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a b s t r a c t

The waveform of a simple sustained tone emitted from musical instruments such as a

flute played by even the best musician is never exactly periodic. There is always some

variation over time in the waveform of a single pitch that is characteristic of the

instrument itself. In this paper, we employ the signal-coherence function introduced by

Hinich [A statistical theory of signal coherence, J. Oceanic Eng. 25(2) (2000) 256–261] to

study the subtle variation of tones from several instruments played by accomplished

musicians. This measure characterizes the amount of variation in each Fourier

component as a random amplitude-modulation component added to a coherent

narrowband sinusoid. The signal-coherence function is computed from several digitized

acoustic signals of several musical instruments. The signal-coherence functions show

that there are important differences between the same notes produced from different

instruments. The signal coherence of a vibrato, a deliberate modulation of a tone, is

analyzed for the first time using the signal-coherence function. We show that for most

practical playing conditions it has a small effect for lower frequencies. This allows

characterization of modulation variations in sustained portions of sound with and

without vibrato. The signal-coherence processing method applied to musical acoustics

could lead to more realistic music synthesizers.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a model for studying the fluctua-
tions of musical instrument tones that has never been
used before to study the acoustics of musical instruments.
The approach is based on the random modulated
periodicity (RMP) model [1–4]. In this paper, we employ
the signal-coherence function (SCF) to study the subtle
variation of tones from several instruments played by
accomplished musicians.

The waveform of a simple sustained tone emitted from
a musical instruments such as a flute played by even the
best musician is never exactly periodic [5–7]. There is

always some variation over time in the waveform of a
single pitch that is characteristic of the instrument itself.
The RMP characterizes the amount of variation in each
Fourier component as a random modulation component
added to a coherent narrowband sinusoid. These devia-
tions from periodicity of digital recordings of several
musical instruments playing the same notes exhibit
surprising variation in the shape of the waveform over
time. Such notes recorded in laboratory conditions are
important for understanding the random fluctuations that
naturally appear in musical sounds. The RMP-based
signal-processing method applied to musical acoustics
could lead to more realistic music synthesizers.

Contrary to previous works on RMP, we explicitly
include in this work the analysis of period errors, such as
unknown vibrato, as a possible source of deviation from
periodicity. In the paper we analyze the influence of both
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random and deterministic frequency modulations and
show that for a perfectly periodic signal their (theoretical
as well as simulated) effect on coherence is small for
normal vibrato regimes. This allows carrying out signal-
coherence analysis for different playing regimes without
explicitly detecting or modeling their vibrato. The experi-
mental analyses in the paper are performed using a set of
sounds taken from McGill University Music Sound
Database [8].

2. Randomly modulated periodicity

A varying periodic signal with a RMP is defined as
follows:

Definition: A signal {x(t)} is called a RMP with period T

if it is of the form

xðtÞ ¼ K�1
XK=2

k¼�K=2

½mk þ ukðtÞ� expði2pf ktÞ for f k ¼
k

T

(2.1)

where m�k ¼ m�k, m�k(t) ¼ m�k(t), and E[uk(t)] ¼ 0
for each k and E is the expectation operation. The
K/2+1{uk(t)} are jointly dependent random processes that
represent the random modulation. This signal can be
written as x(t) ¼ s(t)+u(t) where

sðtÞ ¼ K�1
XK=2

k¼�K=2

mk expð2pf ktÞ; uðtÞ

¼ K�1
XK=2

k¼�K=2

ukðtÞ expði2pf ktÞ (2.2)

The periodic component s(t) is the mean of x(t). The
term u(t) is an unknown real valued zero mean non-
stationary process. The RMP model is (1) sufficiently rich
to describe the different amplitude and frequency mod-
ulations and (2) it allows simple characterization of
coherence in terms of signal power relations between
the mean and the modulation factors.

Suppose that we have M frames of the sampled process
x(tn) of length T ¼ Nt where tn ¼ nt and t is the sampling
interval. The variation of the waveform from one frame to
another is modeled in probabilistic terms by the joint
distribution of the samples {x(bm),y, x(bm+T�1)}, where
the start of the mth frame is bm ¼ (m�1)T for m ¼ 1,y, M.
The discrete Fourier transform (DFT) of this frame,
calculated at frequency fk ¼ k/T for each k ¼ 1,y, N/2 is

XðkÞ ¼ mk þ UðkÞ; where

UðkÞ ¼
XN�1

n¼0

uðtnÞ expð�i2pf ktnÞ (2.3)

To simplify the notation the index m is not used to
subscript the variables X(k) and U(k). The variability of the
complex Fourier amplitude X(k) about its mean mk is
E[U*(k)U(k)] ¼ su

2(k). If mk6¼0 and su(k) ¼ 0, then that
complex amplitude corresponds to a true periodicity. The
larger the value of su(k), the greater is the variability of
that component from frame to frame. If mk ¼ 0 then that
component does not contribute to periodicity at all.

In order to quantify the spectral variability we consider
the dimensionless function gk(k), called a SCF defined as
follows for each k ¼ 1,y, N/2:

gxðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmkj

2

jmkj
2 þ s2

u

s
(2.4)

If su(k) ¼ 0 and mk6¼0 then gk(k) ¼ 1. This is the case
when frequency component fr has a constant amplitude
and phase. If mk ¼ 0 then gk(k) ¼ 0. This happens when
mean component at that frequency is zero, which is true
for any stationary random process with finite energy. A
high-coherence value can be either due to large amplitude
|mk| or small standard deviation of the frequency compo-
nents regardless of their absolute values.

In the signal plus modulation-noise representation of
{x(t)} the signal-to-modulation-noise ratio (SMNR) is r(k)
¼ |mk|2su

�2 for frequency fk. Thus gx
2
¼ r(k)/[r(k)+1] is a

monotonically increasing function of SMNR. Inverting this
relationship it follows that

rðkÞ ¼ g2
x

1� g2
x

(2.5)

For example, a signal-coherence value of 0.44 yields a
SMNR of 0.24 which is �6.2 dB.

The RMP and the SCF are defined for an individual
signal where it measures the variability of X(k) about its
mean mk. This also differs from sinusoidal models of audio
signals [9] that try to represent individual signal wave-
forms rather than perform analysis of deviations from
periodicity. The SCF holds for AM, FM, phase modulation,
and situations when the carrier is broken when the
modulation’s amplitude exceeds the carrier’s amplitude.

The method is sensitive to the frame length used to
estimate the SCF. Coherence is lost if the frame length is
different from the fundamental period. In order to find the
period, a search over a range of SCF estimates for different
pitch values is performed and the strongest value is taken
as the SCF estimate. This method effectively removes the
sensitivity of the method to errors in pitch estimation.
This method will be described in more detail in the
experimental section, including additional aspects of the
algorithm such as using multiple periods in analysis frame
and zero padding before performing DFT.

It should be noted that the RMP method does not
distinguish between random and deterministic modula-
tions, both considered as unknown sources of variation. In
the paper we assess the influence of vibrato on SCF,
showing it separately from other sources of modulation
that might occur during sound production.

3. Estimating signal coherence

Recall that bm ¼ (m�1)T for each m ¼ 1,y, M. The
sample mean for each t ¼ 0,y, T�1

x̄ðtnÞ ¼ M�1
XM
m¼1

xðbm þ tnÞ (3.1)

is an unbiased estimator of s(t). Let X̄(k) denote the kth
component of the DFT of (x̄(0),y, x̄(T�1)). Let Ym(r)
denote the kth DFT component of (y(bm),y, y(bm+T�1))
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where y(bm+tn) ¼ x(bm+tn)�x̄(tn). The estimate of the
variance su

2(k) is ŝ2
u ¼ M�1PM

m¼1jYmðkÞj
2. The estimate

of gx(k) is the statistic ĝxðkÞ defined by

ĝxðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX̂ðkÞj2

jX̂ðkÞj2 þ ŝ2
uðkÞ

vuut (3.2)

It is shown in [3] that ĝxðkÞis a consistent estimator of
gx(k) for frequency fk with an error converging as O(M�1/2).
The expression X̄jX̄ðkÞjŝ�2

u ðkÞ can be used as an estimator
of the signal-to-noise ratio r(k) for frequency fk.

4. Period errors and average pitch estimation

The method of SCF estimation assumes that period of
the fundamental is known so that the frame size and its
appropriate DFT parameters could be set so as to match it.
In practice, the exact frequency of a musical note is
seldom perfectly known and often varies over duration of
the sustained note. Playing with the so-called ‘‘vibrato’’ is
considered as standard ways of producing a musical note
on some instruments for some pieces.

In order to address these issues of pitch uncertainty
and sensitivity of SCF to errors in period size we search for
the best SCF value over a range of possible period values in
order to refine the initial period estimate. Then we use
multiple periods in one analysis window to increase
the spectral resolution. Since the period is specified in
integer number of samples, using multiple periods
allows determining the period to precision of a fraction
of the sampling time step. Moreover since short-
term spectral analysis uses the DFT, changes in amplitude
occur when frequency components move away from the
DFT bin frequency fk. This change can be large, increasing
with the harmonic rank since the kth harmonic has a
vibrato depth that is k times greater than vibrato of the
fundamental.

Only integer number of samples can be used as a
period value. Accordingly, re-sampling helps find the
best SCF value by low-pass interpolation of the signal
values in the time domain, thus allowing sub-sample
precision in terms of the frequency resolution of the SCF
function.

We investigate in the next section the effect of
reduction in SCF due to pitch errors caused by determi-
nistic or random frequency deviations. Our results
indicate that pitch errors of the order of magnitude of
few percent are negligible at least for the first several
harmonics.

5. Influence of frequency modulation on signal
coherence function

The coherence analysis of the previous sections is
written out as a modulation component added to a
coherent narrowband sinusoid. Mathematically one can-
not distinguish between amplitude and phase modula-
tion. In fact the variations of conjugate positive/negative
components u�k(t) ¼ u*k(t) include variations both in
amplitude and phase. Since phase modulations, or more
precisely their derivative, cause frequency changes, the

model incorporates effects related to frequency deviations
as well. In this section we explore the effect of random
frequency deviations on SCF for a synthetic coherent
signal. In natural playing conditions the signal contains
quasi-periodic frequency deviation that could be generally
termed as vibrato. In such case we can not determine a
constant frame size that would match every period of the
signal, but we may still do so using longer frames that
correspond to multiple periods that deviate around
average signal period. This views the effect of vibrato
over a sufficiently long frame as a particular case of
periodic modulation, as described below.

Consider a pure FM signal

xðtÞ ¼ K�1
XK=2

k¼�K=2

mk expði2pf kð1þ IvkðtÞÞtÞ (5.1)

where vk(t) is a slowly varying unknown deterministic or
random process1 limited to the range [�1,1] and I is a
modulation index. Note that in our model the frequency
deviation is proportional to frequency of every harmonic.
We use the subscript k in the definition of vk(t) to allow for
separate deviations in every harmonic, although in most
practical situations it could be the same or highly
correlated process.

Using the index r rather than k the DFT of component
r is

XðrÞ ¼
N

K

XK=2

k¼�K=2

mkDk;IðrÞ (5.2)

where

Dk;IðrÞ ¼ N�1
XN�1

n¼0

expði2ptðk� r þ kIvkðtnÞÞ=NÞ (5.3)

is similar to Dirichlet kernel (with an additional multi-
plicative complex exponential) that reduces to Kronecker
delta function for very small modulation indices.

Assume first that vk(t) is a bandlimited random
deviation that can be approximated by piecewise constant
function. In other words, we assume that it remains
constant during the frame {x(bm),y, x(bm+T�1)}. Defining
yk,I(r) ¼ k(1+Ivk)�r, we rewrite it as

Dk;IðrÞ ¼ N�1
XN�1

n¼0

expði2ptnyk;IðrÞ=NÞ

¼ N�1 exp ipyk;IðrÞ 1�
1

N

� �� �
sinpyk;IðrÞ

sinðpyk;IðrÞ=NÞ
(5.4)

In order to evaluate the mean and variance values of the
r-th DFT component we assume that the deviation is small
relative to the spacing between the harmonics, i.e. we
shall limit ourselves to deviations that are less than the
width of the main lobe of Dk,I(r) so that

EðXðrÞÞ � EðDr;IðrÞÞmr (5.5)

ARTICLE IN PRESS

1 It should be noted that vk(t) does not have dimensions of

frequency. If we want to relate it to instantaneous phase deviations

fk(t), then vk(t) is the ‘‘mean’’ phase accumulation vkðtÞ ¼ t�1
R t

0 fkðtÞdt.
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EðXðrÞX�ðrÞÞ ¼
X

k

X
k0
mkmk0EðDk;IðrÞD

�

k0 ;IðrÞÞ

�
1

N2
m2

r E
sin2
ðpyr;IðrÞÞ

sin2
ðpyr;IðrÞ=NÞ

 !
(5.6)

Using the estimate of ĝxðrÞ given in (3.2) we obtain an
approximation to SCF for different values of modulation
parameters. One may note that for r ¼ k we have
yr,I(r) ¼ rIvr(t) and Dr,I(r) ¼ D1,rI(1).

The above derivation assumed that the modulation
vk(t) was random. A similar derivation also applies for
unknown deterministic function vk(t). In such case the
averaging of Dr,I(r) in Eqs. (5.5) and (5.6) is replaced by
integrating Dr,I(r) as function of yr,I(r) over a range of r and
I. Fig. 1 presents a graph of the theoretical evaluation of
ĝxðrÞ as a function of Z ¼ rI (that we call ‘‘vibrato depth’’),
obtained by numerical integration of Dr,I(r) over different
ranges of yr,I(r), i.e. as function of rI. This graph is
compared to experimental signal-coherence values ob-
tained from estimation of SCF calculated for 2000
instances of randomly modulated sinusoidal signal, with
frequency modulation randomly chosen according to
uniform distribution over the range [�rI rI]. Similar results
were obtained by using deterministic modulation, such as
sinusoidal frequency modulation with vibrato depth that
matches, in root mean square sense, to the variance of the
random modulation.

This graph can be used to evaluate the relative
reduction in signal coherence as a function of increasing
modulation index value I for a constant harmonic index r.
It should be noted that Eq. (5.6) could be considered either
as a function of harmonic index r for constant modulation
index I or as function of I for a given r. Accordingly, this
graph can be used to evaluate the reduction in signal
coherence as function vibrato depth or as a function of
harmonic index assuming a constant vibrato (i.e. modula-
tion index). For modulation index of 1%, the 20th
harmonic of a perfectly coherent signal can be looked up
from the graph at vibrato depth 0.2 and it will lose
coherence in the amount of less than 3% (coherence of the

20th harmonic is approximately 0.97). Harmonic number
50 that undergoes 50% modulation (vibrato depth 0.5)
drops in coherence to 0.87, and so on.

6. Analysis of music instrument signals

In order to evaluate SCF on real signals, we applied
coherence measure to instrumental sounds from the
McGill University Master Samples that have a well-
defined pitch during a sustained portion of their sounds.
As mentioned above, these sounds were produced by
natural playing, i.e. including vibrato and amplitude
modulations, as well as in presence of recording room
conditions (these are not anechoic room recordings).
Assuming that recording conditions were similar for the
different samples, we shall consider the relative changes
in SCF among pairs of sounds. In first experiment we shall
consider two Cello recordings playing a single note each,
one with and the other without vibrato. In the second
experiment we shall compare between SCF for sets of
samples drawn from flute and French horn instruments.
We shall compare the two sets in terms of the mean and
the variance of SCF for the different harmonics.

A particularly interesting case for SCF analysis is that of
the Cello. This instrument produces sounds through a
periodic bow excitation that passes through a complicated
resonance body. The analysis in Fig. 2 shows the wave-
forms and coherence analysis of an open-string Cello
sound, which is indeed very coherent.

In view of such a coherent open-string sound, it is
interesting to find that there is such a big difference in
coherence between open and stopped sounds, as pre-
sented in Fig. 2. In term of the theoretical results of
Section 3, the influence of frequency modulation on signal
coherence should have been a reduction of SCF only by
few percent. The Cello signal shown in Fig. 3 is played
with vibrato depth of approximately 5.6%, which is less
than a semitone deviation in pitch. Although in theory
there should be very little change in SCF, in practice
the signal exhibits a very significant loss of coherence.
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Fig. 1. Signal coherence as a function of vibrato depth.
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Fig. 2. Cello A3 open string (with no vibrato). Signal waveforms from several frames (top) and resulting coherence (bottom).
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Fig. 3. Cello C4 (with natural vibrato). Signal waveforms from several analysis frames (top) and resulting coherence (bottom).
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This finding suggests that vibrato causes additional
random modulations in the signal, reducing SCF beyond
the level expected from deviations caused by frequency
modulation alone. This finding is interesting in view of the
rigid resonance body of the Cello, which does not allow
strongly dynamic or interactive source-filter models.

We also performed SCF analysis for two sets of 20
sound clips each extracted from recordings of sustained
notes played on the flute and the French horn. Each set
was prepared by using recordings of 5 adjacent notes
(with semitone differences in pitch between adjacent
notes), with each note segmented into 4 sound clips of
approx. 226 ms. In order to avoid errors in estimation of
SCF due to imprecision of pitch estimators, we have
performed a search over a range of possible periods
around the theoretical frequency value of every note. To
assure high-resolution search we used larger frames that
contained 3 periods of the waveform. The signal was
further over-sampled, allowing even greater sub-sample
precision for period determination. For each sound clip an
SCF with maximal coherence over the fist 20 harmonics
was chosen as the final estimate, giving a total of 20
different SCF values for each instrument. Below (Fig. 4) we
present the modulated coherence graphs for flute and
French horn sounds, showing the mean and standard
deviation errors around the mean for the two sound sets.

These results indicate that there is a significant
difference between SCF of the two instruments over a
range of pitches. Comparing SCF of the flute to theoretic
SCF due to vibrato shows that an equivalent vibrato depth
of 10% is required to cause such reduction in SCF.
Considering the flute signal we find out that it was indeed
played with vibrato, but the pitch deviation did not exceed
1.6 Hz, which is only 0.6% (0.006) of the mean pitch. This
indicates that SCF of the flute is caused by additional
mechanisms than vibrato. Pitch analysis of the French
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horn shows practically no vibrato, a situation that is
confirmed by the high SCF values for the lower harmonics.
It should be also noted that a graph with standard
deviations for the Cello sounds could not be provided
since the sound database contains a single recording of an
open-string sound (A3).

Figs. 5 and 6 provide the time–frequency plots of the
flute and French horn recordings, respectively. The plot
shows the harmonics over time, with slight broadening
visible in the lower harmonics of the flute due to
modulation. It is evident that visual inspection of the
time-frequency plot does not reveal the MCF properties of
the signals. The plots were produced using a sliding
Hamming window of 4096 samples with 75% overlap
between successive windows. Sampling frequency is
44,100 Hz.

8. Conclusion

We applied a measure of the amount of variations that
occur in Fourier components of acoustic signals due to
unknown modulations that we call SCF. This measure is
based on a model of RMP that considers the residual
deviations of a signal after subtraction of a mean signal.
The mean signal is obtained by averaging of the signal
over multiple frames containing samples of individual
periods. SCF is evaluated in terms of power relations
between the mean and the difference signal.

Since this method is sensitive to errors in the period
estimation we analyzed the effect of frequency deviations
on SCF. We showed that reduction of SCF due to changes
in pitch only (including the case of unknown vibrato) is

relatively small for low harmonics and for normal playing
conditions. We use these results to discuss the differences
in SCF for real instrument sounds, suggesting that
reduction in coherence due to pitch deviations alone is
minor in comparison to other random modulations that
appear during signal production.

The MATLAB programs used to generate the examples
are available at http://music.ucsd.edu/�sdubnov/SigCoh.
The program Spectrum and its executable for computing
signal coherence is available on http://web.austin.utexas/
hinich
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