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In optimizing information flows in networks, it would be
useful to predict aspects of the network traffic. Yet, the
notion of predicting network traffic does not appear in
the relevant literature reporting analysis of network traf-
fic. This literature is both well developed and skeptical
about the value of traditional time series analysis on
network data. It has consistently reported three “traffic
invariants” in the analysis of network and Internet traffic.
This study uses such time series analysis on a day’s
worth of Internet log data and finds poor support for one
of the invariants. In the preliminary analysis, evidence of
nonlinearity was discovered in these data and the anal-
ysis presented here examines this question further. This
study posits that nonlinear events may be a traffic in-
variant although this hypothesis would have to be inves-
tigated further. The appearance of nonlinear structures
is important to the question of predicting network traffic
because there are currently no methods to predict time
series with nonlinear structures. The discovery of non-
linear structures, then, may mean that developing a pre-
dictive model is impossible with current techniques. On
the other hand, these nonlinearities may result from in-
teractions from other OSI Layers than the one studied.

1. Network Traffic Measurement

A recently published review of Internet measurement
(Molyneux and Williams, 2001) concluded that studies of
Internet traffic comprise a systematic investigation of the
characteristics of that traffic. An end of such a literature is
to understand the phenomena being investigated and to
predict them. This survey of the Internet traffic literature
concluded it lacks only attempts at forecasting the traffic it
examines to be scholarly in the defined sense. Prediction is
a method for testing the accuracy of the analysis of causes
leading to phenomena we wish to control or alter and

prediction is normally a part of scholarly literature as a
discipline and test of models of processes.

It would, clearly, be useful, for example, to predict traffic
bursts or information flows on networks before they arrive
rather than having to adjust for them afterwards. So, in
addition to being a test of the models of processes, predic-
tion is also of practical value because it is an important
matter in managing information networks.

A brief review of an important set of conclusions from
that literature will serve to introduce this article and the
analytic method used here. The literature describes three
major “traffic invariants”: “heavy tails,” “self-similarity,”
and “long-range dependence.” “Traffic invariants” are re-
sults that are reported consistently in network traffic studies.
Any analysis of network traffic data can expect to see these
invariants, and two of them figure in the analysis presented
here.

1.1 Heavy Tails

Given that the treatment here of one of these invariants,
“heavy tails” is encountered more in the statistical literature
than in the network traffic literature, a brief discussion of
heavy tails is appropriate in order to provide a comparison
of raw and treated data. “Heavy tails” refers to the fact that
most traffic on the Internet consists of small connections in
which little data are exchanged but from time to time, large
connections with much data flow. A histogram of such a
distribution would show many observations of these small
connections, with low byte counts, and a few observations
of very large byte counts.

Figure 1 is a histogram of the first three quartiles of one
variable in a set of network traffic data that is analyzed in
this study. This set of data is discussed further below in
Section 4, but for now this histogram represents traffic flows
sorted by the size of the connection. In this distribution,
there are 512,694 transactions, the smallest of which is 0
bytes while the largest is over 64 million bytes. The third
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quartile boundary is at 8,188 bytes. In fact, this histogram is
typical of a heavy-tailed distribution in that it has many
small transactions and a few large transactions. The amount
of data in the upper quartile of this distribution (with the
small numbers of large flows) is greater than the amount of
data in the three lower quartiles. These are the heavy tails.
It is a problem to represent this type of distribution graph-
ically when the highest values are so much larger than the
bulk of the distribution; that is why only the first three
quartiles are used here.

There are 384,522 transactions in these three quartiles for
a total of 725 million bytes. In contrast, there are 326
transactions of over a million bytes, and these transactions
have a total of 1.4 billion bytes.

The skewness and kurtosis of this distribution are 158
and 37,193, respectively. Skewness is a measure of how
asymmetrical a distribution is about the mean value and
kurtosis is a measure of how peaked a distribution is.
Skewness and kurtosis of gaussian “normal” distributions
are zero. Skewness is calculated by the formula:

� �
E�X � ��3

�3 ,

where � � EX and the variance, �2 � E�X � ��2

Kurtosis is calculated by:

K �
E�X � ��4

�4 � 3

The mean transaction size is 11,216 bytes, which is
higher than the third quartile boundary. Variance is 4.12
� 1010, although the variance of a raw heavy-tailed distri-
bution is not a useful statistic. The variance and standard
deviation are measures of central tendency of a distribution.
The standard deviation is the square root of the variance, but
the higher either number is, the more deviation from the
mean value. The coefficient of variation (CV) is another
measure of central tendency that is calculated by dividing

the standard deviation by the mean. The purpose for making
this calculation is that the larger the population values, the
larger the standard deviation, so to provide a means of
comparison of standard deviations from different popula-
tions, the coefficient of variation is often useful. The CV of
this population is 1,811.

Heavy-tailed distributions are common, and an early
problem faced by the discipline of Statistics was how to deal
with them. These distributions occur in rainfall, income
distributions, stock prices to name but a few areas. In the
network traffic literature, the literature dealing with heavy
tails seems to indicate that this phenomenon is a function of
file sizes being requested. That is, the distribution of the
sizes of files stored on Internet servers also shows heavy
tails (Woodruff et al., 1996, Crovella et al., 1998). There
are, however, no generalizations about the characteristics of
the distributions of file sizes. A work on heavy-tailed dis-
tributions (Adler, et al. 1998) has discussions of these kinds
of distributions from several fields including authors who
have written on network traffic.

1.2. Long Range Dependence

“Dependence” as used in traffic studies occurs when
events in one time are correlated with events in a previous
time. “Long range dependence” occurs when the correlation
function does not go to zero rapidly enough as the lags
increase. It is occasionally referred to as “long memory.” As
of this writing, there appears to be no theory to explain this
relationship of traffic over time. We present evidence
against long-range dependence in Section 6.

1.3. “Black Box” Methods

In addition to these “traffic invariants,” a belief that time
series analysis cannot be applied to network traffic is a
common view. Mukherjee (1994) is frequently cited but
more recently in response to Resnick (1997), Willinger and
Paxson (1997), and later Willinger et al. (1998) argue that
“black box” methods—methods which do not look into each
packet to analyze them—do not contribute to the under-
standing of network traffic. The contrasting methods are
referred to as “structural” because they look at the individ-
ual packets to analyze network traffic. This study uses
conventional time series analysis on aggregate network traf-
fic data—that is, a “black box” method.

A time series is nothing more than data indexed by time,
and the analysis of such data is common in many fields.
Techniques that help explain underlying phenomena should
be used no matter how they might be characterized.

1.4. Transforming Raw Data

Another criticism of Resnick (1997) was made by Adler
(1997) who asked why Resnick did not transform the data
he worked with.

FIG. 1. Responder bytes (first three quartiles).
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Adler is aware that transforming data is a technique with
a long pedigree because it can be dated back at least to
Francis Galton (1879) and McAlister (1879) at the dawn of
Statistics. Subsequently, Edgeworth (1898), Johnson (1949),
and Aitchison and Brown (1957), among others, have con-
tributed to our understanding of this technique for examin-
ing data. It is one method for manipulation of raw data to
create a distribution of a known type, better behaved, and
with many tools to analyze it.

There are distributions that cause spurious results when
common population parameters are calculated—the previ-
ously mentioned variance of a heavy-tailed distribution is
one example of such a distribution. Taking the logarithms of
individual values in a distribution in certain cases—for
example, heavy-tailed distributions—results in parameters
that more accurately reflect the characteristics of the parent
distribution. This study uses a logarithmic transformation of
data from a Web log file as a part of its analysis.

The value of this kind of transformation is illustrated in
Figure 2. This figure is a histogram of the distribution
discussed in Figure 1 but here, the bytes in the transactions
have been “transformed” by taking their logarithms. As a
related but incidental result, the whole distribution can now
be presented in a graph. (Zero) does not have a logarithm so
.01 has been added to all numbers as a method to allow
analysis that includes the 0 values. It is a compromise but
the .01 is small and its effects on the entire distribution are
not great. Note the cluster at �2, the log of .01—these are
the 0’s in the untransformed data. Note also the effect of this
transformation: to pull the higher values in towards the
center and create a derived distribution that is easier to
analyze.

The 64 million-byte transaction, with the log transform,
is about 7.8. Table 1 reports the skewness and kurtosis of
the raw and transformed distributions; the variance of this
distribution is .89. This number is lower than the variance
reported for the raw data (4.12 � 1010), but a large part of
that difference is the different scales of the numbers. The
coefficient of variation is a number that takes the scale into
account. As mentioned earlier, the coefficient of variation
(CV) for the raw data is 1,811 while the CV for the log
transformed data is 29, indicating considerably less spread
about the mean for this new distribution.

Transforming data, therefore, is an accepted technique
and one almost as old as the discipline of Statistics itself.

2. Time Series Analysis

Before proceeding to the examination of the data, the
methods used to examine them are considered. Detecting
nonlinearity in time series data has become an important
area of statistical and econometric research in the last de-
cade. A number of new methodologies have been developed
to test for the presence of nonlinearity as a consequence of
the increasingly widely held view that many systems are
nonlinear, so testing for nonlinearity is a prudent exercise
when approaching a new set of data. The original impetus
for this study was to focus on examining the data for
methods that might be used to predict traffic, and the con-
sistently reported traffic invariants also offered a logical
place to start.

In examining the Web log data analyzed for this study,
the tests for nonlinearity found strong evidence of nonlinear
structures. We were also able to replicate analysis that leads
to the “invariants” but decided to focus on the topic of
nonlinearity first because there is no accepted mechanism
for prediction of nonlinear series. Thus our investigation of
a mechanism for prediction has hit a snag. Although we
only have a single day’s traffic, it seems possible that
nonlinearity is another traffic invariant and tests for its
presence could be included in other analysis to examine this
possibility. The bulk of this paper deals with this topic
before returning first to one of the invariants in Section 6,
then to the matter of prediction in the conclusion of this
paper.

Standard time series analysis employs linear system the-
ory. A linear system is scalable and additive. If x(t) denotes
the input to a linear system and y(t) denotes its output, then
a system is scalable if the output for c x(t) is c y(t) for any
scale value c. A system is additive: the output for an input
x1(t) � x2(t) is y1(t) � y2(t).

A nonlinear system is neither additive nor scalable. For
example, the output from an impulse of magnitude ten can
be totally different from the output from an impulse of
magnitude one. The output y(t) is the observed time series
in most cases, whereas the input is not observed. The value
of the output depends on its past pattern, and this depen-
dency is more complicated than the dependence owing to
the correlation function cy(t) � E y(t)y(t � d), which only
depends on the time lag d. The analysis reported here shows

FIG. 2. Log of responder bytes (complete distribution).

TABLE 1. Comparison of the raw and transformed distributions in fig-
ures 1 and 2.

Raw Transformed

Skewness Kurtosis CV Skewness Kurtosis CV

Responder 158 37,193 1,811 �1.23 5.63 29
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signs of nonlinearity in the network traffic data examined
for this study.

As mentioned, after the initial examination of the data,
there was reason to believe that nonlinearity exists in net-
work traffic and that it is important to detect nonlinear
episodes in such traffic data as a key to understanding the
events that drive them and to use that understanding in the
process of moving from observation to prediction. As a
result, this study turns to the means of detecting these kinds
of events.

In order to simplify the exposition of the tests on the
data, this discussion next turns to the Hinich Portmanteau
Bicorrelation Test. In Section 4, the data analyzed by the
Hinich test are discussed with results. Section 5 presents a
selection of plots of key parameters to expose aspects of the
structure of the data. Section 6 discusses long-range depen-
dence and Section 7 concludes the paper.

3. Hinich Portmanteau Bicorrelation Test

Hinich (1996) suggests a modified version of the Box-
Pierce (1970) portmanteau Q-statistic for autocorrelation
and a third order portmanteau statistic, which can in a sense
be viewed as a time domain analog of the bispectrum test.
A full theoretical derivation of the test statistics and a
number of Monte Carlo simulations to assess their size and
power are given in Hinich (1996), and Hinich and Patterson
(1995).

Let x(t) denote a time series that is sampled at a fixed
rate. As is the custom in the non-engineering time series
literature, the time unit is suppressed and t is an integer. In
this paper, the time series will be from log files of network
traffic. The observed series was broken into equal length
windows and a number of statistics was calculated in each
window, generating a multivariate time series of window
statistics that are then used to detect events depending on
the algorithm used.

Let tp denote the time of the first observation in the pth
frame whose length is T. Thus the (p � 1)th frame begins at
tp � T. The data in each frame are standardized by sub-
tracting the sample mean of that frame and dividing by the
frame’s standard deviation. Let zp(t)denote the standardized
data in the pth frame.

The two test statistics we use for each frame are port-

manteau test statistics. The statistic Cp � �
r�1

L

(T � r)�1

�p
2(r), �p (r) � �

t�1

T�r

zp�t�zp�t � r�, is a slightly modification

of the Q test statistic for autocorrelation. If the zs are
independently distributed, the distribution of this statistic is
approximately chi square with L degrees-of-freedom for
large T.

The bicorrelation test statistic introduced by Hinich
(1996) for detecting third order correlation in a time series
is:

Hp � �
r�2

L �
s�1

r�1

�T � s��1Bp
2�r, s�

where Bp�r� � �
t�1

T�r

zp�t�zp�t � r�zp�t � s�

The distribution of Hp is approximately chi square with
L(L � 1)/2 degrees of freedom for large T if L � Tc (0 � c
� 0.5). The parameter c is under the choice of the user.
Based on the results of Monte Carlo simulations, the use of
c � 0.4 is recommended in order to maximize the power of
the test while ensuring a valid approximation to the asymp-
totic theory even when T is small. Simulations for the size
of this test statistic presented by Hinich and Patterson show
that the test is conservative for small sample sizes.

The test is of a null of pure white noise against an
alternative that the process has m non-zero correlations or
bicorrelations in the set 0 � s � r � L; i.e., that there exists
second or third order dependence in the data generating
process, and relies on the property of pure noise that it has
zero bicovariance. The test is particularly useful in detecting
nonlinear dependencies, since it has much better small-
sample properties, and does not have such stiff data require-
ments as many of its competitors, such as the BDS test
(Brock et al., (1987); see Brock, et al. (1991) for a useful
survey).

Rather than reporting C and H as chi square variates, the
T23 program written by Hinich (2002) reports the statistics
as p-values using the appropriate chi square cumulative
distribution value to transform the computed statistic to a
p-value. The assumptions behind the test are that the obser-
vations are independently distributed and with finite mo-
ments. There is no assumption of a “normal” distribution.

4. The Data

The analysis presented here is based on one day’s traffic
on a Web server at Berkeley National Labs, from midnight
(PDT) October 22, 1998 through midnight October 23,
1998. During this time, 700,893 transactions occurred. The
traffic data were collected and aggregated using Bro (Pax-
son, 1998)—a program developed by Vern Paxson, who
supplied the data.

The data are of cumulated flows of the Transmission
Control Protocol (TCP) a part of the Internet suite of pro-
tocols. This suite of protocols has come to dominate net-
working and is often referred to as “TCP/IP” where the “IP”
refers to the Internet Protocol. TCP is roughly equivalent to
the Office System Interconnect Reference Model (OSI RM)
Layers 4 and 5. Layer 4 is responsible for ensuring delivery
of network traffic, but TCP also has Layer 5 functions in
that it manages network sessions by providing for setting
up, managing, and tearing down connections when sessions
end. TCP connections involve a series of exchanges to set
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up connections and to end them. During a session, TCP, in
effect, ensures that all the packets are received and requests
ones that are missing.

TCP involves two-way communications between the
originator of the request and the responder.

Originator and responder bytes were summed in 10ths of
a second slices for the whole day on all the transactions
reported in the server log and for those established transac-
tions with “FIN” handshake for completion (referred to by
Bro as “SF” transactions). FIN is the TCP method for
ending a session and we might regard these sessions as
complete sessions. Bro also tracks sessions that failed to
initiate or that did not end with the FIN, sessions that were
rejected (REJ), and other anomalies.

There are 512,694 SF transactions in the dataset as we
have seen in Figures 1 and 2 and the related discussion.
Calculations below are performed both on SF transactions
and “All” transactions; that is, all transactions, even if
incomplete or the result of failed connections, in order to
analyze two major ways of looking at the data. Other kinds
of transactions reported by Bro were examined but are not
separately treated here.

As has been indicated, the examination of these server
log data for nonlinearity involves a logarithmic transforma-
tion of the data. Before turning to the analysis itself, loga-
rithmic transforms and their effect on these specific data are
examined. The results are similar to those observed above.

4.1. Logarithmic Transformation of the Data
and Time Slices

In addition to transforming the data, the SF transactions
for the day were divided into slices of one tenth of a second.
The data (originator and responder bytes) were then
summed in each of these slices and next transformed with
base 10 logarithms. Slices with no traffic have 0 bytes. In
order to illustrate the effect of performing these transforma-
tions, skewness and kurtosis for the raw and transformed
data are compared in Table 2. As we saw in Figure 2, in
order to calculate a logarithm for 0, .01 was added to all
864,000 numbers and then the logarithm of the new values
calculated.

“SF” refers to established transactions with normal FIN
handshake for completion. Basic calculations were done
with SAS© (SAS, 2002). Univariate procedure on raw and
logarithmic transformed data summed by tenths of a second
for the day. The SAS calculation of the Kolmogorov Smir-
nov D for the logarithmic transformed data for both the

originator and responder bytes at .409 and .405 respectively,
the probability that either of these distributions is “normal”
is less than .01 based on the Kolmogorov Smirnov test.

As expected from long experience, logarithmic trans-
forms on these data provide a means of simplifying the
analysis of this distribution. As mentioned above, these
results were presaged by Adler (1997) and also in the
previously cited work by Woodruff et al (1996). In the latter
article there are no generalizations about the distributions of
file sizes but the fourth graph in Figure 1 (logarithmic scale
of file sizes) looks suspiciously as if the file sizes she found
in her sample are more nearly lognormal than the raw data.
Figure 2 in this article shows a similar result.

In any case, the purpose of this analysis is not to examine
the data to see if they are lognormal—they clearly are
not—but to deal with the heavy tails and symmetrize the
data. As mentioned above, this procedure is a well recog-
nized one and suitable to the problem at hand, which is to
examine a set of data by appropriate methods and without
imposing structures on them, that may not be there.

4.2. Tests for Nonlinearity

Table 2 reports an analysis of the transformed data for
originator and responder bytes for SF transactions and
“All.” The Hinich Portmanteau Bicorrelation was con-
ducted on these four sets of data with two separate sets of
significance thresholds of .005 and .0001. The implications
of testing at these levels is that at the first, .5% of the time
the test would conclude a window’s value was nonlinear
when it was not. If there were no nonlinear values, then, the
test would indicate nonlinearity for about 43 (43.2) of the
8,640 windows and we would infer that the tests for non-
linearity failed. In the second threshold, .0001, there would
be about 1 (.86) windows indicated as nonlinear by the test
and one could infer that the test for nonlinearity failed. If the
numbers of windows is greater than these numbers at the
respective thresholds, the tests would indicate nonlinear
events.

Non-overlapping moving windows of 100 consecutive
transformed data values were created and computed corre-
lations and bicorrelations and other statistics were calcu-
lated for each window. Windows are used to isolate the
bursts for examination and those used in this analysis are 10
seconds long. There are 8,640 windows.

Hinich’s bicorrelation test was used to determine if there
was episodic nonlinearity in the data. In Table 3, the results
are reported for the residuals of an autoregressive (AR) fit
with a lag of 5 to each window.

The null hypothesis of this test is that the windows are
“white”; that is, the numbers in the windows are serially
independent. The initial run through the data tested these
10-second windows for correlation and found that at the
.0001 level, 1.64% (142) of the originator windows had
serial correlation, and of the responder windows 1.48%
(128) had serial correlation, thus rejecting the null. An AR
fit of 5 reduced the number of windows with significant

TABLE 2. Skewness and kurtosis of the data For “SF” transactions.

Raw Transformed

Skewness Kurtosis Skewness Kurtosis

Originator 428 256,844 .56 �1.67
Responder 255 100,580 .64 �1.46
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correlation to zero, thereby removing the correlation. Thus,
the H—the test statistic discussed in Section 3—reported in
Table 3 is calculated with the AR(5) on each window to
remove the correlations, leaving just the bicorrelations—
sometimes called “triple correlations.” The reader will recall
that the H is reported by T23 as a p value.

As Table 3 demonstrates, the Hinich test rejected the null
hypothesis of linearity well above the preset false alarm
rates that were used to develop the test thresholds for all sets
of data. For example, the expected value for the test of
nonlinearity on SF originator bytes at .01% would be .86 in
a sample of this size (n � 8,640), while the result in these
data is 59, allowing clear rejection of the white noise
hypothesis—and similarly through all values of all variables
reported in the table. Thus, the analysis reported gives clear
indication of nonlinearity in these data.

5. Plots

The plots here are chosen to illustrate structures in the
data. Rather than present all plots generated, only plots for
SF responder transactions at AR(5) data are provided as a
sample. The AR(5) fit removes correlations within windows
and thereby clarifies the non-linear structures in the data. It
also removes the correlations expected if the data were to
show long-range dependence. We take up the discussion of
removing the correlations again in Section 6.

Figures 3 through 5 use the same x axis so it is useful to
discuss these axes briefly. The data are in order by time and
there are 10-second windows, or 360 windows per hour.
These x axes show ticks at each 360th window—or one
hour—interval for each of the 24 hours for this day.

Figure 3 shows the H statistic for each window indicates
nonlinear bursts in the traffic. If only Hs above .99 proba-
bility are examined, there is a pattern indicating that non-
linearities in this sample traffic are more common from
midnight to 6 a.m. (windows 1–2161) than they are from 9

a.m. (3241–6481) to 6 p.m. but overall, the bursts are
episodic throughout the day.

T23 calculates a standard deviation for each of the win-
dows, and then is scaled by dividing that figure by the
sample standard deviation. Figure 4 is a plot of the window
standard deviations for the day. The standard deviations
vary more than the standard error, indicating the nonstation-
ary nature of these data.

Figure 5 plots means of the windows, scaled by dividing
these window means by the mean of the sample. Compared
with the standard error of the estimates of the means for
each window, the means are not significantly different from
0. The mean for all SF windows � �.301. Recall that in
order to calculate a logarithm for 0, .01 was added to each
number. Given that over half the windows have zero bytes,
this mean figure is lower than it would be without the
correction necessary for calculating the logarithms. This
plot indicates further evidence of nonstationarity in these
data.

Figure 6 is a plot of the events in three consecutive
windows (33–35) of SF originator bytes as analyzed here.
Two, 33 and 34 have H statistics that are significant, while
the H statistic for 35 is not significant.

There are 100 10th-of-a-second slices in each of these
windows so this plot is of 30 seconds of traffic. The points
at �2 indicate no traffic with bursts on the logarithmic scale

FIG. 3. H Statistic of SF Transactions.

FIG. 4. Standard deviation of SF transactions.

TABLE 4. Coefficients and adjusted R-square for AR � 5 model. AR(5)
parameters/t values.

p value threshold for the iterative AR
1- 0.13 2- 0.11 3- 0.11 4- 0.12 5- 0.11

124.58 106.13 105.97 109.30 102.05
Adjusted R-square: 0.132

TABLE 3. Number of significant windows (and percent) at 0.01% and
0.5% thresholds AR � 5.

.01% .5%

SF All SF All

Originator 59 (0.68%) 36 (0.42%) 168 (1.94%) 143 (1.66%)
Responder 78 (0.90%) 45 (0.52%) 215 (2.49%) 161 (1.86%)

Non-overlapped windows of length 100 with the number of windows
� 8,640. Test statistics calculated using T23[20].
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at 3 indicating that traffic around 1,000 bytes was reported
by Bro during this slice. This plot indicates that it is not the
size of the bursts but the pattern that mark the traffic in the
first two windows as nonlinear.

6. Long Range Dependence

If there is long-range dependence, the values of the
correlations between windows do not go to zero over long
periods of time. This conclusion has been observed in the
literature but a cause for this phenomenon has apparently
not been cited.

The power spectrum is the Fourier transform of the
correlation function. If a process has long-range depen-
dence, then the power spectrum will go to infinity as the
frequency goes to zero. Another implication is that a low
order autoregressive (AR) model will not remove the low-
frequency bulge in the spectrum.

The statistical theory and methods for fitting time series
with AR models and for spectral analysis can be found in
Anderson (1971), Box and Jenkins (1970), Fuller (1976),
Hamilton (1994), and Priestley (1981).

We use a standard spectral analysis method to compute
the sample spectrum and use the AR fit on the entire
distribution.

Figure 7 is the spectrum of the mean for each window of
log transformed Originator bytes for all transactions. The
horizontal axes of both spectra is the frequency in Hertz.

Figure 8 is the spectrum of residuals of the AR(5) fit. If
there were long-range dependence, the spectra would have
a much larger peak at the lowest frequency band.

There is no evidence for long-range dependence.

7. Conclusions

The data exhibit heavy tails and other characteristics
reported in the network traffic literature. What differs here
from standard network analysis is the statistical treatment
and the focus on prediction. The logarithmic transformation
is an effective treatment to use in analyzing this type of
distribution. Analyzing the data using standard statistical
techniques finds no evidence for long-range dependence in
this set of data.

Evidence of nonstationarity exists in the mean and vari-
ances. In addition, there are episodic nonlinear events in
these network traffic data as recorded in the Web log file of
TCP traffic flows by Bro. If the results of the analysis of
other traffic data using spectral analysis confirm the results
reported here, episodic nonlinearity may be recognized as a
traffic invariant, but further testing of other data will be
necessary.

Among the questions that have to be examined are to
what extent are the phenomena observed in TCP traffic a

FIG. 5. Mean of log SF transactions.

FIG. 6. Bursts in three consecutive windows

FIG. 7. Spectrum of log of mean originator bytes, REJ � No, standard
error � 0.21.

FIG. 8. Spectrum of residuals of an AR(5) to log of mean originator
bytes, REJ � No, standard error � 0.21.
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result of aggregation of behavior of other OSI Layers?
Aggregation occurs in various devices on the Internet, for
instance, to buffer traffic; that is, hold it while waiting for
other traffic. Could such aggregation create the nonlineari-
ties, leaving open the possibility that network traffic can be
predicted by currently available techniques once the aggre-
gation were corrected for?

In order to understand this question, analysis of traffic
from other OSI Layers is necessary, particularly the Data
Link Layer (Layer 2) and the Network Layer (Layer 3). This
analysis may yield insights into the various patterns ob-
served in TCP (roughly, Layers 4 and 5) traffic.

In addition to potential artifacts introduced by lower OSI
Layers, Bro aggregates data. For instance, the 64 million-
byte transaction is recorded as occurring at one specific time
when it likely took place over a period of time. For the
purpose for which Bro was written, this treatment of the
data is appropriate but it might—might—not be appropriate
if the question is predicting network traffic.

Therefore, in the quest for techniques to predict traffic on
information networks, data from other OSI Layers and from
other networks is necessary before the structure of such a
conclusion could be drawn.

The evidence of nonlinearity if confirmed in other stud-
ies may mean that prediction of network traffic cannot be
accomplished with current techniques. Then methods to
approximate such predictions will need to be developed.
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