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A linear array can detect a plane wave signal at a wrong bearing if the signal wavelengths are shorter 
than twice the distance between the closest adjacent sensors..This penomenon, called spatial aliasing, is 
most pronounced when the bearing is near endfire. This paper presents a method for correcting spatial 
aliasing of broadband signals using the frequency-wavenumber approach to array processing. Also 
presented is is a method for averaging the to-t( Fourier coefficients that will give a more accurate bearing 
estimator than the method presented by Clay• Hinich, and Shaman [J. Aeoust. $oc. Am. $3, 1161-1166 
(1973)]. The methods discussed in this paper can be used for a sparse unequally spaced array which is 
detecting a dispersive signal. 

PACS numbers: 43.60.Gk 

INTRODUCTION 

The rule for avoiding aliasing in spectral analysis is 
well known by now. The sampling inteval must be less 
than one half the smallest period. There is a spatial 
analog in array theory to the time aliasing problem. In 
order to simplify the exposition I will begin with the 
simplest wave model using complex variable notation. 

Let ½(t, x) denote the noise field observed at time t 
and position x. Suppose that a sensor located at x de- 
tects a single-frequency plane wave plus noise, 

p(t, x) =A expiwo[t ' (x/c) cos0] + ½(t, x) , 
where c is the phase velocity, 0 is the direction of prop, 
agation of the wave with respect to the x axis, and A is 
the complex amplitude of the wave. The frequency in 
hertz is f0 = co•/2•r. 

Delay-and-sum filtering (beamforming) is the method 
widely used to estimate the direction of the signal, 
provided that the waveguide is essentially nondispersive 
in the region about the array. t Delays for each sensor 
channel are computed for an assumed direction, the 
signals are delayed and summed, and the sum is squared 
and integrated over the duration of the observation peri- 
od. The search method is equivalent to steering the ar- 
ray in the direction which maximizes the energy in the 
main beam. 

In order to explain spatial aliasing, consider a two 
element array whose sensors are d m apart. a Using 
beamforming, the bearing estimate is arccos(½d'tA), 
where a is the delay of one channel which maximizes 
the correlation between the channels. '• But from (1) it 
follows that the correlation of the two signals is maxi- 
mized by any one of the following delays: A, =(d/c) cos0 
+ (n/f0} for n=0, + 1, + 2 ..... In terms of the wave- 
length t 0 = ½/fo, these equivalent delays are A. 
= C '• d(COS0 + nt 0 •F•). At least one of these delays will have 
cd '• A nfall in the domain of the principal value of the in 
verse cosine function. Thus if - 1< cos0 +•d 4 _< 1, 
then the plane wave will appear to be on beams whose 
bearings are •4(•) =arccos(cos0 +n•,od'l). This will be 
true for any linear array with a minimum between-sen- 
sor spacing of dm. For example, if d = X 0 and 0 = 20 ø, 
then 04 =93.5 ø. Aliasing can thus be avoided for any 0 

if d< 7•o/2 , but this may not be possible in applications 
where the signal is broadband and 0 is near 0 ø or 180 ø. 
In many applications, the higher-frequency components 
of the signal are aliased when the source is near endfire. 

It is possible to dealias the data for a broadband sig- 
nal using the sample frequency-wavenumber spectrum. 
Let me briefly review this mathematical equivalent of 
beamforming. • 

I. FREQUENCY-WAVENUMBER ANALYSIS FOR 
BROADBAND SIGNALS 

Suppose that each sensor channel is simultaneously 
sampled at times t• =}•, } = 0, 1, ..., N - 1. The param- 
eter 8 is the sampling interval, and let T =NS denote the 
sampling period. Consider the time-space Fourier 
transform 

¾-1 3/-1 
1 

P(•o, •) = •-• • • p(t•, x=) exp[i(•x= - •t•)], (2) rn=O 

where x= is the position Of the ruth sensor in an M ele- 
ment linear array. Counting from zero is a convention 
used to simplify the Fourier transform mathematics. 

Let S•(w) denote the power spectrum of the noise, and 
assume it is spatially incoherent. Then $•(w) =limt•..d9 -t 
x IZ•fo i ½(t•, x•) exp(- i•otl)l •. The normalized sample 
frequency-wavenumber spectrum is 

s(o, = - (3) 

This spectrum has a peak of [AI a at .to = w o and • = (2•/ 
X0) cns0 against a background of order (MN)'a S•(•Oo ) 
when MN is large. (See Fig. 1.) 

Assuming that the noise field is Gaussian, Hinich, and 
Shaman s show that the maximum-likelihood estimator 
of 0is 

• = arccos(cw•t•) , (4) 
where • is the wavenumber which maximizes the sam- 
ple o•-• spectrum, i.e., S(O•o, •) = max•,•<,/aS(•oo, •). 
There is no aliasing problem as long as d< Xo/2. 

The mean square error (rose) of • is (approximately) 

mse(•) •- 3 2MWapOr sinO)a (5) 
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FIG. 1. Peak of sample c•-g spectrum 
at projected wavenumber corresponding 
to source bearing. 

for 8•0 or % where p=NIAI2/$,(•oe) is the energy 
signal-to-noise ratio in the 1/T-Hz band centered at 0% 
and W is the aperture of the array as measured by the 
number of wavelengths, i.e., W=L/•, where L is the 
length of the array. 

When the signal has broadband energy, the frequency- 
wavenumber spectrum is computed for each 1/T-Hz 
sub-band in the band. To be explicit, suppose that 

p(t,x) = A(o•) exp io• - •-•)cos do•+ •(t,x), -(6) 
where the phase velocity c(0•) is expressed as a function 
of frequency in order to allow for the possibility of dis- 
persion. When the propagation is significantly disper- 
sive, beamforming wastes signal energy and gives poor 
results. The frequency-wavenumber approach can 
easily handle dispersion provided that c(•o) is a known 
function. 

The o•-g spectrum S(co, g) is computed for the B = 
- w,)T/2# narrow bands of bandwidth T '1 Hz in (0•,, 
Let o• denote the center frequency of the Ith sub-band 
(I = 1,..., B). When p(o•) is constant in the band, 
Clay, Hinich, and Shaman s show that the maximum' like- 
lihood estimator (role) of 6 is • =B 'x •s•t 
where •(o h) is the estimator given by expression (4) for 
o•0-o•, Mo•)-2•c(o•)o• x is the wavelength of the 
component, and k=B•.l k'x(oh)]'L In general, the mle 
of Sis 

px/2(o:,) (?) 

where w =B•f..tpX/*((•,) •.-,(•,)]-x. The approximate 
mean square error of/• is 

mse• •'- 3•/2ML•-B(• sinS) • . 

These results hold even when the noise field is par- 
tially coherent since the sample •-• amplitude values 

of a Gaussian noise field at any two points (oh, gx) and 
(•,•, g2) are asymptotically independent as M- •, pro- 
vided that the true o•-g noise spectrum is continuous. 
In other words, P(o% gl) and P(o•2, g2) are asymptotically 
independent as M- ooif o•x • w2 ' or 

If the narrowband S/N ratio/)(co I) is of the order of 
M 'x, then the noise in the sample o•-g spectrum ob- 
scures the peak at to- w•, g = 2•rX't(co•)cosd due to the 
coherent signal. Consequently the estimator • gives a 
poor estimate of • when many of the narrowband S/N 
ratios are 

There is another way to utilize the sample 
Fourier coefficients in order to obtain a more accurate 

estimate of • when p(co•) is O(M 'x) for some } 's. For 
each l = 1 .... , B and wavenumber g• - 2•rk'l(•o•), define 
the function 

P•(y) =P(•,, •,y) 

I •-1 •-1 
= •'• Z Z D(t,, x.) exp[i(g, yx,.- o h t•)], (9) 

m• J• 

where •e r•ge of y is - X(•)/• •y • X(•)/•. As- 
• that •< X(•)/2. • The •ncUon P•), which is the 
time-sp•e Fourier tr•sform •sc•ed in units • 
cosO, will have a pe• at y = cos6 for e•h I • long • 
M 'l << p(•). The averse rescued Fourier •sform 

P•) =B 'l • P•(y) (1•) 

h• a pronounced • • y • cosB when B is l•ge even 
ff p(•t) is sm•l for •ny •. 

The f•t that •(y) h• a pe• at cos• sug•s• •e 
foll•ing •tern•ive es•m•or • 6 when there is no 
•i•ing. Define • =•ccosy where • is •e v•ue w•ch 
m•mizes [ •(y) I z in •e r•ge - 1 • y • 1. W•n p • 
co•t in the b•d, it is sh•n in the Appen• • 
•e approximate me• •u•e error of • for • •u•ly 
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spaced arra• is the sm• as that for the maximum like- 
lihood estimator. 

II. BEARING ESTIMATION UNDER ALIASING 

Suppose that for some frequency 0Y* in the band 
((o•, co•, X(oy•)< 2d. Aliasing is then possible for all 
frequencies w •-- 0•*. For example, if X(•o•)/2d< cos• 
< 3X(•o•)/2d for a w,-- • oY •, then the peak of P•(2) corre- 
sponding to the wavenumber • =2•rX'l(w•) will be at 
y = cos• - k(to•)/d. (See Fig. 2.) 

The aliasing problem can be corrected. In the spirit 
of the beamforming bearing search, let 60 denote a test 
value for/L Let nit denote the integer such that 

(2u! - 1)X(•o•) < costa< (2n• + 1)X(•o•) (11) 
with the convention that n• = 0 if there is no aliasing at 
•o• for •0- Then compute the corrected average scaled 
Fourier' transform 

•(cost)a) = B. t • p• ost• a - n, o)•) (12) 
This computation can also be accomplished by first 
computing the •o-• transform at •o• and • -- • cos• 0 
-•!2•/d, and then scaling the ß axis as previously 
shown. The statistic •(cos• 0) is calculated for each 60 on 
a grid of bearings whose fineness is predetermined. 
For most array geometries, this more complicated cal- 
culation needs to be done only for small values of 80 
since aliasing is generally a problem only for source 
beaxings near endfire. 

The estimate of 6 is the particular bearing for which 
• P•l 2 is a m•x/m•m. Recall that if there is rio.plane 
wave signal, the w-K spectrum and thus • P• z, will be 
of the order of (MN)'IS•. 

APPENDIX 

Let •(ah)=• and $•(o h) =o• in the band. 
then from (6) and (9) 

. 1 - exp[ig,(y - cos8)dM] 
p!(y) - ß - 1-exp[ig,(y-cost•)d] +u,. 0kl) 

For large N, the u• are independent zero-mean rando m 
errors with variance El u• I • = (MN) '• •. When ly - cosdl 
<< X=(2•dM) '• for each l, 

- exp[i( - cos) 
P(y) -•A 1 - exp[i•(y - cos/)) d] +•' (A2) 

where the error •=B"•,u, has variance (M•VB) 't •, 
and •= 2• 't. Note that when there is no dispersion and 
thus c is a constant, •=•/c, where •- .i • -B •.•w•. It 
then follows from the proof of Theorem 3.3 of Hinich 
and Shaman •hat for large M, 

E(• -cosO) a -•6(•/)'•M-•(Bp) q , (AS) 

where O =NIA I z a,-2. ^ Using the TayIor series approxi- 
mation of • = arccosy about y = cos5, it follows from 
(A3) that 

rose(6) = 2Mad•Bp( • sin•)Z . (A4) 
This is the same approximation as {8) when p(•o•) =p for 
each 1, since L 

The rescaled spectrum I•(y)l 2 has a peak at y =cos• 
of • A I z against a background of order (MNE) '• •. Thus 
when B is large, the signal is detected using 
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