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Abstract
The Theiler method of surrogate data has been widely used for testing for the presence of nonlin-
earity in time series. Yet the Theiler surrogate method has not been applied in nonlinear time series
in economics as yet. Economic and other social systems are nonlinear. Testing for the presence of
nonlinearity is a first step in determining if a linear model is valid. Several tests for nonlinearity were
compared by [W. Barnett et al., 1997]. One of the various tests for nonlinearity in their paper was
a bootstrapped method by D. Kaplan that is an extension of the surrogate bootstrap pioneered by
J. Theiler et al. [1992]. A comparison is made between this method and two other standard boot-
strapping methods for generating false alarm rates and confidence intervals required for statistical
hypothesis testing. Surrogate data bootstrapping has been widely used in the physical sciences litera-
ture dealing with nonlinearity in signals. We compare this method with standard Efron bootstrapping
method and the shuffle bootstrap for generating sizes of tests that the higher order standardized cu-
mulants are equal to their theoretical values for a normal, uniform, and exponential density. We also
compare confidence intervals for the estimates of the standardized cumulants. As a conclusion the
Theiler surrogate method is shown to be worthless if the null hypothesis is that the time series is
a linear stochastic process that is not constrained to be a normal (gaussian) process. Yet Theiler’s
method is not well behaved even if the null hypothesis is linear and normal.

1. Introduction
Economic and other social systems are nonlinear. If the nonlinearity in the system is small then a linear
approximation can yield good forecasts once the system parameters are estimated. But it the nonlinearity
is large then a forecast based on an estimated linear approximation will be erroneous when the system
changes paths.
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Testing for the presence of nonlinearity is a first step in determining if a linear model is valid. Several
tests for nonlinearity were compared by W. Barnett et al. [1997]. One of the various tests for nonlinearity
in their paper was a bootstrapped method by D. Kaplan that is an extension of the surrogate bootstrap
pioneered by J. Theiler et al. [1992]. The “surrogate” approach is a resampling method that has been
widely applied in the physics literature to test whether an observed time-series is consistent with the null
hypothesis that the process is linear and normal. The Efron bootstrap [B. Efron, 1979a,b, B. Efron and
R. Tibshirani, 1986, 1993] resampling method for determining critical regions or confidence intervals
can not be directly applied to time series analysis due to the serial dependence in the stochastic process
under analysis.

The Theiler surrogate method is explained in the next several paragraphs, along with its fundamental
weakness. The core weakness is the fact that most random processes in nature are not normal. The correct
for null hypothesis tests of normality is that the process is linear. The normal component in the Theiler
approach confounds its value. A linear non-normal process will be treated as if it were nonlinear.

A linear discrete-time process is a linear combination of i.i.d random variables where the linear
weights are absolutely summable. This sequence of weights is called a linear filter in the engineering
science literature, which also uses the term gaussian rather than normal. For examplex(tn) = e(tn) +
0.5e(tn−1) is a linear process if the sequencee(tn) is independently and identically distributed for times
tn = nτ whereτ is the sampling interval. Ife(tn) has a normal (gaussian) distribution then the process is
called linear and normal (gaussian) and is abbreviated as LGP.

We show in this paper that the application of the Central Limit Theorem implies that the Theiler surro-
gates are only consistent for the LGP null hypothesis. The surrogates are worthless if the null hypothesis
is widened to the class of nonlinear stochastic processes. We present artificial data results to compare
the Theiler surrogates with the Efron bootstraps for null hypotheses that the sample cumulants from
three standard densities are equal to their theoretical values. We then compare the Efron bootstrapped
confidence intervals with confidence intervals based on surrogates.

Consider an observed sample time seriesx(t1), . . . ,x(tN). The discrete Fourier transform (DFT) of this
sample is fork = 1, . . . ,N−1

A( fk) =
tN

∑
n=t1

x(tn)e−i2π fktn (1)

where fk = k
Nτ is thek-th Fourier frequency. In polar formA( fk) = |A( fk)|eiφ( fk) whereφ( fk) is called the

phase ofA( fk). Since the process is realA( fN−k) = A∗( fk) andφ(0) = 0. As long as the process satisfies
a standard mixing condition such as the summable cumulants condition of Brillinger [1975], the phases
are asymptotically independent uniform (−π,π) random variables.

The Theiler method generates replicates called “surrogates” by replacing the true phases with a set of
pseudo independent distributed uniform (−π,π) generated by any good pseudorandom uniform subrou-
tines. The main objective is to provide a kind of baseline or control against which the original data can
be compared.

Lettingµ( f1), . . . ,µ( fN−1), whereµ( fN−k) =−µ( fk) denote the pseudorandom phase, the surrogate is
at timetn

x̃(tn) =
1
N

N−1

∑
k=0

|A( fk)|ei2π fkµ(tk) (2)
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As many surrogates is needed is generated by this method. Since expression 2 is a linear combination of
independent variates with finite weights, the standard limit theorem implies that each surrogate has an
approximate normal distribution.

The physical idea behind the surrogates method is that a nonlinear operation on a stationary random
forcing process generates cross frequency coupling between complex amplitudes. The discrete Fourier
transform of the observed time series data is computed and then the phases of each complex amplitude
of the DFT are replaced with independently distributed artificial uniform(−π,π) variates. The altered
DFT is then inverse Fourier transformed to generate a surrogate time series. The randomization ensures
that any phase coupling, and thus signs of nonlinearity, is destroyed in the surrogates. Hence for the null
hypothesis, the uniform distribution of the phases is upheld and the ensemble of surrogates mimics the
randomness of the phases of a stationary process. However, any ensemble of a stationary random process
should also have the property that the Fourier amplitudes are normally distributed rather than constant.
It is important to mimic both degrees of freedom of the complex amplitude since the whole purpose of
the surrogate method is develop a representative pseudo sample of a test statistic in order to generate
a threshold for the test statistic used. Because the Fourier amplitudes of each surrogate are kept rigidly
fixed to the observed DFT values, an important degree of freedom is lost in the Theiler method, which
can lead to spurious results.

In spite of these fundamental weaknesses the surrogate bootstrap is recognized as a powerful method
[D. Prichard and J. Theiler, 1994] and has formed the basis of a large number of studies with the aim
of detecting nonlinearity in physical sciences [J. Theiler et al., 1992, D. Pierson and F. Moss, 1995, T.
Schreiber and A. Schmitz, 1997, H. Kantz and T. Schreiber, 1997, J. Theiler and D. Prichard, 1996,
T. Schreiber, 1998, T. Schreiber and A. Schmitz, 2000, P. So et al., 1996, T. Chang et al., 1995] and
biological sciences typically including ECG, EEG, neural, epidemiological data [Ying-Jie Lee et al.,
2001, S.J. Schiff et al., 1994, M. C. Casdagli, 1997]. In these applications and other studies on nonlinear
signals the true null hypothesis is linearity and the normal restriction is unnecessary and usually false.

To illustrate the weakness of the surrogate method and to compare it with the Efron bootstrap we use
artificial data to study the estimation of higher standardized cumulants (skewness, kurtosis etc.) and their
use as test statistics. The purpose is to show that the surrogate method devised by Theiler fails to maintain
reasonable significance levels when testing null hypotheses based on even the simplest of test statistics.
Despite its frequent application in the physics literature, it is argued that the LGP null hypothesis is
particularly restrictive when used to test against the alternative hypothesis of nonlinearity. In the real
world most linear processes are nearly always non-normal. The assumption of normality should not be
accepted in blind faith as stated in [R. K. Pearson, 2001]

“A contemporary of Poincaré once observed that “experimentalists tend to regard the
normality of data as a mathematical theorem, while mathematicians tend to regard it as an
experimental fact” ([A. Mackay, 1991, p. 155]). Unfortunately, although the belief remains
somewhat widely held even today, it is often wrong. For example, Clancy V. Clancy [1947]
examined 250 datasets obtained from various analyses performed at the Chemical Inspec-
tion Department of the Ministry of Supply in London: on the basis of these examinations,
he concluded that the normal distribution was appropriate in about 10-15% of the cases, but
inadequate for most of the datasets examined. Consequently, it is important not to accept this
working assumption uncritically, particularly since significant deviations from normality can
have important practical consequences.”
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Hence for an important and large class oflinear non-normal processes, tests based on the surrogate
method have wrong sizes or little power. The reason for studying the higher order cumulants is that
they are useful for determining the nature of the distribution of the i.i.d. variates in a linear non-normal
processes. Statisticians know that a large sample is required to obtain precise estimates of higher order
moments and their equivalent cumulants.

This paper is divided as follows. In Sec. 2 the surrogate method is analyzed and compared to Efron’s
bootstrap in the light of the generation of size rates, confidence intervals and simple examples. Sec. 4
summarizes the results presented in this work.

2. Bootstrap and Surrogate data - Size and Confidence Intervals
We analyze tests that the sample second, third, fourth and sixth standardized cumulants are equal to
their theoretical values for three density functions, normal, uniform and exponential (one sided). In the
analysis that follows we use 10,000 pseudo-random replications of a random sample for two sample
sizes:N=128 and 2000. The variates were computed using a pseudo-random generator based on the
Lahey LF 95 uniform random number generator. The normal and uniform variates had zero means and
unit variances and the one sided exponentials had unit variance. The “data” from each random sample
were used to generate confidence intervals and to estimate the sizes of simple tests under a preset nominal
level using bootstraps.

Estimators of three standardized cumulants are used: the variance (σ2= E[(x−µ)2]), the skewness (γ=
E[(x−µ)3]/σ3) as well as kurtosis (κ= E[(x−µ)4]/σ4−3). The sixth standardized cumulant (C6=E[(x−
µ)6]/σ4−15κ−10γ−15) is also used. The estimators areσ̂2, γ̂, κ̂ andĈ6. Note that since the uniform
and normal distributions are symmetric their skewness should be zero. See Table 1 for the theoretical
values of the standardized cumulants.

uniform
(Uni)

exponential
(Exp)

normal
(Nor)

µ (mean) 0 1 0
σ2 1 1 1
γ 0 2 0
κ -1.2 6 0
C6 6.86 120 0

Table 1: Theoretical values of the standardized cumulants for normal (Nor), uniform (Uni), exponential (Exp) distributions.

Two other surrogate schemes that are different to the Theiler method are used here to demonstrate
the main point of the paper. Beginning withN observation samples of a time series {x(tk)} (henceforth
denoted “control” time series), surrogate time-series { ˜x(tk)} are generated by either:

• TheShuffle Surrogate: The N variates are randomly shuffled to remove serial dependence. Similar
to the Theiler scheme, all such surrogates are constrained to have the same mean and variance by
construction.

• Efron’s Bootstrap (with replacement):[B. Efron, 1979a,b, B. Efron and R. Tibshirani, 1986, 1993,
Davidson and Hinkley, 1997]: N bootstrap variates are randomly drawn with replacement.
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Althought the surrogate method has been mainly used for testing nonlinearity we stress that linearity
is not tested in a direct way in this paper. The skewness and kurtosis can be used to reject the null that the
density of the random variables is normal. One cause of non normality is nonlinearity. If the process is
normal then it is linear. But if one does not reject the normal null then the statistical procedure does not
mean that the density is normal. It merely means that one can not reject the null given the sample size
of the sample. Note that we are dealing with univariate normality. The multivariate normal model is a
much more constrained model. A way to deal with a multivariate normal process is to restrict the class of
normal processes to normal autoregressiveAR(p), wherep is the number of lags andp < P for a known
P. Then fit theAR(p) model to data to generate approximately uncorrelated residuals, if the sample size
is much larger thanP. However this is beyond the scope of this work.

2.1. Size of Tests

A theoretical study on the validity of the surrogate data has been considered in [Kung-Sik Chan, 1997].
In the paper, the author proves that the nominal false rejection rate of a test statistic calibrated by the
method of the surrogate data equals to the true false rejection. This is true only when the null hypothesis
assumes a class of stationary normal circular process. Such an assumption is not valid here.

We consider four simple null hypotheses; 1),σ2, 2) γ, 3) κ and 4)C6, taking the values as indicated
in Table 1, for the three density models, that is, normal, uniform and exponential densities. To check
the size rates when testing the skewnessγ (or any other statistic), each of the ‘control’ time series is
examined in turn as follows for each replication in a 10,000 loop:

1. Let Q = γ̂. The null hypothesis will beHo : Qo = QM, whereQo is the true value of the skewness
andQM is the skewness calculated from the surrogate, bootstrap or suffle data.

2. Construct M replications using the surrogate data method or shuffle or the Efron bootstrap.

3. Compute the skewness for each of the surrogate, bootstrap or shuffle time series:Q1, . . . ,QM.

4. Assuming the normality in the distribution of the Q’s, calculateZ = Qo−µQ
σQ

, whereµQ andσQ are
the mean and the standard deviation, respectively, of the statisticsQ1, . . . ,QM.

5. Making use of the transformationU = F(Z) whereF is the cdf ofN(0,1), determine whether
U < 0.025 orU > 0.975 in the replication loop. This is the null hypothesis rejection count.

Let K be a number of rejections of the null hypothesis. The estimate of the sizeα is K/10,000. If the
bootstrap is operating correctly the size rate should be close to 5%.

Table 2 summarizes the size rates for the variance, skewness, kurtosis andC6 statistics obtained from
Theiler’s surrogate data and bootstrap methods.

First note from Tabs. 2 and 3 that the Theiler method is incapable of reporting size rates for the variance
(as indicated by the symbol ‘*’). This is becauseall surrogates are, by construction, ‘constrained’ and
have exactly the same mean and variance. Recall that the variance of a time series must be equal to the
integrated spectrum, which is identical for all surrogates. The mean is given by the spectral component
having zero frequency, which is constant for all surrogates. In a similar way, the shuffle method preserves
all standardized cumulants and therefore cannot report sizes.

The surrogate literature suggests that the Theiler method can distinguish a uniform from a normal
sample. This is not true for the skewness since both densities are symmetric and thus have a zero skew-
ness. Although this result is accordance with a recent paper [P. E. Rapp et al., 2001]. it should be noticed
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Variance Skewness Kurtosis C6

Theiler Shuf. Boot Theiler Shuf. Boot Theiler Shuf. Boot Theiler Shuf. Boot
Nor * * 2.62% 0% * 1.49% 0% * 9.40% 0% * 0.53%
Uni * * 1.39% 0% * 0.85% 93.92% * 0.72% 98.01% * 0.21%
Exp * * 7.59% 100% * 22.43% 100% * 41.29% 100% * 76.27%

Table 2: Size Rates (S=10,000; M=500; N=128).The “control” time series are taken to be normal (Nor) , uniform (Uni) or
exponential (Exp) distributions. All the numerical values shown in the table are percentages. The ‘*’ indicates that the test
fails due to lack of variability in the surrogates (see text).

Variance Skewness Kurtosis C6

Theiler Shuf. Boot Theiler Shuf. Boot Theiler Shuf. Boot Theiler Shuf. Boot
Nor * * 1.21% 0% * 1.11% 0% * 2.53% 0% * 1.48%
Uni * * 0.97% 0% * 1.20% 100% * 1.05% 100% * 1.03%
Exp * * 1.74% 100% * 6.74% 100% * 14.01% 100% * 41.3%

Table 3: Size Rates (S=10,000; M=500; N=2000). The “control” time series are taken to be normal (Nor) , uniform (Uni) or
exponential (Exp) distributions. All the numerical values shown in the table are percentages. The ‘*’ indicates that the test
fails due to lack of variability in the surrogates (see text).

that for kurtosis andC6 statistics, the Theiler surrogate method rejects the null hypothesis at 100%. It is
worth emphasing here that in [P. E. Rapp et al., 2001] the authors used the correlation dimension as the
test statistic.

For control time series that areiid normal, the Theiler surrogate method yields size rates that are zero
in all three cases (skewness, kurtosis andC6), whereas for the bootstrap simulations the size rates are
below the expected 5% level (see Tables 2 and 3). When the control time-series areiid uniform the
size rates reported for the Theiler surrogate jumped from zero (skewness) to almost 100% (kurtosis and
C6). This confirms to the expectation that Theiler’s surrogate is tuned for testing the linear normal null
hypothesis if the test statistics is judiciously chosen. Note, however, that the surrogate method is rejecting
linearity even though the control time series is purely linear.

When the exponential distribution is considered, the Theiler method rejects the null hypothesis in all
the cases. This seems to indicate that the Theiler method has more power when the distribution has a fat
tail; if it is not taken into account that the method is again rejecting the linear null hypothesis. As for the
bootstrap method, the size rates tend to increase with the complexity of the test statistics. This condition
is somehow alleviated when the number of data points is increased.

As stated before in the text, the normality of the distribution of the Q statistics was assumed. In order
to check if such an assumption corresponds to reality, a simple test of normality was applied. In this
test the Q statistics were plotted against the probabilities. The plot will be linear if the Q statistics are
normally distributed. Figure 1 shows the results. The left panel are the normal plots for the bootstrap
data (skewness, kurtosis andC6) whereas the right panel shows the same plots for the surrogate data. It is
worth noticing that the bootstrap data deviates from the normality more than the surrogate counterpart.
Therefore the use of the assumption of normality for bootstrap data is not without problems.

2.2. Confidence Intervals

It is often important to compute confidence intervals of an estimate of interest. For example, the 95%
confidence interval of an estimateθ̂ of a parameterθ is an intervalI = [a,b] for which there is a prob-
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Figure 1: Skewness - normal plots: (a) Bootstrap - normal, (b) Surrogate - normal, (c) Bootstrap - uniform, (d) Surrogate -
uniform, (e) Bootstrap - exponential, (f) Surrogate - exponential
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ability p = 0.95 that the true value ofθ is in I. We check whether the bootstrap methods are capable
of constructing confidence intervals that conform to those expected under the null hypothesis. When
the variable of interest is the varianceσ2 (but the method is similar in principle for other statistics) the
confidence interval test is:

1. Construct M replications time-series using surrogate data or shuffle or bootstrap.

2. Compute sample quantiles of the M variancesσ̂2
i of the M replications.

3. Calculate the 95% confidence interval [σ̂2
a, σ̂2

b] for which 2.5% of the surrogates have a variance
value less than̂σ2

a while 2.5% of the replications have a variance value greater thanσ̂2
b.

4. Repeat steps 2., 3. & 4. for each replication to obtain confidence intervals.

5. Determine the ‘capture rates’ i.e., the proportion of cases for whichσ2
c =1 falls within these confi-

dence intervals. Under the null hypothesis, for 95% confidence intervals, the capture rates are also
expected to be close to 95%.

Tables 4 and 5, for N=128 and N=2000 respectively, make clear that the capture rates computed for
Theiler’s surrogate method are incorrect even for the case of normal data. The capture rate is markedly
high for all test statistics, 100%, instead of 95% indicating that Theiler’s method produces too wide
confidence intervals. It is worth pointing out that the capture rates for the surrogate method is either 0 or
100% in all cases which is far from the expected value of 95%.

Variance Skewness Kurtosis C6

Theiler Shuf. Boot Theiler Shuf. Boot Theiler Shuf. Boot Theiler Shuf. Boot
Nor * * 93.53% 100% * 93.64% 100% * 86.25% 100% * 96.71%
Uni * * 94.65% 100% * 95.02% 0% * 96.97% 0% * 97.83%
Exp * * 87.89% 0% * 67.85% 0% * 53.37% 0% * 24.50%

Table 4: Capture Rates for 95% confidence intervals (S=10,000; M=500; N=128). The “control” time series are taken to be
normal (Nor) , uniform (Uni) or exponential (Exp) distributions. All the numerical values shown in the table are percentages.
The ‘*’ indicates that the test fails due to lack of variability in the surrogates.

Variance Skewness Kurtosis C6

Theiler Shuf. Boot Theiler Shuf. Boot Theiler Shuf. Boot Theiler Shuf. Boot
Nor * * 94.88% 100% * 94.77% 100% * 93.16% 100% * 93.74%
Uni * * 94.91% 100% * 95.04% 0% * 95.06% 0% * 95.25%
Exp * * 94.55% 0% * 87.36% 0% * 79.93% 0% * 54.73%

Table 5: Capture Rates for 95% confidence intervals (S=10,000; M=500; N=2000). The “control” time series are taken to be
normal (Nor) , uniform (Uni) or exponential (Exp) distributions. All the numerical values shown in the table are percentages.
The ‘*’ indicates that the test fails due to lack of variability in the surrogates.

The shuffle method preserves all standardized cumulants and therefore cannot be used to verify the
confidence intervals. On the other hand, the bootstrap method has capture rates close to the specified
value of 95% specially when the number of data points is set to 2000, but not within the tolerance of√

0.05∗0.95
10,000 = 0.0022 as required. The worse cenario is for the exponentially distributed process, where
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the capture reaches 54.73% when the sixth order standardized cumulant is used. This seems to indicate
that care should be taken when dealing with fat tail distributions.

According to Tables 2, 3, 4 and 5, the capture and size rates of all surrogate methods are unsatisfac-
tory indicating that they should be used with caution. Recent work suggests that variants of the above
bootstrap methods are reasonably successful; the results will be reported elsewhere.

3. The validity of the Surrogate Method - Discussion
To further investigate the use of the surrogate method, two nonlinear models were considered:

y(t) = −0.72026y(t−1)y(t−1)y(t−1)y(t−1)y(t−1)
+0.20632×101y(t−1)
−0.7107×10−2y(t−1)y(t−1)y(t−1)y(t−1)
+0.20982×10−2

−0.28051×10−4y(t−1)y(t−1)y(t−1)
−0.55358×10−7y(t−1)y(t−1)

(3)

and

y(t) = −0.10109×101y(t−1)y(t−1)
−0.71503y(t−1)
+0.10109×101

+0.3y(t−2)

(4)

Equation (3) is a simple modification of the quintic logistic equation,y(t) = λy(t −1)(1−y4(t −1))
(whereλ is a given parameter), whereas equation (4) is the Henon map counterpart,y(t) = 1−1.4y2(t−
1)+ 0.3y(t −2). The objetive was to obtain two different nonlinear models from which data could be
generated with mean equals zero and variance equals one. The skewness of data generated from modified
quintic equation (3) is zero, therefore such an equation mimics a normal process up to the third order
standardized cumulant. Figure 2 shows the first return maps for equations (3) and (4).

Given the results presented in the previous section it is expected that the surrogate method will fail to
reject the null hypothesis specially when the estimation of the skewness is considered. However the aim
of this section is not to reproduce the results previously shown but to demonstrate that the hypothesis
testing with the surrogate method is not well defined.

To this end the following procedure was adopted:

1. Generate raw data from equations (3) and (4), and also nonlinear normal data. Here a static cubic
function was used.

2. Generate surrogate data for each one of the data sets of 1.

3. Plot quantile-quantile plot for each raw and surrogate data

Figures 3 and 4 show the quantile-quantile plots for both raw and surrogate data, respectively. From
figure 3, it can be readily noticed that there is no agreement, that is, each different data set was drawn
from different parent distributions. However, when the surrogate data for each one of the aforementioned
processes are compared using the quantile-quantile plot, they seem to come from the same underlying
parent density distribution (Figure 4). In fact, they are as the surrogate is approximately normal by
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Figure 2: First Return Maps for a) equation (3) and b) equation (4)
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Figure 3: Quantile-Quantile plot: (a) Raw Data - Logistic X Henon, (b) Raw Data - Logistic X Nonlinear normal, (c) Raw
Data - Henon X Nonlinear normal

Central Limit Theorem regardless of the shape of the parent density distribution. The surrogate method
can therefore lead to spurious results for linearity since it requires absolute normality. In lay terms, how
can one be sure that the rejection is based upon the linearity factor or simply because the data are not
normal?

Figure 5 shows that all surrogate data generated as described come from the same underlying distri-
bution, that is, the normal distribution and therefore one can not distinguish between them.

4. Conclusions
We have shown that the Theiler surrogate method is worthless as a time series bootstrap except for the
restrictive linear and normal null hypothesis. Confidence intervals have been calculated for the surrogate
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Figure 4: Quantile-Quantile plot: (a) Surrogate - Logistic X Henon, (b) Surrogate - Logistic X Nonlinear normal, (c) Surro-
gate - Henon X Nonlinear normal

and bootstrap methods. It has been shown that the surrogate method exhibits either 100% or 0% as
capture rates even for the case when the control time series is a normal process. For exponentially and
uniform distributed processes, the capture rates are even worse indicating that the surrogate method
cannot be used for estimation of confidence intervals.

Although the results for the Efron bootstrap are much better in comparison to the those ones for the
surrogate data, it also fails to estimate confidence intervals within the required threshold. This is specially
true for the higher standardized cumulants.

A study on the drawbacks and possible solutions to the Theiler method surrogate has been recently
published in [T. Schreiber and A. Schmitz, 2000], but they do not point up the critical issue of the normal
null hypothesis.
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Figure 5: Quantile-Quantile plot: (a) Surrogate Logistic X normal, (b) Surrogate Henon X normal and c) Surrogate Nonlinean
normal X normal
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