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An array of sensors is receiving radiation from a source of interest. The source and the array are in a one- 
or two-dimensional waveguide. The maximum-likelihood estimators of the coordinates of the source are 
analysed under the assumptions that the noise field is Gaussian. The Cramer-Rao lower bound is of the 
order of the number of modes which define the source excitation function. The results show that the 
accuracy of the maximum likelihood estimator of source depth using a vertical array in a infinite 
horizontal waveguide (such as the ocean) is limited by the number of modes detected by the array, 
regardless of the array size. 

PACS numbers: 43.60.Cg, 43.20.Ks, 43.20.Bi 

INTRODUCTION 

Arrays of interconnected receivers are used to im- 
prove the signal-to-noise ratio of coherent radiation 
from a source located in the same waveguide as the ar- 
ray. In most examples, the phases of the received sig- 
nals are adjusted by digital or analog methods in order 
to concentrate the received energy in a narrow beam 
with respect to the coordinate system of the array. 
This procedure (called beamforming) is used to esti- 
mate the direction of a point source which is radiating 
coherent energy at a single frequency or in a band of 
frequencies. Beamforming is widely used for process- 
ing arrays in radio astronomy, underwater acoustics, 
phased array radars, seismology, and atmospheric 
physics. The statistical properties of beamforming has 
been studied by Levin/ Clay, Hinich, and Shaman/and 
Green, Kelley, and Levin? 

Beamforming is an essential element of the maximum 
likelihood estimator of source direction if the received 

radiation is a plane or cylindrical wave. Beamforming 
will result in a biased or very imprecise estimate of 
direction if the received wave fronts are significantly 
effected by reflections from the boundaries of the wave- 
guide, or are convoluted by refraction and dispersion 
in the medium of propagation (see Clay4). Such is the 
case when the problem is estimating the depth of a 
source in an infinite stratified horizontal waveguide. 
Clay s reviews signal processing theory for such a wave- 
guide using both horizontal and vertical arrays, and 
relates the statistical models to physical oceanography. 
The maximum likelihood estimator of source direction 

using a horizontal array is given by Capon et al., 6 and 
Hinich and Shaman. ? The maximum likelihood estimator 

of source depth using a vertical array is given by 
Hinich. s,g 

This paper considers the problem of estimating the 
coordinates of a source in a one-or two-dimensional 

waveguide when the source excites a finite number of 
eigenfunctions of the wave operator. The boundary con- 
ditions cause a fundamental limitation of the precision 
the estimator irrespective of the number of receivers 
used in the array. This limitation is due to the limited 
dimensionality of the model which is induced by the 

physics of the system. For example, the results es- 
tablish that a vertical array in an infinite horizontal 
waveguide (such as the ocean) need only have M sensors 
in order to estimate the depth of a source if only M 
modes are received. In contrast to the noise model ! 

used in Ref. 8, this paper develops the noise field as a 
function of the waveguide parameters. 

I. NORMAL MODE SOLUTION OF THE WAVE 
EQUATION 

The steady-state solution of wave equation for an in- 
finite horizontal waveguide is a special case of the gen- 
eral solution of the inhomogeneous Sturm-Louiville 
partial differential operator on the space œ2(S) of square 
integrable functions on x e S, a smoothly closed and 
bounded subset of Euclidean space (Chap. 5, VladimirovXø). 
For expository purposes we first limit attention to one 
space dimension, and set S = [0, 1]. For x in the unit 
interval [0, 1], let f(x) denote the twice continuously 
differentiable solution to the inhomogeneous Sturm- 
Liouville problem Lf=s(x-xo) , where the operator is 
defined by 

Lf = - -•-xp •-•/+ qf, (1) 
s(x-x o) is the intensity of a source at position x o e S, p 
is a given continuously differentiable positive function 

ofxe $, q is non-negative and continuous in [0, 1], andf 
satisfies the following boundary conditions given ct 
>•0, i= 1,...,4: 

cx$(O)-c2•-•f(O)=O, c3f(1)+c4kS(i)=O. (2) 
For steady-state processes f(x) is the solution to a 

general wave equation (or a diffusion equation) with the 
given boundary conditions with normalized space units. 
The time component in the solution is separable from 
the space component. 

The Sturm-Liouville operator L is self-adjoint, its 
eigenvalues 7• •< 7z •< ß ß ß are discrete and non-negative, 
and its eigenfunctions •, qb2,... are complete in œ2(S). 
As an example, consider the simplest model of the 
ocean as an acoustic waveguide, the homogeneous com- 
pressible fluid waveguide with a rigid bottom and a free 
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surface. In the absence of gravity effects, the eigen- 
functions for this waveguide are •,, =V•-cosy•x, and the 
eigenvalues are ¾,, = (m + 1/2)•r,m = 1, 2,..., where the 
units have been normalized so that •he depth of the 
•ide is one unit. 

Returnin• to the general one-dimensio•l wave,ida, 
assume that 7• >0 (L is nonsin•lar). Then 

where 

is the i•er pr•uct between s and •. Moreover the 
eigenfunctions •re orthonormal, i.e., (•, •) = 1 and 
(•, •,) =0 for m •m'. When L is the wave operator, 
the • are c•11ed the no•al modes. 

•ppose tha• the source exci•es only the first M alcan- 
functions, i.e., •e source function is a linear combina- 
tion of the modes •x,..., •. The source function then 
can be written 

= (4) 

where •,..., 0• are unknown weights which •re twice 
continuously differentiable i•ctions of •e source posi- 
tion x 0. For •y s • Ee(S), the function can be approxi- 
mated to any preassigned tolerance by choosing M suf- 
ficiently large, but the high modes may be so attenuated 
at the array that they prairie negligible sig•l /•orma- 
tion. By the or•ogonality of the eige•unctions, it fol- 
lows from (3) and (4) that 

M 

Thus the received si•al also lies on •e •,..., • 
linear manifold. 

E•ressions (4) and (5)also hold for a•o-dimensional 
wave•ide such as an ocean canyon or a fiord, and a 
source which excites only the first M normal m•es. 
The eige•unctions • satisfy the boundary conditions 

a(x) f(x) + (x) = 0, (6) 
where n is the ex/ern• normal vector to the (piecewise 
smooth) boundary of •e •ve•ide and •, • • 0 are con- 
tinuous on •e boun•ry with • + • > 0. Moreover the 
o•rator is 

L = - div(pV) + q, (7) 

where • is the gradient operator and div is the diver- 
gence. Estimating •e so, ca position • involves a lin- 
er s•tistical m•el whose struct•e is determined by 
ß e physics oi the wave,ida. The eige•nctions of the 
operator L constitute a "•ral" •sis for the s•tis- 
tical model. 

II. A STATISTICAL MODEL 

Assume that the source and the receiving array are 
closed one-or two-dimensional waveguide as modeled 

by expressions (6) and (7). The finiteness of the wave- 
guide shapes the structure of the noise field. 

Let xx,..., x, denote the positions of the receivers 
in the array, and as before let xoe S denote the position 
of the source of interest. For an infinite horizonf•l 

waveguide, xois the depth of the source (see l•ef. 9). The 
coordinates (xox,xoa) of x o are the unknown parameters 
which are to be estimated from a sample of the signals 
received by the array. If the guide is a long fiord with 
p•raIlel walls, Xo• is the source depth and Xo2 is the dis- 
tamce of the source from one wall. 

Suppose that the signal has phase coherent energy in 
a narrow band about frequency re- Let y(x •) denote the 
output from the ith receiver in the array which has been 
filtered in a narrow band about re- If the signal has en- 
ergy in many frequency bands, the results in this paper 
apply to each narrowband component of the received 
signal. 

By the linearity of the wave operator, 

y(x =/(x,lx3 + (x,), 

where • (x•) is the filtered signal received at x• from the 
ensemble of noise sources in S. Assuming that the 
phases of the noise field in the narrow b•nd around fo 
are incoherent, the signal-to-noise ratio is increased 
by filIering the received signal in the jr o band. 

Assume that each noise source excites at most N 

modes, where N>>M. It then follows from (4) and (5) 
that,(x0 is a linear combination of the modes 
q•,..., •s. Let •m replace 0• in the linear combination 
relating ((x) to the 

In order to simplify the stochastic structure of the 
noise fieId • (x), assume that 

(8) 

where •x,..., (z• are zmcorrelated Gaussian random 
variables with zero mean and variances 2 E(• = o•,. Thus 
the variance-covariance matrix of the noise observed 

at r• locations x•,..., xn is the uxrz matrix 

•;. = • r • •F•x• •, (9) 

where • is the nxN matrix whose (i, mth) element is 
q•,(x•), F• is the NxN diagonal matrix with elements 
¾,•, and • is the NxN diagonal matrix with elements 

= 

The matrix $• is positive semidefinite with rank at 
most 2ff if n >• N. As can be seen from expression 
there are only N independent realizations from the 
stochastic noise process during the sampling period 
regardless of the number of sensors in the array. I 
will now show that the actual degrees-of-freedom with 
respect to the source parameter is M. 

Setting the number of sensors n = aV, suppose that the 
sensor locations are chosen so that • is nonsingular. 

Thus, 

(10) 

The Fisher information is the positive definite 2x 
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matrix 

I• (Xo) = (Vf•) •23f •(Vf•), (11) 

where Vf• is the Nx 2 matrix whose /th row in the 
gradient 

jo-: 0 
at •. Since 

fixl•) = • 0•o)•0•), 

then from (10} and (11} we have for aH N• •, 

h(• = [v0(•)] r•i'[v0(%)], <12) 

where 9• is the diagonal matrix with elements 
z•,. , z and VO{•) is the Mx] matrix whose m,jth 
element is 

It •s clear from (12) that the elements of I, are •nde- 
pendent of the array size as long as n=N•m. This 
means that at most M sensors are needed for •e m•i- 

mum likelihood estimation of Xo, provided that the x 
are chosen to make the rows of • linearly independent 
vectors. This result still holds when the variance- 

covariance matr• of the •, is not aliagoal, i.e., the 
are correlated. In th•s case the •u matrix in (12) is the 
•xM variance-covartance of (•..., 

For eachj=l,2 •dm=l,...,•, letB• denote the 
m•imum of }(8/8xz)O,(•}] for Xo• S. Given a vector 
a = (a•a•} r of unit length, it follows from (11) by the 
Schwarz ineq•lity that 

M 

•< 2X' •-•M, (13) 

where 

B 2 = maxIBm} and X = min{•}. 

Thus the variance of a__n unbiased estimator of xoy is 
bounded below by •(2B2M) -•. For a nondiagonal 
• is replaced by the minimum eigenvalue of •. Thus 
the accuracy of the estimator of source depth using a 
vertica! array in a horizontal waveguide is limited by 
the number of modes which the array detects. 

III. MAXIMUM LIKELIHOOD ESTIMATION OF x o 
Assume that the M sensor array is constructed so that 

the MXM matrix • = (•m(xl)) is nonsingular. Then the 
model can be written 

y=er-qO(Xo)+•), (14) 

where y = (y(x•),..., y(x•))r, •(Xo ) = (8•(Xo),..,, 8•(Xo) ) r, 
and ( = (• (x•),..., ((x•)) r. Since the ( (x •) are normally 
distributed with vartance-covariance matrix Q•, then 
the first-order conditions for the maximum likelihood 

estimator of x o are 

(re-•y - 0<xo)) r•'[V0(xo)] =0, (15) 

where Ve(xo) is the Mx2 matrix [(O/Oxo•)e,•(xo) ]. The 

maximum likelihood estimator i o is one of the solutions 
to Eq. (15) (see Chap. 5, Rao. •) 

It has been assumed that d(xo) is twice continuously 
different(able. In addition, assume that 
exoi•c•ex•)0(Xo){ has a finite upper bound for all •oe S 
and i,j, k= 1 or 2. Given the normality of the errors in 
the model, it follows that as M-•o,M•/2(• o-xo) is 
asymptotically normally distributed N(0, I•(xo)). Re- 
member that M is determined by the physical properties 
of the source and the medium. 

IV. NONSTATIONARITY OF THE WAVEGUIDE 
It is often the case that the medium or the boundaries 

of the waveguide are slightly nonstationary during the 
period when the received signals are being filtered. In 
order to model the effect of this nonstationarity, assume 
that the filtered signal received at x • from a source at 
x o is given by the expression 

/(x,lXo) = (16) 

where E•(xi) = 0, Eu•(xi)- e and •(xi) is independent -Gin, 

of ((xi) for each i= 1,... ,M. In other words, expres- 
sion (5) is modified by adding a stochastic perturbation 
term •(xi) to y•,•qb•, (see Chap. 6, Tolstoy and Clay'•). 
The results given in the previous sections still hold as 
long as the 0•(xo) have the previously assumed smooth- 
ness, but f• is replaced by f•+w,,•, where •,,• is the 
variance-covariance matrix of the perturbation terms. 
Assume that r,• is nonsingular and is independent of the 
array geometry. The perturbation effects raises the 
asymptotic variances of the maximum likelihood esti- 

mators of the •c0, since 

a•[V• (Xo) ] •/[V• (xo)] a < a • iV • (xo) ] • 

x (n, + z.)-•[vo(xo)]a, 

for a• 0 and V8 • 0. This result is hardly surprising. 
It is also clear that if a • is very large for large m, the 
precision of the maximum likelihood estimator is limi- 
ted as if M was bounded. 

ACKNOWLEDGMENT 

This work was supported by the Office of Naval Re- 
search under contract. 

1M. J. Levin, "Least-squares array processing for signals of 
unknown form," Radio Electron. Engr. 29, 213-222 (1965). 

2C. S. Clay, M. J. Hinteh, and P. Shaman, "Error analysis of 
velocity and direction measurements of plane waves using 
thick large aperVare arrays," J. Acoust. •)c. Am. 53, 1161-- 
1166 (1973). 

3p. E. Green, E. J. Kelley, Jr., andM. J. Levin, "A compari- 
son of seismic array processing methods," Geophys. J. R. 
Astr. Soc. 11, 67-84 (1966). 

4C. S. Clay, "Waveguides, arrays, and filters," Geophysics 
31, 501--505 (1966). 

•C. S. Clay, "Use of arrays for acoustic transmission in a 
noisy ocean," Rev. Geophys. 4, 475--507 (1966). 

•J. Capon, R. J. Greenfield, and R. J. Kolker, "Multidimen- 
sional maximum likelihood processing of a large aperture 
seismic array," Proc. IEEE 55, 192-211 (1967). 

?M. J. Hinich and P. Shaman, •l•arameter estimation for an 

482 J. Acoust. Soc. Am., Vol. 66, No. 2, August 1979 Melvin J. Hinich: Position of a radiating source 482 

Downloaded 16 Jul 2010 to 146.6.201.36. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



•,-dimensional plane wave observed with additive independent 
Gaussian errors•" Ann. Math. Statist. 43, 153-169 (1972). 

8M. J. Hinich, "Maximum-likelihood signal processing for a 
vertical array," J. Aeousœ. Soe. Am. 54, 499-503 (1973). 

•M. Hinich, "Array design for measuring source depth in a 
horizontal wavegaide, "SIAM J. Appl. Math. 3 •-, 800•805 (1977). 

•øV. S, Vladimirov. Equ•tious of Mafhe•tical Physics. edited 
by A. Jeffrey (Dekker, New York, [97[•. 

llC. R. Rao• Lineage Statistical Inference and its Applications 
(Wiley. New York, 1965). 

12L Tolstoy and C. S. Clay. Ocean Acoustics (McGraw-Hill, 
New York• 1966). 

483 J. Acoust. Soc. Am., Vol. 66, No. 2, August 1979 Melvin J. Hinich: Position of a radiating source 483 

Downloaded 16 Jul 2010 to 146.6.201.36. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp


