
Error analysis of velocity and direction measurements of plane waves using 
thick large-aperture arrays 

C. S. Clay 
University of Wisconsin, Geophysical and Polar Research Center, Madison, Wisconsin 55562 

M. J. Hinich and P. Shaman 

Carnegie-Mellon Lrniversity, Department of Statistics, Schenley Park, Pittsburgh, Pennsylvania 15213 
(Received 14 February 1972) 

The statistical properties of cstimators for plane-wave parameters are discussed. A thick large-aperture array 
is assumed to be detecting a signal emanating from an unknown continuous wave source. The signal is assumed 
to be a plane wave embedded in a spatfolly incobercnt Gaussian noise field. Maximum-likelihood estimaters 
of velocities and directions are derived and their root-mean-square errors arc obtained, for single and multiple 
arrivals for linear arrays and square arrays with a large number of sensors. The rms errors of the propagation 
parameter estimaters are proportional to K -• for a square-lattice array of K sensors and to K-m for a linear 
array of K sensors. The rms error of tbe waveform estimator, however, is proportional to K -m in each case. 
Thus, for the propagation parameters, tbe figure of merit for rms signal-to-noise gain of the array is K for a 
square array of K sensors and K m for a linear array of K sensors. 
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INTRODUCTION 

Consider a large aperture linear or planar array 
immersed in a waveguide containing a set of farfield 
sources of interest. In the region of the array, the signals 
from these sources are approximately plane waves. • 
Given a finite record of simultaneously observed sensor 
outputs, we wish to estimate the directions and/or the 
phase and group velocities of the plane waves produced 
by the sources. Assume that the noise field is stationary 
in space and time, Gaussian, and incoherent across the 
array. 

For a given mode of a single source, delay-and-sum 
filtering (beam forming) is the method widely used to 
estimate the waveform of the signal, provided that the 
waveguide is essentially nondispersive in the region 
about the array. The direction and velocity are esti- 
mated by searching over a range of possible directions 
and velocities for the parameter values which maximize 
the output energy of delay-and-sum filtering; i.e., delays 
for each sensor channel are computed for an assumed 
direction and velocity, the channels are delayed and 
summed, and the sum is squared and integrated over the 
duration of the observation period. For the situation 
where the velocity is known, the search method is 
equivalent to steering the array in the direction which 
max/mizes the energy in the main beam. Ignoring finite 
record end effects, Levin 2 sketches a proof that this 
nonlinear search provides least-squares estimators of 
the signal parameters and approximates their variances 
for arrays with a large number of sensors and a high 
signal-to-noise ratio. However, if the waveguide is 
dispersive and the signal has a wide bandwidth, the 
group and phase velocities depend on frequency. This 
produces a systematic distortion of the signal waveform 

from sensor to sensor and causes a reduction of signal 
enhancement for the steered array. Clay and Hinich a 
have developed and analyzed an ad boc procedure for 
estimating the phase velocities and direction for the 
dispersive situation. 

Even if the waveguide is nondispersive, the presence 
of multiple sources requires the modification of simple 
delay-and-sum beam forming? Levin's method can be 
employed in a sequential manner for estimating the 
parameters of overlapping plane waves from multiple 
sources. For purposes of exposition, suppose there are 
two waves of known velocity propagating across the 
array from two sources at unknown locations. The array 
is first steered in the direction of a source which gives 
maximum energy in the beam. Its estimated waveform 
is appropriately delayed and then is subtracted from 
each channel. The delay-and-sum search procedure is 
reemployed to estimate the direction of the weaker 
source. Anderson and Rudnick a have derived the array 
processing gain for this adaptive procedure, assuming 
stochastic signals. The statistical properties of the 
bearing estimates are unknown, but from preliminary 
analysis using artificial data we have found that the 
estimated direction of the weaker source can have a 

considerable bias, even with large signal-to-noise ratios, 
if the search is not made over a closely spaced grid of 
possible bearings, or if the true velocities are somewhat 
different from the ones assumed for the beam forming. 
The number of bearings and velocities which should be 
searched is not specified by Levin. 

For a single signal which is modeled as a section of a 
stationary nondispersive propagating stochastic field 
embedded in a noise field of known properties, the 
optimum array processing has been analyzed by several 
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[rio. 1. Incoming signM at a linear array. The signal ha• a 
velocity of propagation v and has a direction O. 

investigators. •.•4 Large array analysis of a split-beam 
linear array processor is given by MacDonald and 
Schultheiss. •5 When the noise covariance is unknown, 
optimal sonar processing is discussed by Liggett2 6 

This paper develops maximum-likelihood estimators 
for the directions and vdocities of a sum of plane-wave 
signals of unknown waveforms which are propagating 
across an aperture array consisting of a large number of 
sensors in the presence of additive Gaussian noise? 

The estimators are derived from the frequency- 
wavenumber (•0--K) spectrum which is computed from 
a sample of digital records of each sensor channel. For 
the case of a single nondispersive monochromatic plane 
wave, the estimated wavelength, velocity, and direction 
correspond to the frequency and wavenumber of the 
point of maximum energy of the o•-- K spectrum. In our 
method the maximum number of grid points to be 
searched is specified, the statistical properties are de- 
rived, and the multiple-source problem is treated. As- 
suming that the array contains a large number of 
sensors and that the waves are coherent across the 

array, we shall show that the precision of the velocity 
and bearing estimators is considerably greater than the 
precision of the waveform estimators. To be precise, the 
root-mean-square errors of the propagation parameter 
estimators are proportional to K -• for a square lattice 
array of K sensors and to K-t for a linear array of K 
sensors; whereas the rms error of the waveform esti- 
mator is proportional to K -t in each case. The figure of 
merit for rms signaLto-noise gain of an array is generally 
given as Kt, but if one is interested in the propagation 
parameters the figure of merit should be K for a square 
lattice array of K sensors and Kt for a linear array of K 
sensors. 

I. PLANE WAVES PROPAGATING ACROSS 
A LINEAR ARRAY 

The maximumdikelihood processing is based upon 
finding maxima in wavenumber spectra. Before de- 
veloping the maximumdikelihood method, let us define 
the signal and array. 

Let us consider the simplest case, that of a horizontal 
linear array of K equally spazed sensors which is de- 
tecting a horizontally propagating plane wave, Fig. 1. 
Assume that the plane wave, at time t and position x on 
the array axis, is defined by 

= A 
60b --('0a a 

xe 
where A (a•) and •{•) are, respe•ively, the amplitude 
and phase of the wave component, 
b•dwidth, •{0•) is •e directio• of propagation 
with respect to the x axis, and v(•) • the pha• velocity. 
For each • 

= 

is •he • component of the wavenumber vector of the 
propagating wave. The actnal dependence of 
can be qnite ½omplicat• and is n;ually obtain• 
numerically for a particnlar waveguide. Over a narrow 
b•d (•=,•a) one can m&e an anMytical approximation 
to the nn•erical relationship? We •clude the •ssi- 
bility of multiple values of a for a given 
siam as 

Let x• be the coordinate of the •th sensor on the 

array axis •d let p(t,x•), t•O, v, --., 
sampled output of •e •h sen•r, • O, l, -- -, K-- 1. To 
avoid aliasing let v•wy•. Corres•ndingly, one al• 
has a spatial s•pling th•rem. We will •ume the 
separation d between sen•rs is less •han h•f of the 
shortest phase wavelength, i.e., d•k• or •ya for • in 
the band. 

To simplify notation we choose the time and space 
units such that v• 1 and d• 1. Thus the wavenumber 
menured in •its of d-L Let the signal at the •th sensor 
be 

where n(t,x•) is spgfiMly incoherent Gaussian noi• 
with tot• power a • in (•,•), i.e., 

•n(t,x•)n(t',x•.)•:O for 

ß • =• 3.(•)•, 

where S•(•) is the power spectrum of the noise. 
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The discrete Fourier transformation of each sensor 

channel output observed at t=0, 1, ---, T--1 is com- 
puted at the B frequencies toi= 2a.j/T, where j is an 
integer and to•_<cos_<cob. The Fourier transform pair is 

1 T--1 

p(t,xn) =-- • P(cos,x•)e-'•i ', 
B 

B T-I 

P(•os,x•) =-- • p(t,x•)e i•it, 

t=O, 1, --., T--l, 

j--O, 1, .-., T--1. 

(4) 

We can view B as the number of narrow bands of 

bandwidth &o= 2a-IT in (coa,cob) and thus B= (•b--o•)/ 
Aw. If the observation period T is greater than the time 
taken by the wave group to traverse the array, and if the 
changes of A (to) and •o(to) are small for AoJ= 2•r/T, they 
can be replaced by their mean values. From Eqs. 1, 2, 
and 4 we can write 

P(•os,xe)=A exp{i(ax•+qo)}+N(tos,x•), (5) 

where a, A, and qo depend on ws- For each wi in the band 
(•,o•b) and x• 

N(ws, xn) =-- • n(t,x•)e i•it (6) 
T 

is a complex Gaussian random variable with 

assuming that the noise spectrum is flat in the 
band. Moreover, for each k, N(ws,x•) and N(wt,x•) are 
approximately independent random variables for toiltot, 
both in the (w,,c0•) band. 

H. MAXIMUM-LIKELIHOOD ESTIMATION 

FOR SINGLE ARRIVALS 

For a given to, consider the following estimate of the 
co,et (power) spectrum: 

As indicated in Hinich and Clay lø and discussed in more 
mathematical detail in Walker, • for K 

K-'Se½,a)= A'(•o)+O(K-t), if 
= O(K-i), if a•a(w), (9) 

where O(K-I) denotes a variable with second moments 
of order K-L Consequently Sg(to,a) has a pronounced 
maximum at a=a(to) for large K, which suggests the 
following estimator of a(•o). Let 8 be the value of 
which maximizes S•(to,a) for the given to, i.e., 

SK(to,•)= max S•(%a). (10) 

From the work of Walker •ø and Whittle, el I-Iinich and 
Shaman • show that & is the maximum-likelihood esti- 

mator of a and for large K its distribution is approxi- 
mately normal (Gaussian). The mean square error 
(rose) of • is 

E(a--a)'= 6B/Kao, (11) 

where o= (A/a) • is the signal-to-noise (S/N) ratio. 
The spatial resolution of the array is of the order 

2rr/K. The range of a is from --•r to % and the above 
estimation procedure requires estimation at increments 
of a which should be spaced at least as close as 2•r/K. 
Suppose we compute Sg(to,a) at the K•+I equally 
spaced wave numbers (assuming for simplicity that K • 
is even) 

Otp= 2•rpK -•, p= O, -4-1, ..., 4-«K•. (12) 

Using the Fast Fourier Transform to compute 
K--1 

Z •(OJ,Xk) e--lapxk 

from a sequence of P(to,x•) augmented by zeroes, we can 
quickly and efficiently compute the Sg(to,a,) for large 
values of KL Now let a• be the discrete wave number 
which maximizes Sg(½o,a•), i.e., a0= 2•r•/K • for some 
integer p such that 

S•r(to,a•) = max Stt(w,a,). (13) 

Clearly 
,•-a=O(K-:), (14) 

which is less than O(K-!), the order of the square-root 
rose of & 

Formula 11 is valid even if the sensors are not equally 
spaced, provided that the resolution of the array is of 
the order 2a-/K and the side lobes are small, i.e., there 
are a sufficient number of closely spaced sensors in an 
array of length K. This robustness to relatively minor 
perturbations of the array geometry follows from a 
straightforward generalization of the proofs in Hinich 
and Shaman? 

Now suppose that we have computed O(toi) at each 
oo5= 2,rj/T in the band (to•,co•). Let us present the 
maximum-likelihood estimator of the direction 0 or 

phase velocity v(•0). Since the array- is linear, it is not 
possible to obtain proper estimates of both 0 and 
In Sec. IV we will develop maximum-likelihood esti- 
mators of 0 and v(oJ) using the output of a planar array. 

First let us assume that v(co) is known for 
The maximum-likelihood estimator for 0 based on the 

wth component of the array output is 

$ (to) = arccos { [-v (o0/c018 (•o) }. (15) 

The principal value of arccos(x) ranges over an interval 
of length •r, and we have restricted 0 to [O,•r-]. 

In order to obtain a simple expression for •, the 
maximum-likelihood estimator of 0 based upon the 
O(to), w•_<oJ_<to•, let us assume that the signal is white, 
i.e., A (•o)=A in the band. The estimator 0 is a weighted 
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(a) (b) 

Fro. 2. • spectrum S•{(a,•). (a) High signal-to-noise power 
ratio. The possible multiple values of •, a,• are shown. (b) Low 
signal-to-noise power ratio. 

average of the 0(co), where the weights depend on the 
asymptotic (large K) rose of 

Applying Eqs. 11 and 1S with arccos(x) expanded in a 
Taylor series about x= z•/co, we find that the asymptotic 
mse of 0(co) is 

3BXZ(•o) 
E[•(c0)--O]: = ; 0•0,•, (16) 

2Kap0r sin0) • 

where h(,0)= 2;rv(•0)/½o is the wavelength of the c0th 
frequency component. 

The maximum-likelihood estimator of 0 is then 

where 

0 = / 
'"b-• a •. X(•) 

(17) 

and &0= 2a-/T. From Eq. 16 the asymptotic mse of 0 is 

E(O--O)2= 3•2/2gap(a - sin0) 2 (18) 

when 0•0,,r and is of order K -• due to the bias when 
0= 0 or •r. This is the asymptotic mse of the estimator 
based on phase differences which was developed by 
Clay and Hinich a and of the estimator given by Capon 
and GreenJ ø Both estimators assume a high S/N ratio 
for a fixed number of sensors. The fact that the same 

mse is obtained by assuming a fixed S/N ratio and man 3' 
sensors is a nonobvious result. 

Now let us assume that the direction is known 

(0• «•r) and the phase velocity is to be estimated. For a 
given co, the maximum-likelihood estimator of v(•o) is 

0(o0=w cos0/O(•o). (19) 

Once again, by employing a Taylor-series approximation 
method for a white signal and Eq. 11, we find that the 
asymptotic proportional mse of 0(•o) is 

(20) 
Lv(co) I 2Ka•0r cos0) • 

If the wave is.nondispersive, the phase velocity is the 
same for all frequencies. In this case the maximum- 
likelihood estimator of v is 

o= I ( 
O)b•OJa d 

where &= (co•+•o•)/2. From Eq. 20 the asymptotic 
proportional rose of 

The above results can be neatly summarized for the 
•nochro•ti• wave sampled at the Nyquist inte•M, 
i.e., where •,=•=•o, Xo= 2•/•o, and d= •Xo. Setting 
w=•0 in Eqs. 15, 16 and Eqs. 19, 20, we find the (square) 
rms errore are 

rm•(0) = 0•0,• 
K• sin0' 

(22) 

, xa• K•]cos0[' 0•. 
Thus the rms errors of the estimators are inversely 
proportional to the square root of the S/N ratio times 
the number of sensors raised to the power •. Note that 
the precision of the direction estimate is highest when 
the array is broadside to the propagation, whereas the 
velocity •timate is most precise for the endfire situation. 

HI. MAXIMUM-LIKELIHOOD PROCESSING 

FOR MULTIPLE ARRIVALS 

Multiple arrivals at an array can be observed because 
(i) there are several sources, (ii) several travel paths or 
modes, or (iii) a combination of (i) and (ii). In a single- 
path situation sources having about the same frequency 
spectra have a components along the array which 
depend upon the direction to the source. Again, wave- 
number spectrum analysis would determine the direc- 
tions of the sources. The multiple arrivals from a single 
source have different components of a as shown in 
Fig. 2. For a known medium, theoretical values of a can 
be used in identifying the source. In most acoustical 
problems we expect several sources and each source can 
have several arrivals. 

The Gaussian noise n(t,xO has the properties assumed 
in the previous section. For sake of exposition we will 
only deal with two special but important forms for 
s(t,x•): the case of multiple farfield monochromatic 
sources which generate the same mode of propagation at 
the array location during the observation time, i.e., 
vt= v: ..... v•t, and the case of a single source gener- 
ating multiple modes propagating in the same direction, 
i.e., 0:=0• ..... Oa. 

First let vt ..... vst=v and assume that the 
source directions O• are distinct and satisfy O<O,•<;r, 
m= 1, -.-, M. In the case of multiple sources it is 
necessary to have some method of matching the wave- 
number estimates with the different sources according to 
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their energies. For this purpose we have to consider the 
amplitudes A,•, m= 1, -- -, M. Without loss of generality 
we assume A •2>... > A v?. The wavenumber for the 
ruth plane wave in the signal (Eq. 3) is 

a• (o•0)= 2•r cos0m/Xo. (23) 

As before, compute SK(co0,ot) from the P(•o,xO for a 
fine grid of wavenumbers in (--•, •). Let • be the 
wavenumber whi& maximizes Sg(wo,a). Excluding •, 
let •a be the wavenumber which maximizes Sg(•0,a). In 
general, let • be •e wavenumber excluding the set 
{&,--.,a•} whi& maximizes Sg½0,a), i.e., •(•) is 
the wavenumber which is associated with the ruth 

•eatest maximum of Sg(w0•), where we have searched 
over a specified grid of wavenumbers. Then the maxi- 
mum-likelihood estimator of A • is 

•=•1E V(•o,xOe-';•'•l, re=l, .--, M. (24) •0 

That is, the ruth greatest maximum of Sg (w0,a) corre- 
s•nds to the source which has ruth greater •timated 
energy. The mse of 8• is 

•[a•-- •3'= 6/K%•. (2S) 

Morevet • and 8• are approximately independent for 
large K for m•n. 

In order to discu• the resolving ability of the array, 
let us consider two (M= 2) closely spaced monochro- 
matic murces which are located approximately broad- 
side to the array, i.e., 0•--01= • is small and 0•r. 
Further, sup•se the second source is considerably 
stronger than the fi•t, and consequently p&>Ol. In 
order to resolve the weaker source the rms error of 0• 
must be smaller than A0. If the medium is nondispersive 
and d=•X0, it follows from Eq. 22 that the weaker 
source is r•olved if 

K> (6/m)l(l/•A0) •. (26) 

If the sources are at 30 ø azimuth (0•= •/6), then the 
sufficient lower bound is 2t times the right-hand side 
of Eq. 26. 

Now •sume that 0t ..... 0•=• and that the ph•e 
velocities v• are distinct. Assuming 0 is known, we see 
that the maximum-likelihood estimator of v• is as in 

Eq. 19, and its proportionM mse is given by Eq. 20 
with X and o subscripted by m. 

Given a single monochromatic source, consider the 
problem of resolving the two lowest modes when it is 
•sum• •at the difference Av between the two 

corresponding • values is small. If the murce lies along 
the axis of the array •d Ol = pa= p, then the modes can 
be remlv• if 

K> 

where d= a'v/coo= «X0. 

Fro. 3. kth sensor 
at xk (xk,y•,0)'. Array 
plane, direction of prop- 
agation (arrow), eleva- 
tion angle of propaga- 
tion and azimuth 

angle •o• in propagation 
the plane 0 are shown. 

IV. ESTIMATION FOR SQUARE- 
LATTICE ARRAYS 

In this section we treat estimation for a square-lattice 
array of equally spaced sensors. We will discuss the 
case of single arrivals, since the multiple-arrival analysis 
is analogous to that given in Sec. III. 

Let us assume that a collection of K= n 2 sensors is 

arranged in a square-lattice array with spacing d= I 
between each pair of adjacent sensors along the axes of 
the square. The array is located on a plane in the three- 
dimensional Euclidean space R a. Let us choose the 
coordinate system of R a so that the third axis is perpen- 
dicular to the array plane. The coordinates of the kth 
sensor in the array are thus x•= (xi,yi,O)'. The x and y 
components of the wavenumber vector are 

•o sin• cos0 co sin7 sin0 
= , (co) , (27) 

where qr(0<?<•r, •«•r) is the angle of propagation 
with respect to the normal to the array plane, 
0(0<0< 2•r, 0•«•r, •r, }•r) is the azimuth angle of propa- 
gation in the plane, and v(co) is the phase velocity 
(Fig. 3). 

We proceed as in the one-dimensional case. The 
output of each sensor is sampled at the times t= 0, 
r,.", (T--1)r, with r•*r/cob, and for notational 
convenience we choose the time unit so that r= 1. The 

output of the kth sensor is p(t,xO=s(t,xO+n(t,xO, 
where n(t,x,) is again spatially incoherent Gaussian 
noise with total power a • in (co,,co0. Set 

=-I Z ', 
K 

where P(co,x0 is the Fourier transform of the kth sensor 
output. We define (•,/•) by 

max S•r(co,a,•t). (28) 

Hinich and Shaman •2 show that (•,•) is the maximum- 
likelihood estimator of (ot,tl) and that its distribution is 
approximately bivariate normal (Gaussian) for large K. 

The maximum-likelihood estimator of the azimuth 0 

based on the coth component of the array output is 
arctan(•/8) for/}> 0, and •r+arctan(•/8) for •<0. The 
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large K mse of 0 is 

E(0--0)'= 3X'/2K'o(r sin•) •. (29) 

Let us assume that v (0•) is known for cod _< co < co,. Then 
the maximum-likelihood estimator of the elevation 

angle • based on the coth component of the array output 
is 

• (co) = arcsin{ [v(w)/co-l[• 2 (co)+ •2 (co) 
with 0_<q(co)_<«•r. However, 0<•<r with •«•r. In 
other words, using this estimation procedure we cannot 
determine whether the direction of propagation of the 
wave is up or down. This ambiguity results because a 
two-dimensional array is being used to analyze a three- 
dimensional problem. The ambiguity is easily resolved 
by determining the direction of flow of energy using 
either sensor information or a priori knowledge of the 
location of the source. If we were to measure • with 
respect to the plane of the array, so that 
with Tg0, then the difficult), would occur in the 
estimation of 0. Specifically, using this estimation 
procedure we would be unable to determine whether the 
wave is moving to the left or the right, say. The large K 
mse of • is 

E(•?--•)2= 3•2/2K200r cos•) •. (30) 

The phase velocity v(co) can be estimated if the 
elevation angle • is known. For fixed co the maximum- 
likelihood estimator of v(co) is 

0 (w) = co sin•/[• 2 ½) +/• (w) ] •, 

and use of the Taylor-series method again gives for the 
large K proportional mse 

E[O½)lv(w)-- 132= 3BX'(co)12K•t•(a ' sinv) 2 (31) 

for a white signal. 
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