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A Test for Aliasing Using Bispectral Analysis 

MELVIN J. HlNlCH and MURRAY A. WOLINSKY* 

Aliasing is a signal-confounding problem that arises when a continuous-time signal is sampled at a rate slower than twice the 
highest frequency component of a Fourier series representation of the signal. Aliasing can be especially serious for social- 
science time series applications, since the sampling designs used to construct most social-science data bases are fixed by 
considerations other than the nature of the underlying continuous-time mechanisms. After collecting sampled data, it is of 
value to test the observations for the presence of aliasing. It is shown that the nature of the support set of a sampled band- 
limited stationary signal can be used to motivate an amended version of the Hinich bispectrum test for Gaussianity (Hinich 
1982) as a test for aliasing. 
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1, INTRODUCTION 

The two sinusoids x(t) = cos(271fot) and y(t) = cos(4nfot) 
yield identical sampled values if they are sampled at times 
t = nlf,, where n is an integer. Thus these two functions 
cannot be identified from a discrete-time sample of a time 
series that is sampled at the rate f,. This is a simple example 
of the aliasing problem that can arise when a time series 
is sampled at equal time points. If the time between suc- 
cessive observations is T (for a sampling rate of llz),  then 
each frequency component of the series for frequencies 
- 1/22 5 f 5 1/22 can be confounded by components 
whose frequencies are f + n l ~ ,where n is a signed integer. 
This confounding by aliases will not occur if the following 
conditions hold: (a) the underlying continuous-time signal 
has no frequency content beyond a frequency f,, which is 
called the band limit, and (b) the signal is sampled at a 
rate that is greater than or equal to the frequency 2f0- 
that is, if 112 2 2f,. 

Aliasing is usually avoided in engineering and physical- 
science applications by filtering the signal to eliminate its 
energy above a certain cutoff frequency and then sampling 
the filtered signal at or above twice the cutoff frequency. 
This type of sampling design is usually impossible for so- 
cial-science applications, since the sampling rate is deter- 
mined according to logistic and cost considerations without 
regard for the spectral characteristics of the underlying 
process. 

Once a sampling process is used to collect data, it is of 
value to be able to test the observations for the presence 
of a significant amount of aliasing. We will show that an 
overlooked property of the principal domain of a discrete- 
time band-limited stationary signal can be used to motivate 
an amended version of the Hinich bispectrum test for 
Gaussianity (Hinich 1982) as a test for aliasing. 

The bispectrum of a discrete-time signal is a periodic 
function in two frequency indices. There is a surprisingly 
persistent confusion between the statistics and engineering 
literature regarding the triangular form of the principal 
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domain of the bispectrum of a time series that is a discrete- 
time sample of a continuous-time band-limited signal. 
Huber, Kleiner, Gasser, and Dummermuth (1971), Kim 
and Powers (1979), and Matsuoka and Ulrych (1984) pos- 
tulated isosceles triangular domains that are a subset of 
the triangle given by Brillinger and Rosenblatt (1967a,b), 
Lii and Rosenblatt (1982), Subba Rao and Gabr (1980), 
Hinich (1982), and Subba Rao (1983). 

We will now demonstrate that the set of positive support 
of the continuous-time bispectrum is a proper subset of 
the principal domain of the bispectrum of the sampled 
process. Huber et al. (1971) and others in the engineering 
literature are really referring to the support set rather than 
the principal domain, and that support set is the one of 
substantive interest. The extra triangle in Brillinger and 
Rosenblatt (1967a,b) is due to the frequencies that sum 
to 1 (271 in angular frequency units). We will show that 
the bispectrum must be zero in that extra triangle if the 
sampling rate is equal to or exceeds twice the highest fre- 
quency in which the spectrum is positive, the band limit 
fa (see Fig. 1). This result is surprising when 112 = 2f0, 
since the spectrum of the sampled signal is nonzero up to 
the folding frequency 1/22, assuming that the spectrum 
has no zero regions in its principal domain of 0 5 f 5 

1/22. A proof of this result will be given after a review of 
the definition of a bispectrum. 

2. CONTINUOUS-TIME BISPECTRA 

To review the mathematics of bispectra, let x(t) denote 
a real zero-mean stationary continuous-time stochastic 
process. Assume that all expected values, sums, and in- 
tegrals used here exist. The bicovariance function of the 
process is c(u, u) = Ex(t)x(t + u)x(t + v), which does 
not depend on t because the process is stationary. The 
double Fourier transform of c(u, v), 

B(f,  g)  = ImI'c(u, v)exp[-i2n(fu + gu)] du du, 
- m  - X  

is called the bispectrum of the process. Although this two- 
frequency index notation is standard, it hides the three- 
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Figure 1. Discrete-Time Principal Domain. 

frequency interaction that is so important for applications 
of bispectral estimation. To help the exposition, we now 
switch to the three-index notation used by Brillinger and 
Rosenblatt (1967a,b), namely B(f, g, h), where h = -f 
- g. To motivate this notation, consider the following 
redefinition of the bispectrum as a Fourier transform of 
c(u, v) for all t: 

+ g(t + v) + ht]) du dv 

+ (f + g + h)t]) du dv. (2) 

For B(f, g, h) to equal B(f, g) regardless of t, then f + 
g + h = 0. The right side of expression (2) is invariant 
to permutations of the frequency indexes f, g, and h = 
-f - g. Thus the bispectrum's symmetry lines are f = g, 
f = h (2f = -g), and g = h (2g = -f).  Another sym- 
metry holds, since c(u, v) is real; namely B(- f, -g, -h) 
= B*(f, g, h), where * denotes complex conjugation. This 
skew symmetry yields another three symmetry lines: f = 
-g, f = -h (g = O), andg = -h (f = 0) (see Fig. 2). 
Thus the cone C = {f, g : 0 5 f,  0 5 g 5 fl is a principal 
domain of this continuous-time bispectrum in the (f ,  g) 
plane. 

3' THE 'OR DlSCRETE 

Now suppose that the process is band limited at fre- 
quency f,. Then there is no variance in the process for 
frequencies beyond fo, and thus the bispectrum cuts off at 
f = fo, g = +fo, and f + g = +fo. Then the continuous- 
time support set is the isosceles right triangle {f, g : 0 s 

Figure 2. Symmetries of Bispectrum B(f, g). 

f 5 fo, g f,  f + g = f,). The discrete-time principal 
domain, though, is a larger triangle if the process is sam- 
pled at the Nyquist frequency of 2f0. 

The principal domain can be derived from Equation (2) 
in a straightforward manner (for a general treatment of 
polyspectra, see Rosenblatt 1983). Consider the discrete- 
time sequence {~(nz)) ,  where z = 1/(2fo). The bicovari- 
ance function of this sampled version of {x(t)) is really an 
array, {c(jz, kz) : j, k = 0, *I, +2, . . .). Then the 
sampled-data bispectrum is defined, analogous with Equa- 
tion (2), to be given by the Fourier transform in three 
indexes: 

x exp{-i27c[fjz + gkz + (f + g + h)z]), (3) 

where now f + g + h is not just constrained to be 0 but 
can be equal to nlz for any signed integer n. Thus the 
sampling introduces an infinite set of parallel symmetry 
lines, 2f + g = nlz and f + 2g = nlz. The cone Cis  first 
cut by the symmetries 2f + g = 117, and thus the principal 
domain of ,B is the triangle {f, g : 0 f 5 1/27, g f, 
2f + g = l/z) in the cone C. We will now give an expres- 
sion for B in terms of the underlying bispectrum for fre- 
quencies in the odd triangle OT = {f, g : g s f, 1/27 5 
f + g 5 (117) - fl adjoining the isosceles triangle IT = 

{f, g : g 5 f,  0 5 f + g 5 1/22} (Fig. 1). 
The discrete-time bispectrum ,B is a periodic function 

of period l / z  in each of its three indexes. A special case 
of a formula in Brillinger and Rosenblatt (1967b, p. 190) 
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states that for f, g, and h in the principal domain of ,B, 

where the signed integers are restricted to keep the indexes 
in B's principal domain. For example, if h = -f - g, 
then k + m + n = 0. If h = (112) - f - g, then k + 
m + n = -1. But B is band limited at f,, so the sum is 
restricted to the k, m, and n such that (f + k / ~ l5 f,, Ig
+ mi21 5 f,, and Ih + nlz( 5 f,. 

Now consider the case in which there is no aliasing. 
Take T = 11(2fo). I f f  and g are in OT, then f + g > 
1/22 = f,, f < f,, and g < f,. Thus the key term in the 
sum to consider is B(f, g, h - l lz),  where h = -f - g
+ 112. This, however, is B(f,  g, -f - g), which is 0 
because f + g > f,. All of the other terms are 0 for a 
similar reason. Thus .B is 0 for ( f ,  g)  in OT. 

3.1 Testing for Aliasing 

Let S(fj, fk) denote a consistent estimator of ,B(f,, gk) 
for a grid of equally spaced bifrequencies (f,, gk) given a 
sample of size N of {~(nz)}. This estimator can be com- 
puted by smoothing the sample bicovariance (Subba Rao 
1983), by smoothing the sample bispectrum in the bifre- 
quency domain (Hinich 1982), or by dividing the sample 
into pieces and averaging the piecewise sample bispectra 
and then smoothing in the bifrequency domain (Lii and 
Rosenblatt 1982). 

Let BN denote the bandwidth of the bispectral estimate 
for the smoothing method used. For simple piecewise av- 
eraging using LN points in each piece of the data record, 
BN = l /LN.  Consistency requires that BN -,a as N + a .  
To ensure that the variances of the real and imaginary 
parts of S go to 0 as N +  a ,  assume that NB; + a .  Hinich 
and Patterson (in press) found that setting the bandwidth 
in the range l l < ~  < BN gives results that conform 
to the large-sample results derived from asymptotic anal- 
ysis. 

Letting Sx(f) denote the spectrum of { ~ ( t ) } ,under some 
mixing conditions such as the ones given by Brillinger 
(1975) or Rosenblatt (1985), the large-sample distribution 
of the statistic 

is a central chi-square with 2 df if the bispectrum is 0 in a 
region about (f,, gk). The statistics for (f,, gk) and (f,, g,) 
are asymptotically independent (for exact statements of 
the asymptotic properties alluded to here, see Brillinger 
and Rosenblatt 1967a; Rosenblatt 1985). 

The obvious modification of this test for the problem 
on hand is to sum the chi-squared statistics only over the 
triangle OT. Under the null hypothesis that there is no 
aliasing for a sampling rate l lz ,  the distribution of the sum 
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is approximately central chi-squared with 2K df, where K 
is the number of grid points in O T  and BN > I/<N. Ash-
ley, Hinich, and Patterson (1986) showed that the ap- 
proximation used in the Hinich test is good for samples 
as small as N = 256, so there is no reason to doubt its 
application to this restricted sum test for aliasing. If one 
does not want to use the large-sample properties of the 
estimated bispectrum, then the Subba Rao and Gabr (1980) 
test can be modified in a similar way. 

This bispectrum-based test has no power if c (u ,  v) = 0 
and thus the bispectrum is identically 0 for all bifrequen- 
cies. David Brillinger suggested (personal communication, 
1987) squaring the observations so that the test will have 
power using the transformed series. A variety of trans- 
formations can be tried, provided that the mean of the 
transformed observations is 0 and that no new frequencies 
are introduced beyond those originally present. The latter 
constraint rules out squaring and may eliminate all non-
linear transformations. 

The bispectral analysis programs that we use take at 
most a few seconds of central-processing-unit time on an 
IBM 3081 computer, even for N = 10,000 observations. 
One program operates on a PC microcomputer. The com- 
putational ease of such programs on modern computers 
makes it feasible to try a variety of transformations using 
a number of bandwidth values. 

In a sense, the test has already been applied. The results 
of Hinich and Patterson (1985) show that many daily stock 
series have large peaks in various parts of the principal 
domain, including OT. Since stock prices change by the 
minute, it is not surprising that high-frequency compo- 
nents are aliased. All statistically significant terms in OT 
verify aliasing for the sampling interval of one day. The 
test was applied by Hinich and Patterson (in press) to three 
years of continuous trade-by-trade data for 15 stocks. 
These trade-by-trade data are essentially a continuous- 
time record of the stock prices, corrected for splits and 
dividends. The data are passed through an anti-aliasing 
low-pass filter and sampled at a rate equal to the band- 
width frequency cutoff for the anti-aliasing filter. 

3.2 Analysis of a 10-Stock Price Series 

To provide an example of this test with new data, the 
chi-squared alias statistic was completed by using daily 
rates of return from 10 randomly selected stocks for the 
sample period January 18, 1980-December 30, 1983. This 
period has N = 1,000 consecutive days. The bispectrum 
is computed for points in the principal domain, averaging 
in the frequency domain over a square whose sides have 
a resolution bandwidth of .03 day-'. In other words, 900 
raw sample bispectrum values are averaged to produce an 
estimate of the bispectrum for the square. The spectrum 
for each stock is averaged by using a truncated cosine 
kernel whose bandwidth is .237 day-'. There are K = 24 
center points in the alias triangle OT. We obtained similar 
results for our aliasing test, using different smoothing pa- 
rameters for the bispectral and spectral estimates. 
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Table 1. Aliasing Test Statistics 

1118180-1 2130183 213176-1I1 7180 


Stock xL Z x% Z 

American Airlines 74.6 5.4 56.2 3.8 
Alberto Culver 95.2 7.0 60.5 4.2 
CBS 43.9 2.5 79.3 5.7 
Campbell Soup 103.5 7.5 48.2 3.0 
El Paso Natural Gas 291.2 17.3 133.3 9.5 
Swift & Co. 74.7 5.4 80.8 5.9 
Federated Department 

Stores 77.4 5.6 44.0 2.5 
Northern Gas 76.4 5.5 85.1 6.2 
Indianapolis Power 

and Light 92.7 6.8 55.2 3.7 
Merrill Lynch 54.6 3.6 134.7 9.6 

NOTE: The X %  statistic is approximately a central chi-squared variate with 48 dl under Ho. 
The Z statistic is a normal approximation of the chi-squared with large df. It is N(0, 1) under 
Ho. 

The results are presented in Table 1.The values for the 
chi-squared statistics with 48 df are given in column 1. 
Under the null hypothesis that there is no aliasing, the 
statistic is approximately chi-squared with 48 df. If there 
is aliasing, the distribution is approximately noncentral chi- 
squared with 48 df and a positive noncentrality parameter. 

The second column presents the Gaussian approxima- 
tion to a chi-squared random variable with large degrees 
of freedom. This statistic is approximately N(0, 1) under 
the null hypothesis. Each stock series has a test statistic 
that is not consistent with the null hypothesis. The results 
overwhelmingly indicate that the data are aliased for the 
sampling interval of one day. The results suggest that the 
underlying continuous-time mechanism that generates the 
price series has a spectrum whose bandwidth far exceeds 
the .5 day-' folding frequency for the measured rates of 
return. 

To check on the stability of the results, the prior 1,000 
trading-day period (Feb. 3, 1976-Jan. 17, 1980) was ana- 
lyzed using the same bandwidth for smoothing. Once again 
each series has a test statistic that is not consistent with 
the null hypothesis. 

These significant results are unlikely to be due to non- 
stationarity in the distribution of a linear model, since such 
structural nonstationarity will tend to attenuate the sample 
average of the same bispectral estimates (or equivalently, 
the sample bicovariances) relative to the sample average 
of the periodogram, using any of the equivalent smoothing 
methods. This attenuation is analogous to the reduction 
undetectability of a shift in the mean of a heteroscedastic 
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time series. In other words, the power of the test is reduced 
if the joint distribution of the observed process varies within 
the sampling period. 

For each series analyzed, the bispectrum in the isosceles 
triangle is similar in form to that of the odd triangle. The 
statistically significant bispectral values are concentrated 
at certain bifrequency pairs, as is the case for the bispectra 
presented by Hinich and Patterson (1985). The results are 
consistent with a hypothesis that the generating mecha- 
nism is nonlinear. The aliasing test statistics indicate that 
a higher sampling rate must be used to identify the struc- 
ture of the nonlinear mechanism. 

[Received January 1987. Revised September 1987.1 
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