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Abstract 
 

This paper presents a new spectral approach to the study of the periodic 

variation of relative sunspot cycles and the extent of the randomness in the 

amplitudes and phases of the harmonic components of the fundamental 

frequency of the cycles.  The new method is called the signal coherence 

spectrum of a time series that has a randomly modulated periodicity.  The data 

we use is the relative sunspot numbers beginning December 21, 1838 until 

June 30, 2008 as compiled by the Solar Influences Data Analysis Center (SIDC) 

at the Royal Observatory of Belgium using the FORTRAN 95 program developed 

by Hinich (2000).  Deterministic sinusoids are often used to model cycles as a 

mathematical convenience.  However, it is time to break away from this 

simplification in order to model the various periodic signals that are observed 

in fields ranging from biology, communications, acoustics, astronomy, and the 

various sciences.  We detect a strong coherence at 3966 days (10.86 years) 

which is consistent with the reported 11-year sunspot cycle.  Additionally, we 

find strongly coherent harmonics at about 20 days (0.8 coherence), 2.75 days 

(0.87 coherence), and 2.1 days (0.83 coherence).  We have no physical 
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explanation for the randomly modulated periodicities in relative sunspot 

numbers. 
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1 INTRODUCTION 

Sunspot numbers have been of interest to solar physicists and radio 

propagation engineers as well as statisticians.  The number has been collected 

into a time series using essentially the same methodology since 1830. This 

paper presents a new spectral approach to the study of the periodic variation of 

relative sunspot cycles and the extent of the randomness in the amplitudes and 

phases of the harmonic components of the fundamental frequency of the 

cycles.  The new method is called the signal coherence spectrum of a time 

series that has a randomly modulated periodicity.  The data we use is the 

relative sunspot numbers beginning December 21, 1838 until June 30, 2008 

as compiled by the Solar Influences Data Analysis Center (SIDC) at the Royal 

Observatory of Belgium.  We employ the concept of a Randomly Modulated 

Periodicity (RMP) introduced by Hinich (2000) (See Section 3 below) and the 

FORTRAN 95 program developed by Hinich (2000).1 

Two principle indices of sunspot numbers have been established: the 

International Sunspot Number and the Boulder Sunspot Number. Both use the 

same methodology for calculating the number, but use different observatories. 

Daily International Sunspot data is available from 1818 while American 

(Boulder) data begins from 1944.  In general, the Boulder number is about 25% 

higher than the International number, but a strong positive correlation exists 

between the two databases.  For the purposes of this paper, we will use the 

                                       

1 The data used in this analysis were downloaded from the Solar Influences Data Analysis 

Center at http://sidc.oma.be/sunspot-data/dailyssn.php.  Daily numbers have been reported 

since 1849 and the data from December 21, 1838 to 1849 has some missing days that were 

interpolated by averaging the days prior and post a missing day. 
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International Sunspot Number index as compiled by the Solar Influences Data 

Analysis Center (SIDC).2 

Sunspot data is considered by most users to be noisy, demonstrating large 

changes from day to day and month to month (Hoyt & Schatten 1998; Verdes 

et al. 2000).  As a result, the majority of time series analyses of sunspot data 

use smoothed numbers, most often a moving monthly or yearly average, the 

theory being that smoothed numbers are better able to reveal underlying 

patterns and cycles (Hathaway et al., 1994; Hoyt & Schatten, 1998).  The most 

commonly accepted method for calculating monthly smoothed numbers is the 

weighted 13-month running average.  The calculation centers on a given month 

and then looks forward and back 6 months from that month with half weight 

given to the extreme months.  All the monthly data provided by the Solar 

Influences Data Analysis Center are such smoothed numbers. 

 We use a method for determining the periodic structure of relative sunspot 

numbers and the modulations in the harmonics without resorting to standard 

averaging techniques used in the solar physics literature. 

Periodic signals in nature have some variability from period to period.  While a 

true sinusoidal time series will have a perfectly deterministic pattern with zero 

bandwidth, such a pattern does not occur in nature as all signals have some 

intrinsic variability over time (Hinich & Serletis, 2006).  The use of averaging 

techniques such as those described above to determine cyclic patterns in the 

time series necessarily forces the loss of actual data.  Sunspot data is not noise 

– it is real data that needs to be fully accounted for in analysis. 

                                       

2 Both International and American data are available from the National Geophysical Data 

Center website: http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html. 
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2 RELATIVE SUNSPOT NUMBERS 

While evidence of tracking sunspots by Chinese astronomers can be found as 

early as 23 BCE, the first modern documentation is generally considered to be 

a short article entitled, "Solar Observations during 1843," by Heinrich Schwabe 

(1844). Schwabe was an amateur astronomer who had observed sunspots 

between 1826 and 1843, recording them on every clear day.  He had actually 

been attempting to locate Vulcan, a planet then thought to orbit between 

Mercury and the sun.  In his efforts, he carefully drew the spots on the sun in 

order to detect the planet.  He first published his data in 1838 and by 1843, he 

recognized a pattern of sunspot numbers and postulated a 10 year cycle 

(Schwabe 1838, 1844; Izenman 1983). 

Some years later, Rudolf Wolf, the director of the Berne (Switzerland) 

Observatory and later director of the Zürich Observatory, came across 

Schwabe’s paper, became interested, and on December 4, 1847 began his own 

observations (Wolf 1848; Izenman 1983).  Additionally he reviewed older 

records in an attempt to find other sunspot observations and was able to 

approximate numbers beginning in the year 1610, the year the telescope was 

invented.  Based on that data, in 1852 he calculated a sunspot cycle of 11.1 

years between maxima (Wolf 1852, Izenman 1983).3 

Realizing that observer conditions were not equal, Wolf developed a 

methodology to record the number of sunspots, creating a measurement known 

as the relative sunspot number (RZ), also known as the international sunspot 

number, Wolf number, or Zürich number.  Beginning about 1853, he 

attempted to compute “relative numbers” by recording the number of sunspot 

groups observed and adding to that one-tenth of the total individual sunspots.  

He continued to refine his calculations, finally publishing the method used 

today: RZ = k(10g + s) where RZ is the relative (Zürich) sunspot number, s is the 

                                       

3 Some confusion has existed about whether sunspot data was developed by J. R. Wolf or H. A. 

Wolfer.  See Izenman (1983) for a good discussion of the discrepancies in some past literature. 
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number of individual spots, g is the number of sunspot groups, and k is a 

factor that varies with location and instrumentation (also known as the 

observatory factor).4  He also recorded monthly mean relative sunspot 

numbers.  The Wolf number calculation has remained unchanged since the 

first publication (Wolf, 1861; Izenman 1983).  Despite the apparent 

arbitrariness of the formula, it has proven to correlate strongly with other, 

more recently discovered, indices of solar activity such as the 10.7cm solar flux 

(Hathaway et al. 2002, 359). 

The most reliable sunspot data begins in 1849 when Wolf began daily 

recording and is generally considered the beginning of modern data recording 

(Waldmeier, 1961; McKinnon, 1987).  He reconstructed older data, including 

that of Schwabe and others, and was able to push the database back to 1818.  

The period 1818-1848 contained an average of 260 observations per year and, 

because of some assumptions Wolf made in the reconstruction, it is not as 

accurate as the later data (Wilson, 1998).  Other reconstructions pushed 

sunspot data back as far as 1749 and some as far back as 1610 when the 

telescope was invented.  For a summary of sunspot cycles, see Appendix A. 

Believing that relative sunspot numbers created a database that contained too 

much variance, Hoyt and Schatten (1998) proposed a new method of recording 

solar activity.  With an understanding that sunspot groups were more 

important than individual sunspot numbers, something even Wolf recognized 

with his original relative sunspot number calculation, a monthly relative 

sunspot group time series, albeit with some gaps in the earlier years, was 

developed back to 1610 using known data (Hathaway et al., 2002).  This time 

series was designed with more internal self-consistency, i.e., less dependent on 

the measurement of individual sunspots, and specifically to be less noisy than 

                                       

4 This factor takes into account varying observer variables such as the type of instrument used 

to observe the sun as well as local atmospheric visibility conditions. 
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the Wolf relative sunspot number.5 The relative sunspot group number is given 

by: 
1

1 12.08=

=
∑
n

G gi i
i

R k
N  

where N is the number of observers, ki is the correction 

factor for observer i, and gi is the number of sunspot groups reported by 

observer I (Hoyt and Schatten, 1998). 

Sunspot numbers are indicative of solar activity that has impact on global 

climate, radio frequency propagation, and potential damage to satellites.  

Predicting sunspot numbers has been of interest for some time.  Yule (1927) 

used his stationary stochastic “autoregressive process” to analyze sunspot 

numbers using the series from 1749 to 1924 (Moran, 1954.). In the years since, 

numerous observers have identified certain characteristics of sunspot numbers 

and cycles.  Some of the more important cycles and modulations are 

summarized in Appendix B. 

3 RANDOMLY MODULATED PERIODICITY 

All signals that appear to be periodic have some sort of variability from period 

to period regardless of how stable they appear to be in a data plot.  A true 

sinusoidal time series is a deterministic function of time that never changes 

and thus has zero bandwidth around the sinusoid’s frequency.  Bandwidth, a 

term from Fourier analysis, is the number of frequency components that are 

needed to have an accurate Fourier sum expansion of a function of time.  A 

single sinusoid has no such expansion.  A zero bandwidth is impossible in 

nature since all signals have some intrinsic variability over time. 

                                       

5 The relative sunspot group number is represented by RG as opposed to the Relative Zurich 

number that is represented as RZ.  Sunspot group data is maintained separately by the 

National Geophysical Data Center.  Group data is available for download from: 

http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html. 
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Deterministic sinusoids are used to model cycles as a mathematical 

convenience.  It is time to break away from this simplification in order to model 

the various periodic signals that are observed in fields ranging from biology, 

communications, acoustics, astronomy, and the various sciences. 

Hinich (2000) introduced a parametric statistical model, called the Randomly 

Modulated Periodicity (RMP) that allows one to capture the intrinsic variability 

of a cycle.  A discrete-time random process ( )nx t  is an RMP with period T Nτ=  

if it of the form 

(3.1) ( ) ( )( ) ( ) ( )( ) ( )
/ 2

0 1 1 2 2
1

2 cos 2 sin 2
N

n k k n k n k k k n
k

x t s s u t f t s u t f t
N

π π
=

 = + + + + ∑  

where nt nτ= , τ  is the sampling interval, k
kf
T

=  is the k-th Fourier frequency, 

and where for each period the ( ) ( ) ( ) ( ){ }11 1 1, / 2 21 2, / 2, , ,  , ,N n n N nu t u t u t u t  are random 

variables have zero means and a joint distribution that has the following finite 

dependence property: { }1( ),..., ( )jr jr mu s u s  and { }1( ),..., ( )ks ks nu t u t  are independent if 

1  ms D t+ <  for some D and all , 1, 2 and , 1, , / 2j k r s N= =  and all times 1s , , ms  

and 1 , , nt t . Finite dependence is a strong mixing condition Billingsley (1979). 

These time series are called “modulations” in the signal processing literature. 

The process can be written as ( ) ( ) ( )n n nx t s t u t= +  where 

(3.2) ( ) ( ) ( ) ( )
/ 2

0 1 2
1

2 cos 2 sin 2
N

n n k k n k k n
k

s t E x t s s f t s f t
N

π π
=

   = = + +   ∑  and 

(3.3) ( ) ( ) ( )
/ 2

1 2
1

2 cos 2 sin 2
N

n k k n k k n
k

u t u f t u f t
N

π π
=

 = + ∑  

Thus, ( )ns t  the expected value of the signal ( )nx t  is a periodic function.  The 

fixed coefficients 1ks  and 2ks  determines the shape of ( )ns t . 

To produce an example of an RMP we wrote a FORTRAN program to compute 

a simulation of a RMP whose amplitudes are determined from the sunspot data 
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analysis presented in Section 6.  These amplitudes are computed from the 

signal coherence spectrum of the sunspot data.  The signal coherence 

spectrum is defined in the next section. 

We used the estimated signal coherence of the fundamental of the sunspot 

data and the coherence estimates of the first 29 harmonics.  The period is 125 

time ticks.  The cosine and sine modulations have the same amplitude and the 

stochastic components are the realizations of an AR(1) with a lag coefficient of 

0.75. 

A realization from this simulation is shown in Figure 1.  The peak to peak 

"periods" are 128, 123, 124, 126, 125, and 123.  The random components of 

the modulations produce a variance of the peak to peak "periods" whose mean 

is the 125 period. 

 

(Figure 1 – 29 Harmonics AMP Example about here) 

4 SIGNAL COHERENCE SPECTRUM 

To provide a measure of the modulation relative to the underlying periodicity 

Hinich (2000) introduced a concept called the signal coherence spectrum 

(SIGCOH). For each Fourier frequency k
kf
T

=  the value of SIGCOH is 

(4.1) 
( )

( )

2

2 2
k

x
k u

s
k

s k
γ

σ
=

+
 

where 1, 2,k k ks s is= +  is the amplitude of the kth sinusoid written in complex 

variable form, 1i = − , ( ) ( ) 22
u k E U kσ =  and 

(4.2) 
( ) ( ) ( )

1

0

exp 2
N

k n k n
n

U k u t i f tπ
−

=

= −∑
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is the discrete Fourier transform (DFT) of the modulation process 

( ) ( ) ( )1 2 k n k n k nu t u t i u t= +  written in complex variable form. 

Each ( )x kγ  is in the (0, 1) interval.  If 0ks =  then ( ) 0x kγ = .  If ( ) 0U k =  then 

( ) 1x kγ = .  The SIGCOH measures the amount of “wobble” in each frequency 

component of the signal ( )nx t  about its amplitude when 0ks > .  If the SIGCOH 

values are not close to one, then the shapes of the periodicity randomly varies 

in that the times between peaks and between valleys are not constant and the 

amplitudes vary over time. 

The amplitude-to-modulation standard deviation (AMS) function is ( )
( )
k

x
u

s
k

k
ρ

σ
=  

for frequency kf .  Thus ( )
( )

2
2

2( )
1

x
x

x

k
k

k
ρ

γ
ρ

=
+

 is a monotonically increasing function 

of this AMP function.  Inverting this relationship it follows that ( ) ( )
( )

2
2

21
x

x
x

k
k

k
γ

ρ
γ

=
−

. 

The relationship between the signal coherence values ( )γ x k  and the AMS 

values ( )x kρ  is shown in Table 1. 

To estimate the SIGCOH suppose that we know the fundamental period and 

we observe the signal over M such periods.  The mth period is 

( )( ){ }1 ,  0, , 1nx m T t n N− + = − .  The estimator of ( )kγ  introduced by Hinich 

(2000) is 

(4.3) 

( )
( )

( ) ( )

2

2 2
ˆ

ˆu

X k
k

X k k
γ

σ
=

+
 

where ( ) ( )1

1 M
mm

X k X k
M =

= ∑  is the sample mean of the DFT 

( ) ( )( ) ( )1

0
1 exp 2N

m n m nn
X m x m T t i f tπ−

=
= − + −∑  and ( ) ( ) ( )

2
2

1

1ˆ M
u mm
k X k X k

M
σ

=
= −∑  is the 

sample variance of the residual DFT ( ) ( )mX k X k− . 
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5 DETRENDING THE DATA 

There is a subtle trend in the daily data that requires detrending in order to 

properly apply the Fourier transform method used in the RMP approach. The 

Fourier transform of a trend produces a long cycle plus its harmonics that 

appear to be coherent in the RMP approach yielding false implications of 

coherencies. We employ a simple and classical orthogonal polynomial approach 

to detrend the sun spots time series (Anderson, 1971, Sec 3.2.1). 

Suppose that the time series is of the form ( ) ( ) ( )= +n n ny t a t x t  where ( )na t a 

sampled smooth additive trend and ( )nx t  is an RMP.  Even a simple linear 

trend ( )n na t t=  will introduce false coherence peaks in the signal coherence 

function because there are strong harmonic components of the Fourier 

transform of a line. 

A simple and efficient approach to detrending the time series is to fit it with a 

set of orthogonal polynomials such as the Legendre polynomials using least 

squares.  The residual of the least squares fit is the detrended process.  For 

most smooth trends, it is sufficient to use the first four Legendre polynomials: 

(5.1) 
( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2

3 4 2
3 4

1=  ,  = 3 -1
2

1 1= 5 - 3 ,  = 35 30 3
2 8

n n n n

n n n n n n

L t t L t t

L t t t L t t t− +
 

The adjusted 2R  for the least squares fit of these polynomials to the data is 

0.09.  The coefficients are ( )1 15.77β = , ( ) 2 7.91β =  ( )3 26.21β = −  

and ( )4 -21.03β = .  The intercept is 55.78. 

The power spectrum of the detrended data is shown on Figure 1.  If the cycle 

were nearly deterministic, the spectrum would have large peaks at the 

fundamental period and at the harmonics that are non-zero in the Fourier 

expansion of the cycle.  But the spectrum does not have large peaks expect for 
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the fundamental period of 3966 days as estimated by the use of the SIGCOH 

method. 

(Figure 2 - Power spectrum of the detrended 1838 - data here) 

6 RMP IN RELATIVE SUNSPOT NUMBERS 

We tried a number of fundamental periods around the well known near 11 

year (Schwabe) solar cycle period.  The primary coherent signal of 3966 days 

was determined by a search method to permit the data to determine the 

fundamental rather than using a frequency determined by the authors.  The 

method is sensitive to the frame length used to estimate the signal coherence 

function (SCF).  Coherence is lost if the frame length is different from the 

fundamental period.  In order to find the period, a search over a range of SCF 

estimates for different fundamental values is performed and the strongest value 

is taken as the SCF estimate. 

The largest signal coherence value for the fundamental is 3966 days (10.86 

years).  The signal coherence spectrum is shown in Figure 3 for harmonics up 

to 20.0303 days with a floor for coherencies larger than 0.6.  Note that the 

signal coherence estimate for the fundamental is 0.897, which is an AMS of 

only 2.03. 

 

(Figure 3 Signal coherence spectrum of the detrended 1838 – data here) 

 

In addition to the fundamental period of 3966 days, the coherent harmonics 

with a signal coherence greater than 0.7 are 92.2326 days (0.75), 36.7222 days 

(0.71), 33.6102 days (0.71), and 21.6721 days (0.70).  The cycle has a lot of 

modulation since the standard deviations of the detrended data and the 

modulation respective are 49.5 and 37.8 and thus the cycle’s variance is only 

41.7% of the variance of the detrended data. 

Since the sunspot numbers between December 21, 1838 to June 30, 2008 

that we used has some interpolated values for missing days we also computed 
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the signal coherence and power spectra for the series with no missing days, 

which starts on December 23, 1848.  The adjusted 2R  for the least squares fit 

of the four polynomials to the data is also 0.09.  The coefficients are 

( )1 17.63β = , ( ) 2 4.53β =  ( )3 29.83β = −  and ( )4 -14.40β = . The intercept is 

55.81. 

The power spectrum of the detrended complete time series is shown in Figure 

4 and the signal coherence spectrum is shown in Figure 5.  The fundamental 

for this detrended data segment is also at 3966 days with a coherence of 0.901.  

The coherent harmonics with a signal coherence greater than 0.7 for this 

segment is at 1983 days (0.712), 92.2326 days (0.718), 33.6102 days (0.766), 

32.2439 days (0.701), 22.0333 days (0.7709), and 21.6721 days (0.725). The 

36.7222 days harmonic for this signal had a coherence of 90.0.652.  The 

pattern is almost the same for the longer segment but with two additional 

coherent harmonics, 32.2439 and 22..0333 days.  The standard deviations of 

the detrended data and the modulation respective are 49.8 and 37.4 and thus 

the cycle’s variance is only 41.7% of the variance of the detrended data, which 

is almost the same as for the longer period. 

 

 

(Figure 4 Power spectrum of the detrended 1848 – data here) 

(Figure 5 Signal coherence spectrum of the detrended 1848 – data here) 

7 CONCLUSION 

By using signal coherence spectral analysis it is possible to understand the 

underlying cycles and modulations in relative sunspot numbers without the 

necessity of resorting to various arithmetic smoothing or averaging techniques. 

Solar cycle 23 is at its minimum as this article is being written (November 

2008).  While a “reverse sunspot” indicative of a new cycle was spotted as early 

as January 2008, and an additional sighted on July 31, 2008, there is no 
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consensus that the old cycle has ended or the new cycle begun.  Indeed, 

sunspot cycle 23 spots have been spotted as late as March 2008 indicating that 

the minimum is still with us.  It is not unusual for sunspots with the magnetic 

polarization of both the old and new cycles to be present simultaneously and is 

common during the period surrounding the minima. 



 15

 
Appendix A: Minima and Maxima of Sunspot Number Cycles6 

=============================================================================== 
Sunspot   Year     Smallest     Year     Largest        Rise     Fall    Cycle 
Cycle     of      Smoothed      of      Smoothed      to Max   to Min   Length 
Number    Min*  Monthly Mean**  Max*  Monthly Mean**   (Yrs)    (Yrs)    (Yrs) 

------------------------------------------------------------------------------- 

   -     1610.8       --       1615.5       --           4.7      3.5      8.2 

   -     1619.0       --       1626.0       --           7.0      8.0     15.0 

   -     1634.0       --       1639.5       --           5.5      5.5     11.0 

   -     1645.0       --       1649.0       --           4.0      6.0     10.0 

   -     1655.0       --       1660.0       --           5.0      6.0     11.0 

   -     1666.0       --       1675.0       --           9.0      4.5     13.5 

   -     1679.5       --       1685.0       --           5.5      4.5     10.0 

   -     1689.5       --       1693.0       --           3.5      5.0      8.5 

   -     1698.0       --       1705.5       --           7.5      6.5     14.0 

   -     1712.0       --       1718.2       --           6.2      5.3     11.5 

   -     1723.5       --       1727.5       --           4.0      6.5     10.5 

   -     1734.0       --       1738.7       --           4.7      6.3     11.0 

   -     1745.0       --       1750.3      92.6          5.3      4.9     10.2 

   1     1755.2       8.4      1761.5      86.5          6.3      5.0     11.3 

   2     1766.5      11.2      1769.7     115.8          3.2      5.8      9.0 

   3     1775.5       7.2      1778.4     158.5          2.9      6.3      9.2 

   4     1784.7       9.5      1788.1     141.2          3.4     10.2     13.6 

                                       

6 “Sunspot Numbers,” National Geophysical Data Center, Solar Data Services.  Retrieved on 3 

April 2007 from 

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/maxmin.new. 
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   5     1798.3       3.2      1805.2      49.2          6.9      5.4     12.3 

   6     1810.6       0.0      1816.4      48.7          5.8      6.9     12.7 

   7     1823.3       0.1      1829.9      71.7          6.6      4.0     10.6 

   8     1833.9       7.3      1837.2     146.9          3.3      6.3      9.6 

   9     1843.5      10.5      1848.1     131.6          4.6      7.9     12.5 

  10     1856.0       3.2      1860.1      97.9          4.1      7.1     11.2 

  11     1867.2       5.2      1870.6     140.5          3.4      8.3     11.7 

  12     1878.9       2.2      1883.9      74.6          5.0      5.7     10.7 

  13     1889.6       5.0      1894.1      87.9          4.5      7.6     12.1 

  14     1901.7       2.6      1907.0      64.2          5.3      6.6     11.9 

  15     1913.6       1.5      1917.6     105.4          4.0      6.0     10.0 

  16     1923.6       5.6      1928.4      78.1          4.8      5.4     10.2 

  17     1933.8       3.4      1937.4     119.2          3.6      6.8     10.4 

  18     1944.2       7.7      1947.5     151.8          3.3      6.8     10.1 

  19     1954.3       3.4      1957.9     201.3          3.6      7.0     10.6 

  20     1964.9       9.6      1968.9     110.6          4.0      7.6     11.6 

  21     1976.5      12.2      1979.9     164.5          3.4      6.9     10.3 

  22     1986.8      12.3      1989.6     158.5          2.8      6.8      9.7 

  23     1996.4***    8.0      2000.3***  120.8          4.0 

------------------------------------------------------------------------------- 

Mean Cycle Values:    6.1                 113.2          4.7      6.3     11.0 

------------------------------------------------------------------------------- 

 *When observations permit, a date selected as either a cycle minimum or maximum is based in part on an average of the times extremes are 

reached in the monthly mean sunspot number, in the smoothed monthly mean sunspot number, and   in the monthly mean number of spot groups 

alone.  Two more measures are used at time of sunspot minimum:  the number of spotless days and the frequency of   occurrence of "old" and 

"new" cycle spot groups. 
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**The smoothed monthly mean sunspot number is defined here as the arithmetic average of two sequential 12-month running means of monthly 

mean numbers. 

 

***May 1996 marks the mathematical minimum of Cycle 23.  October 1996 marks the consensus minimum determined by an international group 

of solar physicists.  April 2000 marks the mathematical maximum of Cycle 23.  However, several other solar indices (e.g., 10.7 cm solar radio 

flux) recorded a higher secondary maximum in late 2001. 

 

Authors’ Note: Cycle 23 is at or near minima as this is being written (February 2008) and some authorities believe cycle 

24 may be starting. 
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Appendix B: Observed Effects in the Sunspot Data 

 

• The Waldmeier Effect (Waldmeier, 1935, 1939).  A negative correlation 

between cycle amplitude and the period between cycle minima and 

maxima.  Cycles with large amplitudes rise faster than those with lower 

amplitudes. 

• The Amplitude – Period Effect (Chernosky, 1954; Wilson, Hathaway, and 

Reichmann, 1999).  A negative correlation between cycle amplitude and 

the length of the previous cycle as measured minima to minima. 

• The Amplitude – Minimum Effect (Wilson, Hathaway, and Reichmann, 

1999).  A positive correlation between cycle amplitude and the activity 

level at the previous minima. 

• The Even – Odd “Gnevyshev” Effect (Gnevyshev and Ohl, 1948; Vitinskii, 

1965; Wilson, 1992).  Even numbered cycles are smaller than their odd 

numbered successors. 

• The Secular Trend (Wilson, 1988).  The general increase in cycle 

amplitude since the Maunder Minimum (1645 – 1715). 

• The 11 year Schwabe Cycle: The readily observable rise and fall of 

sunspots over an approximate 11 year period between minima. 

• The 22 year Hale Cycle (Bray & Laughhead 1964; Priest 1982; Murphy et 

al. 1994.: At the end of each Schwabe cycle, the magnetic field of the Sun 

reverses.  Two such reversals encompass two Schwabe cycles, or about 

22 years. 

• The 88 year Gleissberg Cycle: Observed as a 70-100 year amplitude 

modulation of the Schwabe Cycle (Gleissberg, 1939, 1971; Sonnett and 

Finney, 1990).  Braun, et al, (2005). 



 19

REFERENCES 

Anderson, T. W. (1971), The Statistical Analysis of Time Series, John Wiley, New 
York 

Billingsley P. (1979), Probability and Measure, John Wiley, New York 

Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A., Kubatzki, 
C., Roth, K. and Kromer, B. 2005. “Possible solar origin of the 1,470-year 
glacial climate cycle demonstrated in a coupled model.” Nature 438, 208-211 

Bray, R. J. and R. E. Laughhead. (1964), Sunspots, Chapman and Hall, London 

Chernosky, E. J. (1954), Publications of the Astronomical Society of the Pacific, 
66, 241 

Damon, P.E. and C.P. Sonett, (1991), In The Sun in Time (ed. C.P.Sonett, 
M.S.Giampapa, and M.S.Matthews). University of Arizona Press, Tucson, 360–
388 

Gleissberg, M. N., (1939), The Observatory 62, 158 

Gleissberg, M. N., (1971), “The Probable Behaviour of Sunspot Cycle 21,” Solar 
Physics, 21, 240-245 

Gnevyshev, M. N., and A. I. Ohl.  1948.  Astron. Zh. 25, 18. 

Hathaway, D. H., R M. Wilson, and E. J. Reichmann, (1994), “The Shape of the 
Sunspot Cycle,” Solar Physics, 151, 177-190 

Hathaway, D. H., R. M. Wilson, and E. J. Reichmann, (2002), “Group Sunspot 
Numbers: Sunspot Cycle Characteristics,” Solar Physics, 211 

Hinich, Melvin J. (200). “A Statistical Theory of Signal Coherence,” IEEE 
Journal of Oceanic Engineering  25, 256-261 

Hinich, M. J. and P. Wild. (2001), "Testing Time-Series Stationarity against an 
Alternative Whose Mean is Periodic," Macroeconomic Dynamics, 5, 380-412 

Hinich, M. J. (2003), "Detecting Randomly Modulated Pulses in Noise,” Signal 
Processing, 83, 1349-1352 

Hinich, M. J. and A. Serletis (2006), “Randomly Modulated Periodic Signals in 
Alberta’s Electricity Market,” Studies in Nonlinear Dynamics and Economics, 
The Berkeley Electronic Press, 10 (3), Article 5 

Hoyt, D. V. and K. H. Schatten, (1998), “Group Sunspot Numbers: A New Solar 
Activity Reconstruction,” Solar Physics, 181, 491 

Izenman, A. J. (1983), “J. R. Wolf and H. A. Wolfer: An Historical Note on the 
Zurich Sunspot Relative Numbers,” Journal of the Royal Statistical Society. 
Series A (General), 146 (3), 311-318 



 20

McKinnon, J.A. (1987), “Sunspot Numbers: 1610-1985,” Report UAG-95, World 
Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO, January 

Moran, P. A. P. (1954), “Some Experiments on the Prediction of Sunspot 
Numbers,” Journal of the Royal Statistical Society Series B. (Methodological), 16 
(1), 112-117 

Murphy, J. O., H. Sampson, T. T. Veblen, and R. Villalba (1994), “Regression 
Model for the 22 year Hale Solar Cycle Derived from High Altitude Tree-ring 
Data,” Astronomical Society of Australia, Proceedings, 11 (2), 157-163 

Priest, E. R. (1982), Solar Magnetohydrodynamics, D. Reidel , Boston 

Schwabe, H. (1838), “Über die Flecken der Sonne,” Astronomische Nachrichten, 
15, 223-248 

Schwabe, H. (1844), “Sonnen-Beobachten im Jahre 1843,” Astronomische 
Nachrichten, 21, 233-237 

Sonnett, C.P., and S. A. Finney (1990), “The Spectrum of Radiocarbon,” 
Philosophical Transactions of the Royal Society of London, 30A, 413–426 

Verdes, P. F., M. A. Parodi, P. M. Granitto, H. D. Navone, R. D. Piacentini, and 
H. A. Ceccatto (2000), “Predictions of the Maximum Amplitude for Solar Cycle 
23 and its Subsequent Behavior using Nonlinear Methods,” Solar Physics, 191, 
419-425 

Vitinskii, Y. I. (1965), Solar Activity Forcasting, NASA TTF-229, NASA, 
Washington, DC 

Waldmeier, M. (1935), Astronomische Mitteilungen Zürich, 14 (133), 105 

Waldmeier, M. (1939), Astronomische Mitteilungen Zürich, 14 (140), 551 

Waldmeier, M. (1961), The Sunspot-Activity in the Years 1610 – 1960, 
Schulthess, Zurich 

Wilson, R. M. (1988), “On the Long-Term Secular Increase in Sunspot 
Number,” Solar Physics, 115, 397-408 

Wilson, R. M. (1992), “An Early Estimate for the Size of Cycle 23,” Solar 
Physics, 140, 181-193 

Wilson, R. M. (1998), “A Comparison of Wolf's Reconstructed Record of Annual 
Sunspot Number with Schwabe's Observed Record of `Clusters of Spots' for the 
Interval of 1826 1868,” Solar Physics, 182 (1), 217-230 

Wilson, R. M., D. H. Hathaway, and E. J. Reichmann (1999), "A Synthesis of 
Solar Cycle Prediction Techniques," J. Geophysical Research 104 (A10), 
22,375-22,388 

Wolf, R. (1848), “Nachrichten von der Sternwarte in Berne. Sonnenflacken 
Beobachten,” Mittheilungen der Naturforschenden Gesellschaft , 169-173 



 21

Wolf, Rudolf (1852), “Neue Untersuchungen uber die Periode der 
Sonnenflecken und ihre Bedeutun.”  Mittheilungen der Naturforschenden 
Gesellschaft in Bern, 249-270. 

Wolf, Rudolf.  1861.  “Mittheilungen über die Sonnenflecken.” 
Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich. 6. 157-198. 

Yule, G. Udny (1927), “On a Method of Investigating Periodicities in Disturbed 
Series, with Special Reference to Wolfer's Sunspot Numbers,” Philosophical 
Transactions of the Royal Society of London. Series A, Containing Papers of a 
Mathematical or Physical Character, 226, 267-298. 



 22

 

29 Haromics RMP Example with AR(1) Modulation & Period = 125
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Power Spectrum of Detrended Daily Sunspot Numbers (12-21-1838, 6-30-2008)
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Figure 2 
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Signal Coherence Spectrum of Detrended Daily Sunspot Numbers  (12-21-1838, 6-30-2008)
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Figure 3 
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Power Spectrum of Detrended Daily Sunspot Numbers (12-23-1848, 6-30-2008)
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Figure 4 
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Signal CoherenceSpectrum for Detrended Sunspot Numbers  (12-23-1848, 6-30-2008)
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Figure 5 
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Signal Coherence AMS 

0.95 9.26 

0.90 4.26 

0.85 2.60 

0.80 1.78 

0.75 1.29 

0.70 0.97 

0.60 0.56 

0.50 0.33 

0.40 0.19 

Table 1 – Relationship between SIGCOH and AMS 


