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Tracking  a  Moving  Vessel from Bearing  Measurements 
MELVIN J. HINICH 

(Invited Paper j 

Abstract-This paper  presents  a  method  for  tracking  a  distant 
moving  target  using only bearing  measurements  obtained  from  a 
tracking  platform.  The  method is an improvement of the  Hinich- 
Bloom  passive  tracking  approach  presented in [l]. The  target is 
assumed  to  be moving  at  constant  speed on a  fixed  heading,  whereas 
the  platform  maneuvers  during  the  measurement  period. The direc- 
tion  cosines  of  the  bearings  are  computed  with  respect  to  a  rotation  of 
the  coordinate  system  that  places 0” at  the  mean  estimated  target 
bearing.  This  is  done  to  minimize  the  approximation  bias  due  to  the 
linearization of sine  bearing as a  function  of  inverse  range  and  time. 
The  coordinate system is rotated  back to estimate  the  target  coordi- 
nates.  When  the  noise  is  Gaussian,  the  estimates  of  target  range  and 
heading  are approximately  maximum  likelihood when the target’s 
relative  range  is  slowly  varying  during  the  observation  period.  In  this 
case  the mean  square  errors.of  the  target  parameter  estimates  are  the 
smallest  achievable  within  the  order  of  the  approximation. 

I .  INTRODUCTION 

HIS  PAPER  considers the  problem of  estimating  the  track 
a moving  target  using only bearing  measurements  ob- 

tained from  a  tracking  ship.  Suppose  that  the  tracker  detects  a 
distant  target  and  then  maneuvers for  a  short  period  to  obtain 
bearings on  the  target. These  bearings  are  used to estimate  the 
target’s range,  heading,  and  position  at  the  end  of  the  maneu- 
ver under  the  assumption  that  the  target is moving at  a  con- 
stant speed on a  fixed  heading.  A  decision  maker  uses  these 
estimates  and  their  standard  errors,  along  with  intelligence  in- 
formation  about  the  target  and  its  environment,  to  decide  on  a 
course  and  speed  for  the  trackmg  ship to  get closer to  the  tar- 
get. This  estimation-decision  procedure is repeated  until the 
target is intercepted  or  lost. Success depends, to  a  great extent, 
on the use of  estimators  that  are  robust  to  perturbations of the 
model of the  errors in bearing  measurements.  Simplicity is the 
main  virtue  of  the  least  squares  batch  method  presented in this 
paper. 

This  paper  presents an extension  and  improvement of the 
Hinich-Bloom [ l ]  method  for  estimating  the range and  head- 
ing of  a  distant  constant  speed  target using  noisy  bearing  meas- 
urements  from  a maneuvering  tracking platform. When the 
target’s range  from the  tracker is slowly  varying, the bearing 
direction  cosines  are  approximately  linear  functions  of  time 
and  inverse  range.  One  linear approximation is fitted  by  the 
method  of  least  squares to  obtain estimates  of the linear  equa- 
tion’s  coefficients. 

These  coefficient  estimates  are  combined to  obtain esti- 
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mates  of  the average  range to  the target  and its  coordinates  at 
the  end  of  the  maneuver. If the target’s  velocity  can  be  esti- 
mated  from  Doppler  shift  measurements  of  the signal spec- 
trum,  then  the target’s  heading is determined. 

The  author’s  method is an  open  loop scheme that presents 
information  at  the  command  center  aboard  the  tracking  ship 
so as to  facilitate  conventional  command decisions.  Decisions 
can  be made  to  alter  the  tracking  strategy as a  function of the 
estimates  derived  from all measurements  made  during the 
tracking  maneuver.  This open  loop  approach is fundamentally 
different  from the “fire  control”  tracking  approaches  that use 
extended Kalman fiters  to  constantly  update  estimates 
(Moose,  Valandingham,  and  McCabe [ 2 ] ,  and Hassab, Cui- 
mond,  and  Nardone  [3]). 

The  author’s  method  has several important advantages  over 
the Kalman  filter approach  for such a decision problem.  There 
exist  relatively  simple modifications of least  squares  that  yield 
estimates  that are robust  to non-Gaussian  bearing errors in the 
sample  (an  introduction to  robust regression methods is  given 
in Hinich and Talwar [4] and Martin [ 5 ] ) .  Another  advantage 
is that  the  computations used  are  very  simple (the estimates 
can  be obtained  from  a  programmable  calculator).  Simple 
methods  are usually robust  to  perturbations of the  structural 
assumptions  made  about  the  statistical  model. 

11. SINGLE  TARGET  STATISTICAL MODEL 

Assume that  the tracker’s  sonar is receiving coherent  acous- 
tic  signals from  a  distant  target. Time  delay  measurements  of 
wave curvature  for  acoustic  radiation  from  a  distant  source 
have  such  large  measurement  errors  in  conventional  sonar 
processors that  the  only  practical  model  for  the received  signal 
is a  plane  wave.  Let B(t) deqote  the target’s  bearing with 
respect to  true  North,  and  let B(t) denote  the  estimated bear- 
ing at  time t during  a  tracking  maneuver of time  duration T.  

Bearings  are  usually obtained by  delay-and-sum  beamform- 
ing, but  there is no need  here to specify the  type of  process- 
ing  used to  obtain bearings. The  accuracy  of &t) is obviously 
important  for  accurate  tracking, so that  accurate  tracking  re- 
quires  a  sonar  system’s signal processor to  yield unbiasedb(t) 
with  small root  mean  square  error (rmse). 

Assume that  the target’s motion is sufficiently  slowly  vary- 
ing so that  the target  velocity UT and  heading (YT (with  respect 
to  North) can be treated as constants  during  the  tracking seg- 
ment (see Fig. 1). As a consequence,  the target’s coordinates a t  
time t are 

x r ( t )  = Xr(0) UTt sin (YT 
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Fig. 1. Geometry  of  target  bearing. 

and 

YT(t)  = YT(O) + VT f cos 

for  the sampling  period 0 < t < T. -~ 

Let R ( t )  denote  the target’s range from  the tracking  ship 
located  at  (xS(t), ys(t)}  at  time f. Assume that  the  change of 
range  during  the  segment is small relative to R = R(T/2) ,  the 
range at  the  middle  of  the  period. More  precisely,  assume  that 

6 = max IR(t)/R-1 l < l .  (2 )  
O<t<T 

This  assumption is reasonable  when the range is large  and the 
target  and  tracking vessels are moving  at  normal  ship  speeds. 

To facilitate  discussion of  the  direction cosines  approxima- 
tions  .that  motivate  the  estimation  method,  suppose  that  the 
coordinate  system is rotated so that  the  y-axis  cuts  through 
the middle of  the target  track.  This  rotation  implies  that  the 
bearings B(t) are small  when R is large  for the  tracking seg- 
ment. This rotation will be  precisely  defined in the  next sec- 
tion. It  then follows  from (2) that  the bearing  direction 
cosines are  approximated as  follows: 

sinB(t) = [ x f i t ) - x & ) ] / R  + 0(S2) (3 1 

where xs(t) is the  x-coordinate  of  the  tracker  and 

cos B(t) = [ 1 - sin2 B(t)] 1’2 = 1 - O ( S 2 ) .  (4) 

Note  that sin B(r) is  of  order O(6). 
The  method  .presented  in  this  paper uses only sin &ti to  

estimate R in  contrast to  my  previous  approach.  The  cos B(t) 
fit is not used  since  the  dependent variable has a much  smaller 
variance than sin &t). One  equation is all that is needed to  
estimate  the target’s track  since  it will be  assumed that UT is 
determined  from  Doppler  shift  measurements. 
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nT, where T is the integration tim.e for  the sonar’s  signal  proces- 
sor.  The  data set is {BO,), xg(t,):n = 1, --, N =  [T/T]} ,  and 
x ~ ( t , )  is assumed to be known  without  error.  Setting d, = sin 
k(t,), it  follows  from (1) and (3) that  the  data  satisfy  the  fol- 
lowing  linear  statistical  model: 

ŝ, =R- lXT(o)  + ( R - l u r  sin ar)t, -R-lXs(tn) + E ,  

( 5 )  

where  the  approximation  error 0(6*) is absorbed  into  the  error 
term E, .  There is no need to  assume here  that en has  a  zero 
mean  since any bias in e12 will be  absorbed  in the  constant 
term,  whch is not used to estimate  the range. 

I t  is  tempting to  consider  using  a  nonlinear  least  squares  fit 
of  the  data  to  estimate  the  target  parameters  xT(0), ~ T ( O ) ,  and 
(YT. Several  related  nonlinear  least  squares  algorithms  are  dis- 
cussed  in the  literature,  but  the  estimates  that  are  obtained  by 
using them  are  often sensitive to  the initial  values  used,  and  in 
some  cases the algorithms fail to converge  (Draper  and Smith 
[6]). When 6 is small, the numerical  errors in the nonlinear 
estimates will be  larger than  the  improvements  in  accuracy 
from  the  estimators derived from  the  linear  approximation 

For example,  suppose that  the bearing  errors  are  Gaussian 
with  a  common  variance.  Then the nonlinear  least  squares 

(1) ( 5 ) .  

estimators  are  maximum likelihood.’ The  log  likelihood  of 
the sample of in is approximately  a  quadratic  function of the 
parameters  (and 1/R) when 6 is small. An ordinary least 
squares  fit  of  the linearized  model ( 5 )  will then  yield approxi- 
mately  maximum  likelihood  estimators  when the E, have com- 
mon variance. 

111. ESTIMATING  RANGE B Y  LEAST  SQUARES 

The  approximation ( 5 )  is best  when the  middle  of  the  tar- 
get track  segment is on  the  y-axis.  Although  such  a  condition 
is unlikely  for  a given maneuver, it can  be artificially achieved 
by  rotating  the coordinat: sygem by the angle of  the mean 
bearing B = N-’ E:=, B(t,). In other  words,  compute  the 
ship’s coordinates  and  the  target bearings with  respect to a 
rotated  coordinate  system whose  ?-axis  has the angle B in the 
true  coordinate  system. In the new (2, 3 coordinate  system, 
the average  bearing is zero,  and  the bearings  are  small. 

Rather  than  cluttering  up  the  notation  with  tildes over let- 
ters, x~(f,), cry, and B(t,) will now  denote  the  ship  and  tar- 
get  parameters  as  measured  with  respect the rotated coordi- 
nate system. The reader will be  reminded  about  the relative 
meaning  of  these  terms  wherever  needed in the  text, and  the 

1 This  standard  result is given in many  mathematical  statistics  texts. 
One  good  source is  Draper  and  Smith  [6,  section 2.6.1 

The  method can  easily  be  modified to handle  unequal  bearing  error 
variances, The variance  of E, is inversely  proportional  to  the  energy 
signal-to-noise  ratio  (SNR)  for  most  processors,  such  as  beamforming 
to find  the  beam  whose  average  power is largest  (Hinich [7]).   The  SNR 
is estimated  by +/(1 - T ) ,  where i. is the  average  coherence  between 
hydrophone  channels. Thus a  scalar  multiple  of  the  variance can be 
estimated by (1 - ?r)/-$, computed  at r,. If in, t,, and x&,) are 
multiplied  by [$,/(l - +,)I 112. For each n, then the least  squares fit 
of  these  multiplied  variates  yields  maximum  likelihood  estimates of 

Suppose  that bearings  are  obtained  at  discrete  times t ,  = p and b. 
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final  estimates will  be expressed  in terms  of  the  true  coordi-  An  example  would be  helpful  at  this  point.  Suppose  that 
nates.  the  tracking  ship is moving  in  a constant  heading  with  a  speed 

To reparameterize ( 5 ) ,  let a = (xT(0)/R) + p where p us(t) = 2u(l - 2 I t I / T ,  for -T/2 < t < T/2. The average 
is the mean  of the errors en in  the  rotated  system, /3 = tracker’s  velocity is u. The  tracker  accelerates  for  the  first  half 
(vT sin a,)/R, and b = -l/R where -90’ < QT < 90”. Then  of  the  segment  and  then  decelerates to a  stop at the  end.  This 
(5) becomes  example  is  used to facilitate  exposition of  the statistical  prop- 

erties  of  the  method,  and is not  optimal  for fured T, U, and ue. 
( 6 )  More accurate  estimates  can  be  obtained  by  changing  course in = a + @, + bxg(tn) + E ,  

for n = 1, --, N. Assume, at  first,  that  the e,] are  uncorrelated 
random  variables,  a  least  squares regression of .?, on  the vari- 
ables t,l and xs(t,) with  an  intercept  yields unbiased  and ap- 
proximately Gaussian  estimates  of fl and b. 

To simplify  exposition  of  the  least  squares  estimators,  shift 
the  time  index so that n = -N/2 + 1 ,  . e - ,  N/2 (assuming N 
even). 

Define 

N I2 

hr/2 

h1/2 

and 

during the maneuver. 
Let 4 denote  the tracker’s  heading with  respect to  the 

rotated y-axis,  i.e., the  true  heading is B 4- $. Setting  the origin 
so that xs = 0, the x-axis  trajectory of  the tracker is 

The  projected speed of  the tracker on  the  rotated  x-axis is 
vx = u sin 6. 

The following  additional  approximations  are used to  ap- 
proximate ob2 and up2 for large N :  

n= 1 n=  1 

and 
N l 2  2 n4 zN5 /160 .  
n= 1 

It  then  follows  that xs = 0, Ctt  ( N ~ ) ~ 4 / 1 2  

c,, 2 u,(N~)~N/24 (1 5 )  
N I 2  

c x x  = E (Xs(tn>-XsI2 (7)  and 
n = - N l 2 + l  

where the overbars denote sample means. The least  squares c,, = U , ~ ( N T > ~ N / ~ O .  

estimators  of p and b are  (from  Hinich  and  Bloom) 

fl =DX- 
Applying ( 1  4) and (1 5) to  (1 0), ( 1  l ) ,  and ( 1  2) 

(8) DX = vX2T4N2/960 

up2 r 320E2/(T2N)  

where and 

From  the triangle inequality, DX = 0 if and  only if xs(tH) is 
linear  in t,. Thus DX > 0 if the tracking  ship  changes  course, 
or changes  speed if its heading is not B or -B with  respect t o  
true  North.  The variances of  these  estimators  are 

where uE2 is the variance of e A ,  and  the  correlation  between 
them is 

Ppb = - t C f t C x x ) -  1 ’2c tx .  (13) 

Note  that ppb = 0 if and  only if ctx = 0. 

From (13), the  correlation  between a and 6 is ppb 2’ -0.79. 
The  maneuver in  this  example is far  from  optimal since  an 
optimal  maneuver  would  yield ppb = 0.2 

Suppose  that  the bearing  errors  are  correlated  over  time.  If 
so, assume that  they  are  a  sample  from  a  stationary  random 
process  with  a known covariance function. As long  as the 
covariance is reasonably  behaved  for large lags, it is possible 
to design a prewhitening  filter  that will remove the serial cor- 

2 The circular  course at  constant speed that is used in the simula- 
tions  presented in Hinich  and  Bloom gives estimates  where cy ,  = 0. A 
circular  course is optimal  when  there is no a priori information  about 
the  target  prior  to  detection. 
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relation  from  the  dependent  and  independent  variables  in  ex- 
pression  (6). 

Consider the following  simple example.  Suppose  that  the E ,  

satisfy  the  first  order autogregression E,, = + u, 
where (u,) is white noise. Then  the  linear  model (6)  can  be 
transformed  as  follows:  Let 

and 

Then 

yields  unbiased and  approximately Gaussian estimates  of 0 and 
b. The serial correlation  in  the bearings  has  been  removed  by 
this  simple  filtering operation. 

Assume that Rub is small. It will now  be shown  that  the 
precision  of the range  estimate  depends  upon Rub,  which is 
proportional  to RCS,:U,TN~/~ for  this  example. 

Since B estimates -I/R, a  natural  estimator of R is 
k = -l/h. This  estimator is approximately  maximum likeli- 
hood if the  errors  are Gaussian and 6 is small. The bias ink /R 
due  to  the nonlinear  transformation is given by 

E(@R - 1) = ( R ~ ~ ) ~  + O ( ( R ~ , ) ~ ) .  (21) 

The  approximate  proportional  root  mean  square  error (rmse) 
of k/R (or k /R - 1) is 

rmse (E~/R) = Rob + o((Rob>2>. (22) 

The bias is an  order  of  magnitude smaller than  the  rmse  of 

To illuminate the meaning of this  approximation  condition, 
consider the example  just  presented.  Applying (19) to (22), 
the  proportional rmse is 

Rob < 1. 

Suppose  that  the  target is detected  at  a range of  25  km.  The 
tracker  begins  the  aforementioned  maneuver  towards  the  bear- 
ing  sequence  for a period T = 6  min  at  an average  speed of u = 
8 nmi/h  (247  m/min). Assuming  a  closing  speed of 4  nmi/h, 
6 = 0.03  from  (2)  and  thus  the  approximation  error is 
O(10-3). Suppose  that in the  rotated  coordinate  system, u, = 
120"  and @ = 90" (u, = u). If 7 = 1 s so that N = 360,  and  the 
standard  deviation  of  the  bearing  error is ue = 1." (0, = 0.017 
rad), then it follows  from  (23)  that  the  rmse  (R/R) z 0.135, 
and thus  the rmse (A)  3.4  km. 

This  error is about as  small  as  can  be  achieved from  such  a 
sampling procedure if uE = 1". 1: u, = 0.5" and T = 10 min 
with 7 = 1 s as before,  the rmse (R) r 0.8 km. 

IV.  ESTIMATING  TARGET HEADING 

The  target's  velocity can  be  accurately  estimated  from  the 
Doppler  shift  of  a  characteristic  peak of the signal spectrum in 

certain  ocean  environments.  Suppose  that the target's signal 
spectrum  has  at  least  one  peak  at  a  known  frequency,  and  that 
the tracker's  sonar  signal  processing has  the  capability to  esti- 
mate uT from  the  Doppler  shift. I t  is then  reasonable to  as; 
sume  that UT is known  for  purposes of  estimating a~ from 0 
and b. .If up and ob are small, then  the  errors ep = 0 - 0 and 
eb = b - b are small. Thus expanding the  estimator h, = 
sin- (&/UT) in  terms  of ~p and Eb, it follows that 

CiT = sin- [ (0 + Ep)/ur(-b - E * ) ]  

= aT f (cos Q(T)- 'R(UT- ' E p  + Eb sin (YT) 

+ O(up2) + O(Ub2). (24) 

If the  absolute value  of @/UT is near one,  then h~ should 
be  computed  differently.  If  the  statistic is  less than  one,  then 
use 

&- = (+/-) cos- [ 1 - (I@/UT)2] 

where  the sign is determined  by  the sign of j. If it  is  greater 
than  one  (but  nearly  one)  then  let &T = 90" or 270". 

In  general, (24) estimates  either aT or 180" + aT. This 
ambiguity is resolved by  the sign of  the average  of &t,+') - 
&t,), or  any  other  measure of the  direction of  bearing 
changes. 

From (1 1)-(13) and  (24), the mean  square  error of aT is 
approximately 

(COS (YT)-~(RO,)~DX- ' [ U T - ~ C X ,  - 2uT- ' (Sin Q ~ ) c t x  

+ (sin (YT)2Ct t ] .  (25) 

Applying  (18)  and  (19) to  (24)  and  (25),  the  rmse  of QT for 
the example is 

4rR0, 
rmse (CiT) 2 

V, T N ' / ~  I cos aT I 
rad 

where 

r 2  = ~ ( V , / U ~ > ~  - ~(u , /uT)  sin aT + 5 (sin ( Y T ) ~ .  (27) 

For example,  suppose t h a t  u, = 10  nmi/h  and aT = 150" in 
the  rotated  coordinate  system.  From  (26)  the rmse ( h ~ )  s 
8.5". For QT = 30°, the rmse (&-) 2.9". The large  difference 
between  the  accuracy  of  the  estimates  for  these  two  directions 
implies that  better a priori accuracy  can  be achieved  by  a ma- 
neuver that involves  course  as well as  speed  changes. 

V.  ESTIMATING TARGET COORDINATES 

Set  the origin at (xs,ys).  Then  a  good  and  simple  estimator 
of x ~ ( 0 )  with  respect to  this  origin is I&, where s =N-' Zt= 
in, if the bearings  are  unbiased. If p is not  zero,  tFen  the esti- 
mated  target  coordinates will be biased  even if R is not. As- 
sume  then  that p = 0. 

To  justify  this  estimator,  note  that s is an unbiased  estima- 
tor  of a = x ~ ( 0 ) / R  (it is the least  squares es;imat?r of a). Its 
variance is uC2/N and  it is uncorrelated  with 0 and b since t ,  = 
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xs = 0. From  an  error  expansip similar to  expression  (24), 
it  follows that  the rms error of fi - XT(0) is approximated as 
follows: 

rmse (I&) = R ( N - ~ u , ~  -t xT2(o)a, 2 112 . (28) 

A simple  estimate  pf YT(O) in  the  rotated  coordinate sys- 
tem is i .  Combining R s ,  A,  and@,  the estimate  of UT sin (YT, 
the  target  coordinates at  the end ofthe segment are  estimated 
by 

ZT = ki + &TI2  (29) 

and 

YT = + U T  (cos AT)T/2. (3 0) 

Reversing the  rotation,  the  coordinate  estimates  in conven- 
tioml coordinates are 

i T = z T C O S B $ y T S i n B  (31) 

and 

$T=FTCOSB-?TsinB. (32) 

These  estimates  can  be  checked  by  comparing  them to I? sin 
B(T) and R cos B(T), where B(T) denotes  the average of 
several of the last  bearings  measured in  the segment. 

VI. MULTIPLE  TARGETS 

The  method is sufficiently  simple to  estimate ranges of sev- 
eral targets if they  are moving on a  constant  heading  with  con- 
stant  speed.  To use the  method  for  each  target,  an  algorithm 
must  be  developed to  classify bearings to targets  when the  tar- 
get  tracks cross. The  calculations used  in the  method are  suf- 
ficiently  simple  for  a  computer to  try all logical possibilities. 
The bearings then  can  be  sorted  out given the  constant  head- 
ing  assumption. 

The  errors  of  fit 

e(tn) = in - s - Jtn - 6xs(tn) (33) 

can  be  used  to reject wrong classifications. For  example, sev- 
eral large e(tnj’s indicate the possibility of a  misclassification 
due to  a  target  crossing. Another  diagnostic  check is provided 
!y i@, which  estimates UT sin QIT. An unreasonable  value  of 
RP indicates  an  improper  grouping  of  bearings. 

A  development  of  a  multitarget  tracking  algorithm is be- 
yond  the  scope  of  this  paper.  The  results  that have  been pre- 
sented for a  single  target  provide  a  benchmark for  the  accuracy 
of any  method  that  determines range from  noisy  bearings  of  a 
distant  target. 

VII. CONCLUSION 

A simple  statistical  method  has  been  presented  for  estimat- 
ing the range,  heading,  and  location  of  a single target  from 
bearing  measurements.  The  method relies on  the  critical as- 

sumption  that  the  target is moving at  a  constant speed  and 
heading  during the  time  the bearings  are taken.  The  estimates 
are  approximately unbiased if the target‘s  range is large as 
compared  to  distances  the  tracking  ship  and  the  target  move 
during  the  segment,  and  the bearings are  unbiased. An accurate 
estimate of range,  however,  can  be  obtained  from  biased  bear- 
ings if the range is large and  the sample size is large  relative to  
the  error variance of  the bearings.  Variances of the  estimators 
are given as  a function  of  the  sample size and the  coordinates 
of the  tracking  ship. 
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