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Abstract
In this paper, we propose the use of the bispectrum based tools to evaluate the statitiscal quality of
a pseudo-random generator. Two well-know implementations of a pseudo-random generator and a
new idea from physics were used as an example of how to use these statistical tools.
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1. INTRODUCTION
Algorithms are required to generate pseudo-random variates that mimic the statistical properties of the
true stochastic model that is selected as the basis of the simulation. The typical procedure for generating
a sequence of pseudo-random variates is to use an algorithm for generating uniform (0, 1) pseudo-
independent variables and then transforming these (0, 1) variates to obtain a sequence with the desired
statistical properties.

Pseudo-random uniform(0,1) sequences are employed in a variety of applications such as signal
encvryption, spread spectrum, randomization of experiments and in simulations. See, for instance, [1, 2,
3, 4] and references therein.

The most widely used method for generating (0, 1) pseudo-independent variables utilizes one or more
congruential generators. A congruential generator whose seed is properly chosen will generate variates
that will have a uniform distribution on the unit interval but the variates will not be independent since
the generator is deterministic. The algorithm must produce variates whose statistical properties con-
form to the probabilistic implications of independence. For example the sample correlation function of
a generated sequence should statistically be indistinguishable from the sample correlation function of
an independent uniform (0, 1) process. The sample correlations should be statistically near zero for the
sample size used in the test.

The higher-order statistical properties of available pseudo-random generators may not be sufficiently
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reliable to ensure that their lack of true independence does not cause significant deviations in the prop-
erties of simulated results from the true properties given the parameters used in the simulations. One
should never take the statistical properties of pseudo-random generators for granted.

In this paper we demonstrate that the bispectrum based tests of zero bispectrum and linearity produced
by Hinich and his collaborators can be used to benchmark pseudo-random generators. The bispectrum
is the double Fourier transform of the bicovariance functionbx(τ1,τ2) = Ex(t)x(t + τ1)x(t + τ2) of a
stationary random processx(t).

The statistical test proposed here follows the line of tests discussed in [4]. It is not a competing test
but an additional test that can be included in the existing library of tests already distributed in the NIST’s
web site [4].

This paper is divided as follows. The background material is given in Sec. 2. Examples using two
well-known implementations of a pseudo-random generator and a new idea from physics are given in
Sec. 4. Sec. 5 summarizes the results presented in this paper.

2. BASIC STATISTICAL TESTS FOR PSEUDO-RANDOM VARIATES
The simulations that will report in the next section use a total ofN = 1010 pseudo-random uniform
(0,1) variates. The first step in a statistical evaluation of a pseudo-random algorithm is to computer the
following four statistics: 1) the meanµ, 2) the standard deviationσ, 3) the skewnessγ = µ3

σ3 , and 4) the
kurtosisκ = µ4

σ4 −3. The mean of a uniform (0,1) is 0.5,σ = 0.2887,γ = 0., andκ =−1.2.
The random number generators used in this work are: Intel random number generators (it comes with

the C and Fortran compiler by Intel), the Matlab function rand and the dynamical system introduced by
González and co-workers [5, 6] that are claimed to generate true random variates.

Table 1 shows the results for the three generators. The mean for the Intel and Matlab generators are
correct to four decimals places. The approximate standard errors for the estimates are of order 10−5 and
the sums in the computation of these statistics are in double precision. Thus we expect the results to be
correct to four decimals at least. But the mean for the Gonzalez et al algorithm has an negative bias of
–0.003 which is highly statistically significant for our large sample size.

The standard deviations for the Intel generator is correct to four decimals. The Gonzalez et al generator
has a positive bias of 0.013 which is also highly statistically significant. The Matlab standard deviation
has a significant positive bias of 0.0003 which is not much of a problem for most simulations but the
generator needs improvement.

The skewness estimates for both the Intel and Matlab generators are correct to four decimal standard
but the Gonzalez et al skewness has a highly significant bias of 0.0094.

Finally the kurtosis estimates for both the Intel and Matlab generators are correct whereas the Gonzalez
et al estimate has a significant negative bias of –0.003.

These results show that the Gonzalez et al generator fails to match the first four moments of the uni-
form (0,1) distribution for the large sample simulation that we ran and thus it is not a credible algorithm
for applications that require statistical precision of the pseudo-random variates.

We now turn to the use of bispectrum analysis to address the quality of the these random number
generators advancing the work of [7].
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Generator µ σ γ κ
Intel 0.5000 0.2887 0.0000 -1.2000
Gonzalez 0.4970 0.2900 0.0094 -1.2003
Matlab 0.5000 0.2890 0.0000 -1.2000

Table 1: Mean, Standard Deviation, Skewness and Kurtosis for the random generators

2.1. The Bispectrum Analysis

Before proceeding to the description of the tests sued in this work, it is important to define what is
meant by a stochasticlinear process. A random sampled process{x(tn)} is linear if it is of the form
x(tn) = ∑∞

k=−∞ h(tn−k)ε(tk) where{ε(tn)} is a sequence of independent and identically distributed ran-
dom variables,∑∞

k=−∞ |h(tk)| < ∞ and tn = nτ for a fixed sampling rateτ−1. Using signal processing
terminology{x(tn)} is the output of a stable linear filter whose impulse response is{h(tn)} and whose
input is thepure white noiseprocess{ε(tn)}.

The signal’s bispectrum is

B(ω1,ω2) =
∞

∑
τ1=−∞

∞

∑
τ2=−∞

cxxx(τ1,τ2)exp[−i2π( f1τ1 + f2τ2)] (1)

whereB(ω1,ω2) is the bispectrum of the signal [8] andcxxx(τ1,τ2) is the bicorrelation.
The bispectrum is computed using conventional nonparametric methods. When computing the bispec-

trum we take advantage of two properties: 1) Bispectrum values are approximately normally distributed
[9], and 2) Bispectral estimators are approximately independent across frequencies [10].

Suppose that we have a sample{x(1) , ...,x(N)}that we partition intoP = [N/L] non-overlapping
frames of lengthL where the last frame is dropped if it has less thanL observations. Thepth frame is
{xp(1) , ...,xp(L)} = {x((p−1)L+1) , ...,x(pL)}. The discrete Fourier transform of thepth frame is

Xp(k) = ∑L
t=1xp(t)exp

(
−i2πkt

L

)
and the periodogram of themth frame is1

L

∣∣Xp(k)
∣∣2 = 1

LXp(k)Xp(−k).
BecauseN ' LP the frame-averaged estimate of the spectrum at frequencyωk = 2πk

L is

Ŝ(ωk) =
1
N

P

∑
p=1

∣∣Xp(k)
∣∣2 (2)

ThenE
[
Ŝx( fk)

]
= S(ωk)+O

(1
L

)
where the error term of order 1/L is due to the frame windowing of

the spectrum, and the variance of the estimate for large values ofL andP is 1
PS2(ωk).

Similarly, the frame-averaged estimate of the bispectrum at frequencies(ωk1, fω2) is

B̂(ωk1,ωk2) =
1
N

P

∑
p=1

Xp(k1)Xp(k2)Xp(−k1−k2) (3)

with E
[
B̂(ωk1,ωk2)

]
= B(ωk1,ωk2)+O

(1
L

)
and variance for largeL andPexpressed asLPS(ωk1)S(ωk2)S(ωk1 +ωk2).

The ideas briefly laid here are the base for the Hinich test for zero bispectrum and linearity of stationary
time-series [9].
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3. Zero Bispectrum and Linearity tests
Specific statistical properties of an estimate of the bispectrum are now discussed in order to understand
the logic behind the tests [9] of linearity and zero bispectrum (The Fortran program written by Hinich,
available, upon request, findsK for whatever band is selected. In [11],q = 0.8 is used but a more robust
test uses theq = 0.9th quantile based upon numerous tests of the method on various real and artificial
data.).

Let {x(tn)} denote a zero mean strictly stationary random process that is bandlimited and sampled
at a rate sufficient to avoid aliasing withtn = nτ. To simplify notation letτ =1. The bicorrelation of
the process iscxxx(τ1,τ2) = Ex(n)x(n+τ1)x(n+ τ2) and its bispectrum is the two-dimensional Fourier

transformBx(ω1,ω2) =
∞
∑

n1=−∞

∞
∑

n2=−∞
cxxx(τ1,τ2)exp[−i (ω1τ1 +ω2τ2)]. For further details see [9, 10].

For linear processes, it follows thatBx(ω1,ω2) = µ3εH (ω1)H (ω2)H (−ω1−ω2) whereH(ω) is the
Fourier transform of h(k), andµ3ε = Eε3(n) is the skewness ofε(n). Since the skewness of an uniform
distribution is zero, the bispectrum of the pseudo-random sequence should be zero.

In what follows a detailed description of the tests for zero bispectrum and linearity is given.

3.1. Testing Zero Bispectrum

If the density of the noise variates {ε(n)} is symmetric about its mean (zero) then the skewness is zero,
and its bispectrum will not be statistically significant different from zero. The Hinich test statistic [9] to
test for input symmetry is the sum,S, over theV (ω1,ω2) for the K bifrequencies. Since the bispectral
estimates are approximately independent across the bifrequency grid,Swill be approximately distributed
as aχ2

2M (0). The non-central parameter is zero for the null hypothesis since the skewness is zero. Let
F(s) denote the cumulativa distribution function of theχ2

2M (0) and letU = F(S), then the statisticU has
an uniform 0,1 distribution under the null hypothesis that the bispectrum is zero. The null hypothesis is
rejected ifU is greater than a threshold that is determined by the size probability required by the user

3.2. Testing Linearity

Let B̂e(ω1,ω2) denote the estimate of the bispectrum of the residuals at bifrequency(ω1,ω2) using a
resolution bandwidth of∆. Using Theorem 5.3.1 of [12] it can be shown that the real and imaginary
partsN

1
2 ∆[B̂(ω1,ω2)−B(ω1,ω2)] are independently distributed and gaussian with mean zero and vari-

anceσ2
e/2 asN goes to infinity. Thus the large sample distribution of thenormalized skewness function

defined byV(ω1,ω2) = 2N∆2σ−6
e [B(ω1,ω2)]2 is χ2

2(λ), a chi squared with two degree-of-freedom and
non-centrality parameterλ = 2N∆2σ−6

e [µ3e]2 for each bifrequency for the null hypothesis of indepen-
dence. This parameter is estimated byλ̂, the average skewnessV (ω1,ω2) for all bifrequencies in the
bispectrum’s principal domain.

Let F(υ|λ) denote the cumulative distribution function of aχ2
2(λ) random variable and letU(ω1,ω2) =

F [V(ω1,ω2)|λ]. The normalized skewness values are then transformed into uniform (0,1) variates under
the null hypothesis. Then the modified Hinich test for linearity (independence of the residuals) is to com-
pute the qth quantile,Q of the sortedU statistics for all K bifrequencies in the principal domain, where
the user selects q. If the whole bandwidth up to the folding frequency is used then there are approxi-
mately K= 1

16∆2 bifrequencies in the principal domain [11]. The qth quantile is approximately gaussian
with mean q and varianceσ2=q(1-q)/K under the null hypothesis, and we use the q=0.9th quantile [11].
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Figure 1: Zero BispectrumSresults: (a) Intel random number generator, (b) Gonzalez model and (c) Matlab rand function.

Using these estimates of the mean and variance, the asymptotic gaussian distribution the 5% critical
value for the one tailed test of linearity is easily found to be 0.9+ 0.492/

√
K. If the 0.9th quantile is

larger than this value the null hypothesis of linearity is rejected at the 5% size level. Thus under the null
hypothesis 5% of such statistics would be larger than the above value.

4. DATA ANALYSIS AND SIMULATION
We ran 5,000,000 numbers in sequence with 2000 diferent seeds for each one of three generators listed
in section 2. Then we computed the following quantiles for theSstatistic: 0.001, 0.01, 0.05, 0.1 0.2 ,0.3
0.4, 0.5, 0.6, 0.7 0.8 0.9, 0.95, 0.99, 0.999. The quantiles for theQ are exact the same.

Figure 1 shows the plot of the quantiles for the zero bispectrumS statistic. The 45% degree line
from zero to 1 is the expected value of the quantiles. If the generator is producing independent uniform
variates, we expect that the sample quantiles should lie on or very close to the expected line. For the
Intel random number generator, the qauntiles are below of the expected which means that they are too
small. For the Matlab and González theSstatistics are just above zero and so the first quantile is one and
therefore all quantilea are one.

For Q statistic quantiles (See Figure 2), the Intel results are also below the expected value line but a
bit closer than the zero bispectrum results. For the Gonzaález generator, the quantileQ results are lower
than the Intel’s. For the Matlab generator, the first quantiles jumps to one and the others stay at one. None
of the results are statisfactory using the bispectrum based measuring tools.

5. CONCLUSIONS
The two bispectrum based tests will detect that a pseudo random sequence is not an indenpendent dis-
tributed random process and therefore it does not comform to the statistical implications of indenpen-
dence. Pseudo random numbers are not statistically independent, but the idea is to generate pseudo
random numbers that can fool the data mining algorithms as if they are pure noise.

We used two well-known random generators and a new idea from physics as an example on how to
use the bispectrum tools to evaluate the statistical quality of a pseudo random number generator.
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Figure 2: LinearityQ results: (a) Intel random number generator, (b) Gonzalez model and (c) Matlab rand function.

Finally, we conjecture that by the use of higher-order cumulant tests one can always detect that man-
made sequences with symmetric density functions are not stochastic.
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