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Abstract
In Physics literature, the method of surrogate data has been widely used for testing for the presence
of nonlinearity in time series whereas in the Statistical literature, the bootstrap method is the choice
for establishing confidence intervals. A new method that combines the bispectrum and the surrogate
method and bootstrap is then presented for detecting nonlinearity, gaussianity and time reversibility.
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1. Introduction
Since the introduction Efron’s boostrapping in the late seventies [B. Efron, 1979], much attention has
been attracted in both theoretical and applied sides of Statistics. The bootstrap approach attempts to
retrieve more information from sample data so as to solve problems that are not easily solved by some
traditional methods. It is known that most test statistics do not have a known finite sample distribution.
One either uses asymptotic theory to compute a threshold or some form of resampling known in statistics
as bootstrapping. In practice, one cannot determine the validity of thresholds determined by asymptotic
theory since the rate of convergence of the central limit theorems used in the theory is a function of
unknown parameters. Bootstrapping is presented as a way out but standard bootstraps do not fit into time
series problems since they are formulated on the assumption that time dependence can be ignored. The
surrogate method of Theiler et al. J. Theiler et al. [1992] is a type of bootstrapping that takes advantage
of the statistical properties of Gaussian time series and has the potential to be a very useful tool since it
is appropriate for data that is time-dependent.

The surrogate data method [J. Theiler et al., 1992] tests whether an observed time-series is consistent
with the null hypothesis of a linear gaussian process (LGP). This is implemented by first generating a

∗E-mail:hinich@mail.la.utexas.edu
†E-mail: lewi@lanina.tau.ac.il
‡E-mail:emmendes@cpdee.ufmg.br

1



M. J. Hinich, L. Stone and E. Mendes: Detecting Nonlinearity in Time Series 2

set of surrogate data sets whose spectra are identical with the observed time series and which are by
construction LGP. It is then possible to test whether the observed time-series has statistical properties
that are significantly different from the "random" surrogate data sets. If so, the LGP null hypothesis is
rejected. This technique is recognized as a powerful method [D. Prichard and J. Theiler, 1994] and has
formed the basis of a large number of studies with the aim of detecting nonlinearity in physical [J. Theiler
and D. Pichard, 1997] and biological time series typically including ECG, EEG, neural, epidemiological
and climate signals [Ying-Jie Lee et al., 2001, F.X. Witkowski et al., 1995] as well as for detecting
unstable fixed points [P. So et al., 1996].

Although the surrogate method has been widely used in the literature as pointed out before, it has been
shown that the surrogate method has major drawbacks and can often fail to maintain reasonable signifi-
cance levels when testing null hypotheses based on even the simplest of test statistics [Melvin J. Hinich
et al., 2002]. The LGP null hypothesis is particularly restrictive when used to test against the alternative
hypothesis of nonlinearity. In the real world most linear processes are nearly always nongaussian. Hence
for this important and large class oflinear nongaussian processes, tests based on the surrogate method
can routinely reject the linear null hypothesis even though the time-series is purely linear. In this paper,
alternative bootstrap methods are introduced for detecting nonlinearity in time series data, and examine
diagnostic tools that test for three important characteristics, namely: i) linearity, ii) gaussianity and iii)
time-reversibility. The tests make it possible to discriminate between those linear processes, which are
gaussian, and those, which are nongaussian. Detection of time-irreversibility provides complementary
information, since all stationary Gaussian processes are time-reversible.

This paper is divided as follows. The new tests for nonlinearity, gaussianity and time reversibility are
introduced in Sec. 3, 4 and 5, respectively. Examples using real data sets are given in Sec. 6. Sec. 7
summarizes the results presented in this work.

2. A Surrogate based Test for Nonlinearity
Although the surrogate method was shown to have major drawbacks [Melvin J. Hinich et al., 2002], it is
nevertheless possible to make use of surrogate based approaches for detecting nonlinearity. In particular
we will make use of the Hinich test for nonlinearity, which although already proven to be an effective test,
has been shown to be conservative [Douglas M. Patterson and Richard A. Ashley, 2000]. A surrogate-
based approach has the advantage of providing a more exacting test.

We first appeal to the fact that a large subset of linear processes are contained in the set of stable and
invertible AR(p) processes of the form

p

∑
k=0

β(k)x(n−k) = ε(n) (1)

where β(0) = 1. Consider a sample(x1,x2,. . . .,xN) from an AR(p) process. Note that the residuals
(e1,e2,. . . .,eN) obtained after fitting an AR(p) model (via the Yule Walker equations) to such a sam-
ple are approximatelyiid and will be close approximations to the unobserved pure noise input{ε(n)}
whenN » p [T. W. Anderson, 1971].

The test proposed here requires the following steps:

i) The time series(x1,x2, . . . ,xN) is initially “whitened” by fitting an AR(p) model to the data and
separating out the residuals of the fit(e1,e2, . . . ,eN) .
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ii) A set of M surrogates or bootstraps of the residuals {ek} are created to yield the surrogate residu-
als (e′1,e

′
2, ..,e

′
N). (Alternatively, if surrogates of the original time-series are required, they can be

constructed by driving the AR model found in i) with the surrogate residuals {e′1,e
′
2, ..,e

′
N}.

iii) The surrogates allow determination of the threshold 5% false alarm rate for the given test statistic,
whether it tests for linearity, gaussianity, or time reversibility etc.

A brief review of the statistical properties of an estimate of the bispectrum is required in order to
understand the logic behind the tests [M. J. Hinich, 1982] of linearity and gaussianity and the Hinich-
Rothman test for time reversibility (The Fortran program written by Hinich, available, upon request,
findsK for whatever band is selected. In [R.A. Ashley et al., 1986],q= 0.8 is used but a more robust test
uses theq = 0.9th quantile based upon numerous tests of the method on various real and artificial data.).

Let {x(tn)} denote a zero mean strictly stationary random process that is bandlimited and sampled at a
rate sufficient to avoid aliasing withtn = nτ. To simplify notation letτ =1. The bicorrelation of the process
is cxxx(m1,m2) = Ex(n)x(n+m1)x(n+m2) and its bispectrum is the two-dimensional Fourier transform

Bx(ω1,ω2) =
∞
∑

n1=−∞

∞
∑

n2=−∞
cxxx(m1,m2)exp[−i (ω1m1 +ω2m2)]. For further details see [B. Efron, 1979,

M. J. Hinich, 1982, M. J. Hinich and H. Messer, 1995].

The process is calledlinear if it is the output of a linear filtering operationx(n) =
∞
∑

k=0
h(k)ε(n−k)

whose input{ε(n)} is a sequence of independent and identically distributed zero mean random variables
(called purely random noise). It then follows thatBx(ω1,ω2) = µ3εH (ω1)H (ω2)H (−ω1−ω2) where
H(ω) is the Fourier transform of h(k), andµ3ε = Eε3(n) is the skewness ofε(n).

3. Testing Linearity
Under the linear null hypothesis, as long as the sample size N»p, all the serial correlation in the data
{ xk} will be removed by the initial AR(p) fit. The criticalnull hypothesisfor the linearity test is that the
residuals {ek} obtained from the AR(p) fit areindependently distributed. Thus statistically significant
sample bicovariances due to nonlinearities will falsify the null hypothesis.

Let B̂e(w1,w2) denote the estimate of the bispectrum of the residuals at bifrequency(w1,w2) using
a resolution bandwidth of∆. Using Theorem 5.3.1 of [D. Brillinger, 1975] it can be shown that the
real and imaginary partsN

1
2 ∆[B̂(w1,w2)−B(w1,w2)] are independently distributed and gaussian with

mean zero and varianceσ2
e/2 asN goes to infinity. Thus the large sample distribution of thenormalized

skewness functiondefined byV(w1,w2) = 2N∆2σ−6
e [B(w1,w2)]2 is χ2

2(λ), a chi squared with two degree-
of-freedom and non-centrality parameterλ = 2N∆2σ−6

e [µ3e]2 for each bifrequency for the null hypothesis
of independence. This parameter is estimated byλ̂, the average skewnessV (ω1,ω2) for all bifrequencies
in the bispectrum’s principal domain.

Let F(υ|λ) denote the cumulative distribution function of aχ2
2(λ) and letU(w1,w2) = F [V(w1,w2)|λ].

The normalized skewness values are then transformed into uniform (0,1) variates under the null hypoth-
esis by this transformation. Then the modified Hinich test for linearity (independence of the residuals)
is to compute the qth quantile of the sortedU statistics for all K bifrequencies in the principal domain,
where the user selects q. If the whole bandwidth up to the folding frequency is used then there are ap-
proximately K= 1

16∆2 bifrequencies in the principal domain [R.A. Ashley et al., 1986]. The qth quantile
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is approximately gaussian with mean q and varianceσ2=q(1-q)/K under the null hypothesis, and we use
the q=0.9th quantile [R.A. Ashley et al., 1986].

Using these estimates of the mean and variance, the asymptotic gaussian distribution the 5% threshold
for the one tailed test of linearity is easily found to be 0.9+0.492/

√
K. If the 0.9th quantile is larger than

this threshold the null hypothesis of linearity is rejected at the 5% false alarm level. Thus under the null
hypothesis 5% of such statistics would be larger than the above threshold. Since the gaussian distribution
is only a large sample approximation whose accuracy for a given N is unknown, simulations are needed
to determine how well the approximation works. Unpublished simulations run by Hinich shows that the
test is conservative, that is its false rejection rate for the nominal 5% level is around 2%. This makes
the test less powerful than a test that has a true 5% level. To improve the power of the test to detect
nonlinearity, some sort of bootstrap is required.

Using simulations, we first check the false alarm rate of the nonlinearity test using three bootstraps
a) the Theiler surrogate; b) the temporal shuffle and c) Efron’s bootstrap for gaussian, uniform and
exponential innovations.

In the analysis that follows, we make use of an initial set of S=4,000 random (gaussian, uniform and
exponential) ‘control’ time series (e1,e2,. . . .,eN) (with N=100 here). To check the false alarm rates when
testing the meanµ (or any other statistic) we proceed by examining each of the S=4000 ‘control’ time
series in turn as follows:

i) Estimate the meanµc of the ‘control’ time-series.

ii) Construct M surrogate time-series (e.g., via the method of Theiler et al., the shuffle or the Efron
bootstrap described below).

iii) Determine the distribution of the M meansµ of the M surrogate time series.

iv) Calculate the 5% threshold levelµ.05, for which 5% of the surrogates have a mean valueµ that is
greater thanµ.05.

v) Determine whether the control time-series has a mean larger than the 5% threshold i.e., whether
µc> µ.05.

Repeating steps (i−v) for each of the S=4,000 random control time series, the false alarm rateα may
be calculated by determining the proportion of times for whichµc> µ.05. If the bootstrap is operating
correctly the false alarm rate should beα=5%.

Theiler Bootstrap Shuffle
Nonlin Gauss TR Nonlin Gauss TR Nonlin Gauss TR

Gaussian 5.0 4.8 4.6 3.9 1.6 4.4 5.3 5.0 5.2
Uniform 1.5 1.2 0.7 4.0 3.3 5.4 5.0 4.9 5.3
Exponential 12.1 27.1 15.9 2.8 0.7 4.1 5.0 4.9 5.2

Table 1: False alarm rates of nonlinearity, gaussianity and time reversibility tests.

Surprisingly, as Table 1 shows, the only bootstrap that is successful is the temporal shuffle, which
maintains false alarm rates reasonably close to the expected 5% level in all cases. The same proves
to be true when the exercise is repeated for the tests of gaussianity and time reversibility (TR) to be
described shortly. Table 1 confirms that the Theiler method provides the correct false alarm rate for
gaussian distributions only.
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4. Testing Gaussianity
If the density of the noise variates {ε(n)} is symmetric about its mean (zero) then the skewness is zero,
and its bispectrum will not be statistically significant from zero. The Hinich test statistic [M. J. Hinich,
1982] to test for input symmetry is the sum over theV (ω1,ω2) for the K bifrequencies. Since the bispec-
tral estimates are approximately independent across the bifrequency grid, this sum will be approximately
distributed as aχ2

2M (0). The non-central parameter is zero for the null hypothesis since the skewness is
zero. The null hypothesis is rejected if the sum is greater than a one tailed threshold that is determined
by the false alarm probability required by the user who employs the above large sample chi squared dis-
tribution for the sum. Note that a gaussian density is symmetric and thus the Hinich test for gaussianity
is really a test for the more general hypothesis of noise density symmetry.

5. Testing Time Reversibility
If the purely random process is time reversible then its bicorrelation function will have the symmetry
Eε(n)ε(n+m1)ε(n+m2) = Eε(n)ε(n−m1)ε(n−m2) for everym1andm2. This implies that the imag-
inary part of its bispectrum is zero. The Hinich-Rothman test statistic [M.J. Hinich and P. Rothman,
1998] is the sum ofR(ω1,ω2) = 2N∆2σ−6

e |ImBe(ω1,ω2)|2, which are distributed as aχ2
M (0) under the

null hypothesis of time reversibility. Thus the H-R test is similar to the Hinich test for noise density
symmetry but withM degrees-of-freedom.

6. Applications
The above tests have been successfully applied to a variety of different nonlinear models, and have
also been used to test biological, environmental and economic time series. The next two examples will
illustrate the application of the proposed tests.

6.1. Henon Map

Consider first the example from Theiler where four independent realizations of the Henon map (the x-
coordinate) are added yielding a time series of N=1,000 points. The superimposed Henon data is fitted
with a recursive AR procedure that finds the model that minimizes the sum of squared residuals. If for
example we start with p=10, the routine fits an AR(10) and then finds the t-values for the lag parameter
estimates. If the t-value’s probability value of say lag 2 is greater than a preset threshold then that lag is
removed from the next fit. The procedure continues until either all lags from one to ten are not significant
or the remaining lags are significant with respect to the threshold. The best fit found was an AR(6) model
with lags 1,3,4,5, and 6 (R2=0.28).

The one tailed 0.9th quantile test for nonlinearity based on asymptotic theory had a probability level
of p=0.03, and thus was significant at the 3% level. However, this is an asymptotic result and thus open
to interpretation for finite data sets, particularly when there is border-line significance as found in this
example. We thus repeated the test on 500 ‘shuffle’ bootstraps of the observed data. Not one of the
bootstrapped test statistics had a probability level greater than p=0.03. Hence the bootstrapped test found
the data to exhibit significant nonlinearity. Similarly, the test for gaussianity and time reversibility were
both rejected with p<0.0001.
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Coca Cola Returns (Jan. 2 1980 to  Aug.30 1985) 
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Figure 1: Coca Cola daily rate returns Jan 2, 1980 to Aug. 30, 1985

6.2. Coke Data

Fig 1 displays a series of within day rates of return of Coca Cola from January 2, 1980 to August 30,
1985. These rates of return were constructed from the actual traded prices by a method that obtains
unaliased ten minute aggregates for each trading day. The details of the sampling method used are in
[T. Schreiber, 1998]. There are 36 of these ten minute return aggregates for each trading day yielding
N=51,622 data points. Fig. 2 plots all significant U-values in the principal domain of the bispectrum at
the appropriate bispectral frequencies. The 0.9th quantile test for nonlinearity based on asymptotic theory
had a probability level of p=0.002, and thus is significant at the 0.2% level. With such high significance,
there is no need for a bootstrap test, but in any case the latter detected unequivocally nonlinearity in the
time series. Similarly, the test for gaussianity and time reversibility were both rejected with p<0.0001.

7. Conclusions
In this paper, new tests for nonlinearity, gaussianity and time reserversibility using surrogate and boot-
strap methods has been proposed. Real data examples have been given to illustrate the power of the
tests.
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Figure 2: Bifrequencies whose probability values are greater than 0.99 are marked in the principal domain of the bispectrum.
The rest are set to zero to remove noise clutter
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