with N=100 here). To check the sizes when testing the meanµ (or any other statis-
tic) we proceed by examining each of the S=4000 ‘control’ time series in turn as
follows:

i) Estimate the meanµc of the ‘control’ time-series.

ii) Construct M surrogate time-series (e.g., via the method of Theiler et al., the
shuffle or the Efron bootstrap).

iii) Determine the distribution of the M meansµ of the M surrogate time series.

iv) Calculate the 5% critical valueµ.05, for which 5% of the surrogates have a
mean valueµ that is greater thanµ.05.

v) Determine whether the control time-series has a mean larger than the 5% criti-
cal value i.e., whetherµc> µ.05.
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Theiler Bootstrap Shuffle
NL G TR NL G TR NL G TR

Gaussian 5.0 4.8 4.6 3.9 1.6 4.4 5.3 5.0 5.2
Uniform 1.5 1.2 0.7 4.0 3.3 5.4 5.0 4.9 5.3
Exp. 12.1 27.1 15.9 2.8 0.7 4.1 5.0 4.9 5.2

Table 1: Sizes for nonlinearity (NL ), gaussianity (G) and time reversibility (TR)
tests.

Repeating steps (i−v) for each of the S=4,000 random control time series, the
sizeα may be calculated by determining the proportion of times for whichµc> µ.05.
If the bootstrap is operating correctly the size should beα=5%.

Surprisingly, as Table 1 shows, the only bootstrap that is successful is the tem-
poral shuffle, which maintains sizes reasonably close to the expected 5% level in
all cases. The same proves to be true when the exercise is repeated for the tests of
gaussianity and time reversibility (TR). Table 1 confirms that the Theiler method
provides the correct size for gaussian distributions only.

The same procedure was repeated for S=500 random control time series and
the results closely follow the ones presented in Table 1. This indicates that the the
results presented here are consistent and do not depend on the sample size.

Note that an AR model is not fitted in this case to avoid the contamination of the
simulations with the nuisance parameters of various AR models. The tests are only
simulating what can be retrieved from the residuals whenN is much larger thanp
and whenp is good enough to get white residuals.

4.2 Henon Map

Consider first the example from Theiler where four independent realizations of the
Henon map (the x-coordinate) are added yielding a time series of N=1,000 points.
The superimposed Henon data is fitted with a recursive AR procedure that finds the
model that minimizes the sum of squared residuals. If for example we start with
p=10, the routine fits an AR(10) and then finds the t-values for the lag parameter
estimates. If the t-value’s probability value of say lag 2 is greater than a preset
threshold then that lag is removed from the next fit. The procedure continues until
either all lags from one to ten are not significant or the remaining lags are significant
with respect to the threshold. The best fit found was an AR(6) model with lags
1,3,4,5, and 6 (R2=0.28).

The one tailed 0.9th quantile test for nonlinearity based on asymptotic theory
had a probability level of p=0.03, and thus was significant at the 3% level. How-
ever, this is an asymptotic result and thus open to interpretation for finite data sets,
particularly when there is border-line significance as found in this example. We
thus repeated the test on 500 ‘shuffle’ bootstraps of the observed data. Not one of
the bootstrapped test statistics had a probability level greater than p=0.03. Hence
the bootstrapped test found the data to exhibit significant nonlinearity. Similarly,
the test for gaussianity and time reversibility were both rejected with p<0.0001.
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Coca Cola Returns (Jan. 2 1980 to  Aug.30 1985) 
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Figure 1: Coca Cola daily rate returns Jan 2, 1980 to Aug. 30, 1985

4.3 Coke Data

Fig 1 displays a series of within day rates of return of Coca Cola from January 2,
1980 to August 30, 1985. These rates of return were constructed from the actual
traded prices by a method that obtains unaliased ten minute aggregates for each
trading day. The details of the sampling method used are in (T. Schreiber, 1998).
There are 36 of these ten minute return aggregates for each trading day yielding
N=51,622 data points. Fig. 2 shows all significant U-values in the principal domain
of the bispectrum at the appropriate bispectral frequencies. The 0.9th quantile test
for nonlinearity based on asymptotic theory had a probability level of p=0.002, and
thus is significant at the 0.2% level. With such high significance, there is no need
for a bootstrap test, but in any case the latter detected unequivocally nonlinearity in
the time series. Similarly, the test for gaussianity and time reversibility were both
rejected with p<0.0001.

It could be argued that the Coke data is dominated by a GARCH-type model and
therefore the results shown above are not interesting. In order to show otherwise
the Coke data was clipped. The sampling interval is 10 minutes and there are 36
observations per trading day. The data is clipped to 1/-1 wherer(t) = 1 if the return
is positive and−1 otherwise. It has been noted that changing the clips to be around
the mean doesn’t change the results.

Tables 2 and 3 show the parameters, amplitudes and periods for the AR(4 and
5) fitted to the clipped coke data. Note that the four AR coefficients are highly
statistically significant for the whole sample. This implies that the returns can not
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Figure 2: Raw data - Bifrequencies whose probability values are greater than 0.99
are marked in the principal domain of the bispectrum. The rest are set to zero to
remove noise clutter

AR(1) AR(2) AR(3) AR(4)
Parameters -0.14 -0.06 -0.06 -0.03
T values -31.70 -12.42 -12.59 -7.43

Table 2: AR(4) parameters / t values. Adjusted R Square = 0.023 Std Error of AR
Fit = 0.214E-02. p Value Threshold for the Iterative AR Prewhitening Method =
0.010

AR(1) AR(2) AR(3) Ar(5)
Amplitudes 0.39 0.39 0.46 0.46
Periods 2.52 2.52 6.26 6.26

Table 3: Amplitudes & Periods of the Roots of the AR Polynomial in units of 10min.
A real root is given a period = 0.
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Figure 3: Clipped data - Bifrequencies whose probability values are greater than
0.99 are marked in the principal domain of the bispectrum. The rest are set to zero
to remove noise clutter
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Figure 4: Spectrum for Coke clipped data
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be ARCH or GARCH. To corrobate these results bispectrum values were calculated
and shown to be highly significant. See Figures 3 and 4 for the bispectrum values
and spectrum of the coke clipped data.

5 Conclusions

It should be observed that no comparison was made between the proposed tests and
the ones available in the literature (BDS, NEGM, Kaplan Test etc.). As rightly stated
in (W. Barnett et al., 1997) the available can not be completely compared as their
null are not enterily compatible. However many of the available tests can be used
jointly. In this paper, new tests for nonlinearity, gaussianity and time reserversibility
using surrogate and bootstrap methods have been proposed. It has been shown that
to improve the power of Hinich’s earlier tests to detect nonlinearity, gaussianity and
reversibility some sort of bootstrap was required. In particular, the use of shuffle
bootstrap in conjuction with Hinich’s tests was demonstrated to hold proper sizes.
Two simulated and one real data examples have been given to illustrate the power
of the tests.

In the example using the Coke Data, the results presented in this paper are in
accordance with (C. Brookes and M. J Hinich, 1998), where the authors tested the
validity of specifying a GARCH error structure for financial time series data in
the context of a set of ten daily Sterling exchange rates. The results demonstrate
that there are statistical structures present in the data that cannot be captured by
a GARCH model, or any of its variants. The nonlinear structure of the data was
unequivocally detected using the proposed tests.

Finally, the main result in this paper is the introduction of a shuffle bootstrap
to set the critical values for the tests and to compare the shuffle bootstrap with two
other bootstrap methods.
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