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• paper preaenta the maximum-likelihood signal proce•r for steering a vertical array in the vertical 
direction. The ma•or application ia to the eatimation of the depth of a diatant narrow-band continuous point 
aource in the waveguide. The eigenfunetiona of the guide are used to match the array to the received signal 
The error of the depth earlmate ia derived as a function of the aperture and geometry of the array, the eovariance 
function of the ambient noise received by the array, and the obaervation period; 8•$uminR that the source and 
medium are at•tionary during tlmt period. The proceaaing technique can be •qaplied to any perfect waveguide 
in which a signal aouree ia detected by an array of aensors. 

Subject Cha•cation: 15.2, 15.3. 

INTRODUCTION 

In a comprehensive review article Clay' uses normal 
mode theory of acoustic waveguides to analyze the 
signal-to-noise gain of horizontal and vertical hydro- 
phone arrays in a noisy ocean. He shows that horizontal 
rather than vertical arrays should be used to obtain 
bearing estimates for a signal source. Vertical arrays 
should be used to obtain estimates of the vertical 

wavenumber components and depth parameters of 
the source. A review of optimal processing of hori- 
zontal arrays is given by Clay, Hinich, and Shaman. 2 
This paper presents the maximum-likelihood signal 
processing of a vertical array immersed in any perfect 
waveguide. 

A major application of the technique is the optimal 
estimation of the depth of a continuous point source 
in the waveguide. The signal-processing technique was 
motivated by Clay's suggestion that a vertical array 
should be matched to the eigenfunctions of the guide, 
which are not in general sinusoidal functions in the 
vertical direction. Consequently, except in the simplest 
guides, the well known delay-and-sum beam steering 
will not be appropriate for obtaining the source depth. 

The acoustical pressure at a hydrophone at depth x 
due to a continuous wave transmission from a distant 

narrow-band point source at depth x0 is the real part of 

P(x,t) ---r--I E --exp•-•('*'/--•-r+It)3•-(xo)•-(x), (1) 

where ß is the range and •o is the frequency of the source, 
•o, is the ruth mode eigenfuncfion, •, and v- are re- 
spectively the horizontal and vertical components of 
the ruth wavenumber, and a• is the attenuated excita- 
tion of the ruth mode (Fig. 1). a Suppose that we filter 
a T sec record of output from the sensor using a filter 
centered at co of bandwidth &o= 1IT Hz. If the source 
and the medium are stationary during the T sec 

period, the observed amplitude will bc proportional to 
the signal 

M am COS•r•r 

E -- 

where the variance of the noise •(x) is proportional to 
1/T. Thus the power of the received ambient noise can 
be significantly reduced if the process is stationary for a 
suflfciently long observation period. In other words, if 
the noise at each receiver is phase incoherent when the 
signal is coherent, time averaging reduces the noise. 

The horizontal and vertical components of the ruth 
mode wavenumber are related to co by the dispersion 
equation 

CO2 

(3) 
where ½ denotes the phase velocity of the wave. If there 
is no structural dispersion, c is independent of co, and 
is equal to the group velocity of energy radiation in the 
medium. 

xi-depth of I th sensor 

Bottor • 

Fxo. 1. V•:tical array o{ sensors. 
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There is no structural dispersion for the simplest 
model of the ocean as an acoustic waveguide; the 
homogeneous compressible fluid waveguide with a rigid 
bottom and a free surface. In the absence of gravity 
effects the eigenfunctions for this waveguide are to• 
=V•cosqt,•x, 0<x<D, where D is the depth of the 
bottom, and T•= (ra+})•r/D. However, owing to sur- 
face gravity effects the lower modes reflect off the 
surface, and thus for small T• the eigenfunctions are 
to,• =y• sin (m•r/D)x.'.' 

The steady-state normal mode solution to the ideal- 
ized acoustic waveguide is a special case of the general 
solution of the inhomogeneous Sturm-Liouville partial 
differential equation. The maximum-likelihood estima- 
tots in this paper are functions of the eigenfunctions of 
the S-L operator. 

I. STURM-LIOUVILLE PROBLEM 

Suppose that at n points in the unit interval F0,1] 
we observe a noisy version of the solution f(x) to 
the inhomogeneous Sturm-Liouville problem Lf--s(x) 
where the operator is defined by 

(4) 

s(x) is the intensity of a source at point x, p is a given 
continuously differentiable positive function of 
q is non-negative and continuous in [0,1], and f 
satisfies the following boundary conditions given c•> 0, 
i=1,...,4: 

•1/(0) -- Cff--•.•(0) =0 

0 

½3f(1)+ct--f(1) --0. 
Ox 

(s) 

For steady-state processes ](x) is the solution to the 
general wave or diffusion equation with the given 
boundary conditions. s 

It is well known that L is a positive self-adjoint linear 
operator whose eigenvalues qa<.-r:<.-- axe discrete 
with finite multiplidty, and whose eigenfunctions •ot, 
•,... are complete in L:, the space of square integrable 
functions of xe [-0,1-]. Moreover, assuming ?l>0 (L is 
non-singular), 

/(x)= (6) 

uniformly in x, where 

and the eigenfunctions are orthonormal, i.e., (•o•,•o•) 

=1 and (•,,•d)=0 for ra•m'. When L is the wave 
operator, the •, are called the normal modes. 

Suppose that the source intensity can be reasonably 
approximated by a linear combination of the first M 
eigenfuncfions 

s(x) = E (7) 

where 0•,..., Ou are unknown weights whose values 
are such that s(x} has a global maximum at x=xo. 
For the acoustic waveguide discussed in the Introduc- 
tion, 0n = •o,•(xo)a,,g--i cos•r. If the coefficients a, cos• 
are equal for m= 1,..., M, then as M--• oo, s(x) --• 
ii(x--x•)--the Dirac delta function centered at xo. Given 
a set of observations of y(x)-f(x)+e(x) where •(x) 
denotes the noise field at x, we wish to obtain estimates 
of the &, and x0. For a given application the choice of 
M must be determined experimentally. a 

H. ESTIMATING THE SOURCE WEIGHTS 

The observations y(xi)=f(xi)+•(xl) represent the 
(time) filtered output from a sensor located at point 
xi (i= 1,..., n). The array of sensors lies on a line 
imbedded in a medium bounded at x=O and 1. The 

results in this paper generalize easily to the inhomo- 
geneous boundary value problem involving a self- 
adjoint operator on La(S), the space of square integra- 
ble functions of x•S--a closed and bounded subset of 

Euclidean space. 
Applying Eq. 7 to Eq. 6, 

y(x,) = Z 

or in vector and matrix notation, 

y=•l'-t0+t, 

where y=•y(x•),..., y(x,)]', t=F•(xt),..., ,(x•)]', 0 
= (o•,..., 0•)', I' is the MXM diagonal matrix whose 
ruth diagonal element is a',•, and •, is the nXM matfix 
whose i, ruth element is •(x•). 

Let us assume that •b has column rank M, and that 
the noise vector t has a multivariate Gaussian dis- 
tribution with zero mean and variance-covariance 

matfix oa• where a is an unknown scale parameter. 
The gradient of the log likelihood is 

% log L(y I 0) = l•'I;-•(y--•I'-l•). (8) 

The maximum-likelihood estimator • of 0 is just the 
generMized least-squares estimator •.s 

whose variance-covariance matrix is 

0)'-- (lO) 

If the cohmm rank of ß is less than M, the generalized 
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inverse least-squares estimation technique suggested by 
Rao g should be used. 

A simple example would be useful here to illustrate 
the dependence of the precision of • on the signal-to- 
noise ratio and the eigenvalues. Suppose that 5=1, 
the nXn identity matrix, and that x•=O, x,,= 1 with 
n su•ciently large such that 

and 

- E 
n 

i.e., the ambient noise picked up by the array is assumed 
to be white, and the sensors are positioned in the wave- 
guide such that the sampled eigenfunctions are approxi- 
mately orthogonal in Euclidean n-space. Both 
sumptions are unrealistic for the ocean waveguide 
since the noise is highly coherent in the vertical direc- 
tion, saø and it is extremely difficult to design hydro- 
phones to operate at great depths. 

From Eqs. 9 and 10 it follows that the maximum- 
likelihood estimator (least-squares) estimator of 0,• is 

(n) 

whose variance is 

(12) 

•d 0, •d 0,, •e •elat• for m•'. Thus the 
r•t •an s•e •op•ti• •r• of 0, is •,(•/O,ni). 

HI. ESTIMATING THE SOURCE DEPTH z0 

The maximum-likelihood estimator (MLE) of the 
source function is simply 

M 

= E 

However, the maximum-likelihood estimator of x0 is a 
nonlinear function of the observations which can not 

be easily implemented in practice. Starting with a 
simple estimator of x0, we will use the method of 
scoring g to approximate the MLE for small 

The simple estimator of x0 is the point in the unit 
interval which maxlrnie•s g(x), i.e., 

max g(x). (13) 
O< z< 1 

In order to compute the mean squared error of •, we 
will need the variance of (O/Ox)e(x), where e(x)----g(x) 
--s(x). Setting t•(x)=F•ol(X),..., •o•.(x)']', and 
=f_(O/Ox)•(x),..., (O/Ox)•st(x)]' it follows from Eq. 

10 that this variance is 

E•xe(X)la--a2•,'(x)U(•'•:-•)-•I•(x). (14) 
The rms error of • is approximate for small an-l. If 

on-i is small, (O•/Ox•)Eg(x)--s(x)] for k=O, 1, 2, and 
i-xo are of the order of on-L Since • is a maximum at 
• and s is a maximum at x0, by Taylor series expansion 
about x0 we have 

0 

--•(e) =0 
Ox 

o o 2 

(15) 
Ox 

where (Oa/Oxa)s(x•)<O. Consequently, the small an-t 
rms error of • is 

[- 0 • TI| [ - 0 -I•l ! 

For the situation where •: =[ and •'•.• (1/n)[, 

F 02 T 1 

Given g, we will now use the method of scoring to 
iterate to the maximum-likelihood estimator. The 

method of scoring is just the Newton-Raphson pro- 
cedure for solving the equation (O/Ox)L(y[x)=0 modi- 
fied by replacing --(0a/0x a) 1ogL(ylx) by its expected 
value, the Fisher information I(x), evaluated at x=•, • 
i.e., the next iterate of the source depth is 

where 

1 0 

-- logœ(y { e), 08) 
H:O Ox 

,0 2 
= _e_ logœ(y { (19) 

From Eq. 8 it is dear that 

0 

-- 1ogL(ylx ) = •p•t(x)D•'El-l[y-•D•p(x)], (20) 
Ox 

where D is the diagonal matrix whose ruth element is 
d•='r•-'a•'-*cos•,•r. Applying Eq. 20 to Eq. 18, 
the "scored" estim•tm of depth is 

•o=•+I-'(•)•,d(•)D,t,'•g-l[y--aaI)e(•)], (21) 

where 

l(x) = •'D•'•-I•D•o,. (22) 
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Array 

x:t 

xa-D/2 

Botgom 

FIO. 2. Two-element vertical array. 

Xo-D/5 

The maximum-l•elihoed estimate of x0 is found by 
repeating the scoring procedure until it eventually 
converges. n For small an-i, the initial estimate given 
'by • will be close to the true xo, and thus the scoring 
procedure should converge quickly. For notational 
simplicity let •0 denote the final iterate--the MLE. 

The rms error of the nmximum-likelihood estimator is 

rms(:o-zo) (23) 

For a fixed • and large n, the MLE has the smallest 
error of any estimator of x0 which is a smooth hmction 
of x0. 7 However, for small n, the initial estimator :g can 
have a smaller error than i0 provided, is small. The 
optimal properties of the MLE hold in the limit as 
n--} oo, rather than as a--} 0. In the next section, a 
simple example is given which illustrates the processing 
technique and the error analysis of the simple estimator 
• and the MLE :•0. 

IV. A SIMPLE EXAMPLE 

For the homogeneous ocean waveguide discussed in 
the Introduction, the lower mode eigenfunctions are of 
the form •,(x)--V•2 sinmr(x/D). Suppose that M/D is 
small. Then •==m•r/D is small for ra_<M, and thus 
•t,,•o•/c. If the distance between source and array is 
r=c/•, then cos•r= 1 for m_<M. 

In this section the statistical analysis of vertical 
steering is illustrated for a simple source model and a 
two sensor array. Suppose that a source at depth 
xo---D/3 excites only the two lowest modes. More 
specifically, let 

s(x) = (24) 

Note that s(x) has its maximum for O<_x_<D at 
x=D/3 (Fig. 2). The attenuated exitations are a, 
=2(r/6)t and a:=(r/6)L Moreover, (8/Ox)•o•(x•) 
= (C2/2) (,/D), (O/Ox) e:(xo) = --V•2(*/D), and 

(0:/oe)s = - 0dS/2) (./D),. 

Let xx and xz denote the depths of the two sensors. 
Then 

4•=x/j(sin?r<x,/D) sin2a-(x•/D)• 
\simr(x:/D) sin2a'(x•/D)/ 

Since we are dealing with an example, let us further 
simplify the algebra by setting xt=D/4 and x:=D/2. 
Then 

and thus 

(•'•)-'=V 2 4\--d• 3 )' 
Clearly rms (i--xo) does not depend on D for any 
choice of xt and x:. Consequendy, from Eqs. (14) and 
(16), the small arms error of :g is 

rms(•--•D) = (0.57) I*, (25) 

assuming that the ambient noise at gl and x• are un- 
correlated. It is easy to show that 

rms(•0--3 = (1.44) 1-. (26) 

Therefore, when • is small and initial estimator g is 
more precise than the maximum-likelihood estimator in 
this two-sensor example. 

Different sensor positions would give a different 
(•'4•) -• matrix in Eq. (14). For example, if the aperture 
x•--x: is small, the eigenvalues of (•,•)-t are of the 
order (xx--x:) -:, and thus , must be of the order 
(x•--x:) -• in order to insure the validity of the approxi- 
mation for the rms (5•--xo). For a given , the error in 
• is reduced by using n> 2 sensors in the array. How- 
ever, the rms of • and •o are not in general propor- 
tional to n-i, but rather are inversely proportional to 
the average eigenvalue of •'Z-kI>. 

v. CONCLUSION 

It is possible to estimate the depth of a distant 
stationary source in a waveguide by the appropriate 
"steering" of a vertical array. Rather than employing 
delay-and-sum beam forming, the optimal signal pro- 
cessor depends on the eigenfunctions of the guide. The 
estimator of the mode amplitudes is a linear function 
of the filtered output from the sensors, but the depth 
estimator is nonlinear. 

The error in the depth estimate depends on the 
power and coherence of the ambient noise in the 
source's frequency band, the aperture and geometry of 
the array, and the observation period. If the source 
and medium are sufficiently stationary and the array 
is deep enough in the guide, an accurate estimate of 
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source depth can be obtained. Given the eigenfunctions, 
the processing technique can be applied to any wave- 
guide in which a source is detected by an array of 
sensors. 
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