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Abstract

All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they
appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus
has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have
some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience.
Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly
modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic
periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes
and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-1352]. A method for detecting a RMP
whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper.
The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based
on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in
a standard waterfall spectrogram display.
«J 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the classic problem of detecting a
sinusoid in additive noise. Suppose that the
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discrete-time sampled signal is of the form y(tn) =
a cos(2nlotn + ())+ e(tn) where e(tn) denotes
the noise at time tn = nb where b is the sampling
interval. Assume that the amplitude a and phase
() of the sinusoid are unknown parameters. If
the frequency 10 is known and the null hypo-
thesis is that a = 0 then the standard test of
this hypothesis is to use the Fisher perio-
dogram test [I]. The periodogram of a block of
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the signal is

I IN-l IZ

I(k) = N ~ y(tn) exp( -2niktn)

where ik = kfT is the kth Fourier frequency and
T = Nb. In contrast for most signal processing
applications, such as sonar and radio astronomy, a
large peak at frequency f 0 in the periodogram is
assumed to be generated by a sinusoid in the signal
at that frequency if there is a credible reason for
the existence of a sinusoid at that frequency. In
other words the usual signal processing practice of
detecting sinusoids is not treated as a formal
statistical problem.

All signals that appear to be periodic have some
sort of variability from period to period regardless
of how stable they appear to be in a data plot. A
true sinusoidal time series is a deterministic
function of time that never changes and thus has
zero bandwidth around the sinusoid's frequency.
A zero bandwidth is impossible in nature since all
signals have some intrinsic variability over time.

In active sonar the outgoing acoustic pings are
virtually the same from ping to ping. But each
received sonar ping has some random modulation.
The amount of ping to ping variation in the receive
signal is surprisingly large. A passive sonar signal
has a lot of modulation due to the scattering and
reflections in the water.

Deterministic sinusoids are used to model cycles
as a mathematical convenience. It is time to
break away from this simplification in order to
model the various periodic signals that are
observed in fields ranging from biology, commu-
nications, acoustics, astronomy, and the various
sciences.

Hinich [2] introduced a parametric statistical
model, called the Randomly Modulated Periodi-
city (RMP) that allows one to capture the
intrinsic variability of a cycle. As with a determi-
nistic periodic signal the RMP can have a number
of harmonics. The likelihood ratio test for
this model when the amplitudes and phases are
known is given in [3]. In that paper, the detection
problem was structured around a simple null
(gaussian white noise) and a simple alternative
(a known sinusoid plus gaussian noise). The

main result was that the optimal detector for
this problem was a linear combination of the
periodogram and a matched filter. The Fisher
periodogram test was demonstrated to be sub-
optimal if there was prior knowledge of the
modulation.

In this paper we significantly extend this work
by addressing the more realistic (and complicated)
detection problem for a RMP whose amplitudes
and phases are, themselves, complicated random
processes. In contrast to the detection problem
presented in [3], the alternative process in this
paper is much more general. In fact this general-
ization is achieved by not actually requiring any
specification of the nature of the modulations
apart from requiring a joint density and finite
dependence.

2. A randomly modulated periodicity

A discrete-time random process x(tn) is an RMP
with period T = Nb and K harmonic frequencies
fk = kfT if it is of the form

2 K
x(tn) = So +NL [(Slk + Ulk(tn)) cos(2nfktn)

k=l

+ (SZk + UZk(t)) sin(2~htn)], (2.1)

where Slk and SZk are constants. The modulation
processes {Ull (tl), ... , Ul,N /Z(tn), UZI(tn), ... , UZ,N/Z
(tn)} are unknown random processes with zero
means, finite cumulants and a joint distribution
that has the following finite dependence property:
{Ujr(tl), ... , Ujr(tm)} and {uks(tD, ... , Uks(t~)} are
independent if tm + D < t; for some D and allj, k =
1,2 and r,s = I, ... , N f2 and all sample times. The
modulations increase the bandwidth of the signal
above the highest harmonic f K' Therefore, the
sampling frequency Ifb must be greater than twice
the highest frequency of the signal in order to
avoid aliasing.

Finite dependence is a strong mixing condition
[4]. If D ~ N then the modulations are approxi-
mately stationary within each period. Finite
cumulants, finite dependence and D~ N are the
only assumptions made about the modulations.
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(3.1)

(3.4)

The process can be written as x(tn) = s(tn) +
u(tn) where

2 NI2

s(tn) = E[x(tn)] = So + N 2.:)Slk cos(2nhtn)
k=1

+ S2k sin(2nf ktn)] (2.2)

and

2 NI2

u(tn) = N L [Ulk cos(2nhtn) + U2ksin(2nhtn)].
k=1

(2.3)

Thus s(tn), the expected value of the signal x(tn), is
a periodic function. The fixed coefficients Slk and
S2k determines the shape of s(tn). If Sll #0 or S21# 0
then s(tn) is periodic with period T. If Sll = 0 and
S21 = 0 but Sl2# 0 or S22# 0 then s(tn) is periodic
with period T /2. If the first ko - I Slk and S2k are
zero but not the next then s(tn) is periodic with
period T / ko.
The RMP model is superficially similar to an

AM or FM signal but the modulation amplitude
can be much larger than the amplitude of the
"carrier" (the mean periodicity). The bandwidth of
an RMP can be large. It is a type of spread
spectrum signal but it is generated by the
mechanism underlying the periodic process and is
not a communication signal for the applications
we have in mind such as active and passive sonar
signal processing.

3. Signal coherence spectrum

To provide a measure of the modulation relative
to the underlying periodicity, Hinich [2] intro-
duced a concept called the signal coherence
spectrum (SIGCOH). This SIGCOH concept is
extended in this paper to problem of detecting an
RMP in additive stationary noise.
Suppose that the observed signal is y(tn) =

s(tn) + u(tn) + e(tn) where s(tn) and u(tn) are
defined by expressions (2.2) and (2.3). Assume
that the additive noise e(tn) is strictly stationary
with finite dependence of span D and finite
moments. Thus the combined noise and modula-
tion signal K(tn) = u(tn) + e(tn) satisfies finite de-

pendence and is stationary within the observation
range.

For each Fourier frequency fk = kiT the value
ofSIGCOH is

ISkl2
jsd + (J~(k)'

where Sk = Sl,k + iS2,k is the amplitude of the kth
sinusoid, (J~(k) = EIK(k)12 and

N-I

K(k) =L (u(tn) + e(tn)) exp( -i2nhtn) (3.2)
n=O

is the discrete Fourier transform (DFT) of
K(tn) = u(tn) + e(tn)'
The amplitude-to-noise standard deviation is

Iski
pik) = (J,,;{k)

for frequency fk' Thus it follows that

2(k) y~(k)
Px = I- y~(k)'

Suppose that we know the fundamental period
and we observe the signal over M such periods.
The mth period is {y«m - I) T + tn), n = 0, ... ,
N - I}. The estimator of p;(k) introduced by
Hinich [2] is

-2(k) = IX(k)1
2

(3.3)
Px (J~(k) ,

- I Mwhere Y(k) = M- I:m=l Ym(k) is the sample mean
of Y m(m) = I:~:ol1J(m - I)T + tn) exp( -i2nf mtn)
and iJ~(k) = M-I I:m=l IYm(k) - Y(k)12 is the sam-
ple variance of the residual DFT Ym(k) - Y(k).
This estimator is consistent as M --+ 00.

If D ~ N where N = T/ b then the distribution of
(M / N)p;(k) is asymptotically X2 with two degrees-
of-freedom with a noncentrality parameter Ak =
(M / N)p~(k) as M --+ 00 [5].
These x~(Ad statistics are asymptotically inde-

pendently distributed over the frequency band.
Thus the distribution of the sum statistic

s=t M p;(k)
k=1 N

is approximately chi-squared Xk(A) where A =
2:f=, Ak for large values of M.
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These chi-squared X~(Ak) statistics and S are
used to detect the presence of a hidden periodicity
in the signal as shown in the next section.

4. Signal detection

Suppose that we observe a signal yUn). The null
hypothesis is yUn) = eUn) where the noise process
{eUn)} is strictly stationary. The alternative hy-
pothesis is yUn) = sUn) + uUn) + eUn). This alter-
native is a complicated non parametric stochastic
model. The standard optimal detection theory
does not apply to this alternative to the stationary
noise hypothesis.
Thus from the asymptotic results stated in the

previous section the distribution of (M / N)p~(k) is
approximately chi-squared X~(Ak) and S is approxi-
mately chi-squared xi(A) for A= 'Lf=l Ak when
the signal is present and is central X~ and xL
respectively for the null hypothesis of noise alone.
The cumulative distribution function of a

central X2 random variable is Fx(x) = Pr(x~ <x).
Thus it follows from basic probability theory that
under the null hypothesis U(k) = Fx(MN-1 p~(k»
has an approximately uniform (0, I) distribution
for each k. We call the display of the U(k) statistics
a signal coherence probability spectrum. These
probability values are also asymptotically inde-
pendent as M --+ 00.

This method has been implemented by Hinich in
a Fortran 95 program that is available upon
request. This simple test augments the standard
spectral method. In particular the S test statistic is
simple to compute and easy to automate. Further-
more, the signal model is realistic when compared
to the zero bandwidth harmonics underpinning
standard theoretical periodic models. Moreover,
the assumptions for the modulations are modest.
Only stationarity and finite dependence is assumed
for the additive noise process. There is no need to
assume that the noise is gaussian.
The assumption that the fundamental frequency

is known can be relaxed if there is a reasonable
belief that there is a RMP in the data within a
given band. In activating this procedure, the
investigator is essentially making a sweep of trial
fundamental frequencies over the band to find the

maximum value of S and its frequency f max' and
then computing the p-value tail probability of the
maximum. While this sweep method formally
violates the purity of hypothesis testing from a
practical perspective, if the p-value of the max-
imum S is small, say l.e-5, then any reasonable
person would assume that an RMP has been
detected with a fundamental frequency off max'
The next section presents simulation results that

show that this new method can detect weak RMP
signals that are missed by the standard waterfall
(spectrogram) approach used in sonar and certain
geophysical signal processing applications. The
simulations have to use precisely defined modula-
tion processes that have a reasonable number
of parameters. Making the simulations very
complicated renders the simulations useless for
making comparisons between alternative detection
methods.

5. Simulation analysis

The model used in the simulations is

2 K
xUn) = - I:[(I + (JuUlkUn» cos(2nhtn)

N k=l

+ (I + (JuU2kUn»sin(2nhtn)] + eUn) (5.1)

where the {UIlUl), ... ,Ul.N/2Un),U21Un), ... ,
U2,N/2Un)} are independently distributed random
variables with zero means and the additive noise is
pure white noise (i.i.d) with variance (J;. Thus the
parameters of this model are K, M, N, (Je and (Ju.
In sonar signal processing the hydrophone

signals are formed into beams by delay and sum
beamforming. The beam signals are blocked into
adjacent equal length sections of sampled data. A
periodogram is computed for each block and the
periodogram values are thresholded to eliminate as
many spurious peaks as possible and yet reveal
most peaks due to a sinusoid component. These
periodograms are stacked into a data structure
where the horizontal axis is frequency and the
vertical axis is the start time of the block. The
display of this data is called a waterfall display or a
spectrogram. A periodic signal will show up as a set
of harmonically related lines down the waterfall.



M.J. Hinich. P. Wild / Signal Processing 85 (2005) 1557-1562 1561

.0.99-1
1ll0.98-0.99

m0.97-0.98
t\10.96-0.97

nO.95-0.96
0.94-0.95

71

61

51 Ul
Gl

41
.!::!
iii
Gl

31 E
i=

21

11

1
3.0 3.5 4.0 4.4 4.9 5.4 5.9 6.4 6.8 7.3 7.8 8.3 8.8 9.2 9.7 10.210.711.211.612.112.613.1

Frequency Hz

Fig. I. RMP waterfall plot of normalized spectrograms-au = 20 and 0', = 0 and 0.95 <peak values < 1.0.

Fig. 2. Waterfall plot of signal coherence probabilities-O'u =
20 and 0', = 0 and 0.95 < peak values < 1.0.

In order to estimate the false alarm probability
and detection probability of the X2 S-based test we
ran 4000 replications using both a 1% and 5%

Frequency Hz

r-'-,+-",,-'1~r--'f--TI-'-
oo~oooo~
ON'<2'<occ:iON'<2' ~ ~ ~

Ul
Gl
.!::!
iii
Gl
E

31 i=

61

16

46

I. ,Ii

1

1

•.• :1•......•..1

.

I I
I

.0.99-1
I!lI0.98..<J.99
I!lI0.97..<J.98
wO.96..<J.97
wO.95..<J.96
0.94..<J.95

Fig. I presents a waterfall spectrogram plot of
75 consecutive blocks of M = 400 frames of length
N = 50 of artificial data generated by the model in
(5.1) with K = 2 harmonics, (Ju = 20 and (Je = 0
(no additive noise). The units for the signal were
chosen so that the fundamental frequency was
f 1 = 4 Hz and thus the two harmonics are f 2 = 8
and 12Hz. The periodograms were divided by the
maximum value for each block and the plot has a
floor off 0.95 and so only values in the interval
(0.95, I.) are shown. The modulation fuzzes the
waterfall lines but one can see that there is a
periodicity in the signal.
A waterfall plot of the signal coherence prob-

abilities for the same model is shown in Fig. 2.
This plot also has a floor of 0.95 for the
probabilities. The visual signal detection and
harmonic analysis is sharper than for the spectro-
gram plot.
Fig. 3 is a spectrogram waterfall plot of the

signal with an additive noise standard deviation of
(Je = 20 which yields a signal-to-noise ratio (SNR)
of -44 dB using the variances of the two frequency
bins around each of the three harmonic frequen-
cies. It is apparent from inspection of this figure
that the signal is not detectable in this plot.
Fig. 4 displays the waterfall plot of the signal

coherence probabilities for the -44 dB signal. It is
now evident that the signal is detectable in this plot.
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Fig. 3. RMP waterfall plot of normalized spectrograms-I, = 4Hz, CTu = 20, CT, = 20, SNR = -44dB and 0.95<peak values < 1.0.
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estimate and 5% estimate are 0.0016 and 0.0034,
respectively. Thus the estimates are not statistically
different from the target false alarm probabilities.
The estimated probability of detecting the

-44 dB signal (ue = 20) at the I% level is 0.483
for 4000 replications. The estimated probability of
detection at the 5% level is 0.709. These results
exhibit the power of the RMP test for detecting
realistic periodic signals in noise.
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Fig. 4. Waterfall plot of signal coherence probabilities-
II = 4Hz, (Ju = 20, CT, = 20, SNR = -44dB and
0.95 < peak values < 1.0.

threshold. For the null hypothesis of only noise the
estimated false alarm probabilities were 0.013 and
0.057, respectively. The standard errors of the 1%


