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Consider a large aperture linear array which is detecting coherent radiation from a source. Suppose that 
the array is processed as a string of subarrays consisting of adjacent sensors. Assume that the signal is a 
plane wave whose coherence distance is of the order of the subarray lengths. There is a systematic 
difference among the subarray bearing estimates due to parallax. A statistical method for using the 
parallax effect to estimate range is presented. Approximate expressions for the variance and bias of the 
estimator are derived under the assumption that the gain of each subarray is large. These theoretical 
results are compared with values obtained using artificial data for several pararaeter values. 

PACS numbers: 43.60.Gk, 43.60.Cg 

INTRODUCTION 

Consider a horizontal linear array of sensors which 
is detecting coherent radiation from a source. If the 
medium is horizontally homogeneous, then the re- 
ceived signal is a cylindrical wave plus noise. The 
maximum-likelihood estimator of range assuming a 
cylindrical wave plus Gaussian noise has been studied 
by Hahn i and Carter? The variance of the estimator 
due to additive noise is proportional to R4L '4, where 
R is the range and L is the array length. 3 Inhomo- 
geneities in the medium near the array distort the 
wave curvature, increasing the variance. Random 
variation of sound velocity results in a loss of signal 
coherence which also increases variance. 4 When R 
is large, moreover, the curvature is almost impossi- 
ble to measure. 

There is another method for estimating the range to 
a distant source using a large aperture array. This 
approach makes use of the parallax effect. Suppose 
that the array is processed as a string of subarrays 
consisting of adjacent sensors. If each subarray gain 
is sufficiently large to resolve the source, then there 
will be a systematic measurable difference among the 
bea•ing estimates due to parallax. For the parallax 
method we need only assume that the received signal 
is a plane wave whose coherence distance is of the 
order of the subarray lengths. In other words, the 
signal must appear as a coherent plane wave to the 
subarrays, but not to the whole array. This assump- 
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tion about the signal is weaker than those made in the 
previously cited papers on focused arrays. 

The range estimator using subarrays is presented 
in the next section. The method and its statistical pro- 
perties also apply to a configuration of subarrays that 
cannot be connected together as a whole. 

I. PARALLAX RANGE ESTIMATION 

Suppose that the array consists of a line of J linear 
subarrays. An array of M=JM• sensors can be elec- 
tronically processed as J subarrays of M r adjacent 
sensors. Assume that the signal at each subarray is 
a plane wave plus Gaussian noise with a signal-to- 
noise ratio denoted p, and we know the sign of the 
source bearing. To simplify a comparison with the 
statistical results obtained from the cylindrical model, 
assume that the medium is horizontally homogeneous 
and the wave is narrow band with center frequency f and 
velocity c. Suppose that the jth subarray is sampled 
for an interval T=NS. Let xj denote the coordinate of 
the center of the subarray on the array axis, and set 
the origin so that Z•.lxj =0. Let •j denote the maximum- 
likelihood estimator of bearing with respect to the axis 
perpendicular to the array at x• (Fig. 1). If Mj, the 
number of sensors in subarray j is large, then the 
bearing that maximizes the energy of the output of a 
beamformer is maximum-likelihood. 5 If Mj or N is 
large, •'7 • =•b• +(cos•b•)'l(• where the distribution of 
the error ½t is approximately Gaussian with mean zero 
and variance (•I =(y2/M•L•) rad 2, where L• is the sub- 
array length and 

y• =3c•/Z•vf •p• • . (1) 
If the coherence distance of the noise is less than 

xj. t- x•, then •j and •.t are uncorrelated. 

Let x o denote the source's coordinate on the array 

FIG. 2. Equally spaces subarrays. 
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TABLE I. Statistical properties of/•. 

Mean bias rms error 

(i•//{ - 1) ((i•//{ - 1)2> '/2 

Mean 

absolute error 

Mean 

standard deviation//{ Asymptotic 
standard deviation/R 

(•j= 0.5 ø 
/{ = 280,J = 14 0.03 0.18 0.13 
R = 560,J = 28 0.01 0.12 0.10 

(•1= 1.0ø 
J= 14 0.10 0.50 0.30 
J=28 0.08 0.32 0.22 

0.17 0.16 

0.12 0.11 

0.49 0.32 

0.31 0.23 

axis and let R denote its distance from x0, i.e., R is 
the range perpendicular to the array axis. Then 

tanCj =(x 0- xj)/R. Using the linear, approximation to 
tan• for small c•, tan•=tan• +(cos½fi'a½•. Suppose 
that R >> L and x t •<x 0 •<x•. Then (cos½•)-a={1 +[(x 0 
- xt)/R]2} 3/2-• 1 for each j. Consequently, 

tan•j =a - bx• +%, (2) 
where a =Xo R-• and b 

The weighted least-squares estimator of the slope b, 
,/ 2 ^ l 

• = - •t•MtLtxt(tan•t - J- •=! tan•t) (3) J 2 2 •=IMtLjx• 
is maximum-likelihood since the ½/s are independent 
Gaussian errors. Moreover $ is Gaussian with mean 

2 I 2 2-1 R -• and variance T •t:•MjL•x•) . If T/L• is small, this 
approximation of the mean and variance is good even if 

the ½• are not Gaussian. 

Consider the range estimator/•=•'•. To simplify the 
asymptotics, assume that the array consists of equally 
spaced subarrays of equal length Lg with the same 
number of sensors, i.e., x•.•-xt=•, Lt=L•, and 
Mt =M/ff for each j (Fig. 2). The array length is then 
L =(J- 1)a +L•. Since ZI=xxl--0, x• =[j- (J+I)/2]A. 
Thus, • 2 2=ML2.rA2(j_ 1)(J+1)/12. Using Tay- 
lor's formula, 

t•/R =1 - R($ - b) +R2($ - b) 2 +O[Ra($ - b)a]. (4) 

Assume that TR <<M1/2L•jA. Then the higher order 
terms in (4) are small and 

--• 1 +[I2T2R2/ML2.r A2(J 2 -- 1)]. (5) 
From (4) the variance of I•/R is 

O'2(•)//• 2 • 12T21•2/ML• A2(j 2 - 1), (6) 
which is greater than the square of the bias Ei•/R- 
given the condition on 

If L is fixed, it is clear from (6) that the variance 
is minimized by using two abutting subarrays with 
L z =L/2 and A =L/2. In this case, o(I•)/R -• 8¾M '•/2L'2R. 
The optimal Hahn-Carter estimator a has a proportional 
standard deviation of [8/(3)•/2]TM'•/2L'2R. Thus my 
asymptotic standard deviation is (3) •/2 times theirs, 
but they require the wave to be cylindrical for all values 
of R whereas I assume a plane wave. A cylindrical 

wave becomes a plane wave as R-•. Now let A =L• 
=L/J for J>• 3. Then e(I•)/R-• 2(3)•/2L-2R. My esti- 
mator is then less asymptotically efficient than the 
Hahn-Carter estimator for an equally spaced design. 

II. ARTIFICIAL DATA RESULTS 

The proportional bias, rms error, mean absolute 
error, and standard deviation of/} were estimated for 
R/JA =20 using 400 •'s generated using Eqs. (2) and 
(3). An equally spaced subarray design was used with 
• =1, x 0 =(J- 1)/2, J=14 (R =280), and J=28 (R =560). 
The ½• were computed using the same pseudorandom 
Gaussian generator that is programmed in the TI58 
calculator, with (Yt =0'5ø, and 1 ø for each j. The 
95.5 % confidence intervals 'for • are then • + 1 ø and 
• + 2 ø, respectively. The results are given in Table I. 
The estimated (•(i•)/R are close to their asymptotic 
values, with the greatest discrepancy for •r•=1% These 
results support the proposition that the asymptotic re- 
sults can be used as a design tool for processing a 
long array as a sequence of subarrays to estimate the 
range of a distant source when the array gain is large. 
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