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The paper presents a method for passively tracking a moving target using a sequence of bearings from a 
surveillance platform. The key assumption for the method is that the target is moving at a constant speed on a 
fixed heading during the data acquisition period. This is the same assumption that is made for Ekelurid 
ranging. Parameter estimates are computed after bearings are taken as the t•acking platforms maneuvers. No 
specific maneuver by the tracking platform is required. The estimators presented in this paper are 
approximately maximum likelihood when the target is distant from the platform. 

PACS numbers: 43.60.Gk, 43.60.Cg 

INTRODUCTION 

This paper presents a method for estimating the co- 
ordinates of a moving target as a function of bearing 
direction eosines measured from a tracking platform. 
The parameter estimates are computed after .bearing 
measurements are taken during a period when the 
tracker maneuvers. One key assumption for the method 
.is that the target is moving at a constant speed on a 
fixed heading. This assumption is also made for Eke- 
lurid ranging. In contrast, our method does not require 
a specific maneuver by the tracking platform. Another 
key assumption, which is made for Ekelund ranging, is 
that the percentage variation in range is small during 
the observation time. This is a reasonable assumption 
for a distant target, but it precludes the use of closing 
tactics. 

I. DEVELOPMENT OF THE TRACKING PARAMETERS 

For a fixed coordinate system, tet xt(;) and xs(;) de- 
note the x coordinates of the target and tracker, re- 
speetively, at time t. Let yt(t) and ys(t) denote their 
y coordinates. Let B(t) denote the true target bearing 
at time t measured with respect to the y axis. For ex- 
ample, a target on the y axis would be at 0 ø or 180 ø. 
Then as seen from Fig. 1, 

sinB(t) = [xt(t ) - xs{t) ]/R(t) {la) 
and 

cosB(t) = [y t(t) - y•(t) ]/R(t), (lb) 

where R(t) is the true target range. 

Assume that the tracker uses a circular hydrophone 
array to detect acoustic waves radiating from the tar- 
get. Bearing information is usually obtained by delay- 
and-sum beamforming. Remember that the direction 
eosines sinB and cosB are needed to determine the de- 

lays used to steer a beam in direction B. Suppose that 
the beam angle that gives maximum signal energy dur- 
ing the integration time is /•. This is the estimate of 
the target bearing during the integration time. Let 
s(t) = sinB(t), c(t)= eosB(t), and õ{t) and •(t) denote the 
direction eosines corresponding to/•. They can be ob- 
tained from the beamformer's signal processor in the- 
ory, but conventional bearing trackers do not output 
these statistics. 

Levin, • and Hinich and Shaman 2 show that these esti~ 
mators of sinB and cosB are maximum-likelihood es- 

timators if the ambient noise is Gaussian and spatially 
incoherent. If the array gain is large, moreover, 

these estimators are approximately Gaussian, unbi- 
ased, and independent. For a circular array geometry, 
the variances of •(t) and •(t) are equal and are inverse- 
ly proportional to the energy signal-to-noise ratio 
(SNR). Expressions for the bearing and direction co- 
sine errors as a function of SNR, aperture, and the 
number of hydrophones is given by McDonald and 
Sehultheiss, a Clay et al., • and Hinich. s 

The analytic results presented below do not apply ff 
the direction eosines are estimated by sire0 and eos•, 
since they are not independent nor is their variance 
equal. Our method can be modified to handle these sta- 

tistics, but our task is to analyze trackers that may be 
employed in the future and thus we use optimal array 
processing methods. 

Suppose that the tracker estimates s'mB(t) and eosB(t) 
at discrete time points t,= nr, where ? is the integration 
time of the beamformer. The statistical expressions 
derived in the next section are simplified ff we set the 
time origin in the middle of the sampling period, i.e., 
let n assume integer values n = -(N- 1)/2,..., (N- 1)/2 
where N is odd. Thus the sampling interval is (N- Dr. 
Assume that r is selected to ensure that the estimates 
are uncorrelated over time. 

Several important assumptions will now be made about 
about the target motion and the SNR during the sampling 
period. First, assume that the target's velocity v t and 
its heading a t are constant. Thus, for -(N-1)/2, 
..., (•V - 1)/2, 

xt(t,) = xt( O) + vtt , sina r ( 2a) 
and 

yt(t,) = y•.(0) + vtt , cos a t . (2b) 

Second, assume that vtN, <<R{0) and vrN, <<R(0), 
where v• is the average speed of the tracker. This 
implies that the range R(t) is approximately constant 
during the sampling period. Now let R denote the av- 
erage range in the sampling period. Finally, assume 
that the SNR varies sufficiently slowly during this per- 
iod so that the SNR can reasonably be approximated by 
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FIG. 1. Platform and target geomergy. 

a constant. This implies that the variances of the di- 
rection cosines are approximately constant. This 
sumption will be relaxed in a later section. 

To simplify notation, select the time unit so that ?= 1 
and thus t,=n. It then follows from (1), (2), and the 
above assumptions that 

J(n) = R'Xxr(0) + (R'xvr sin •r)n - R'Xxs(n) + %(n), (as) 
and 

•(n) = R-tyr(0) + (R'xvr cos aa,)n - R'xya(n) + ca(n), (3h) 

where the errors have the followLng properties {for 
circular arrays whose gain is large): 

(1) ½,(n) and (½(n) are independent Gaussian random 
variables with a common variance denoted o •, 

(2) •(n) and %(n') [and %(n) and %(n')] are uncorre- 
lated for all nS n', 

(3) the expected values of these errors are approxi- 

mately zero if R(t)=R during the sampling period. 

Now, •(n), 2(n), xs(n) are observed for n= -(N-l)/ 
2, ...,(N- 1)/2. Hence the coordinates [xr(no) ,yr(na)] 
of the target at time no can be estinmted. 

II. LEAST-SQUARES ESTIMATES OF TRANSFORMED 
PARAMETERS 

The maximum-likelihood estimation of these target 
parameters is facilitated by the following transforma- 
tions: - 

a,= R'Xxr{O) , at,=/Cxyr{0), 
fi•= R'Xur sin• r , /1,= R'tur cosr• r , 

and 

b = -R -• . (5) 

Thus- from (3) 

•(n) = a, + l•,,n + bxa(n) + %(n) , (6a) 
and 

2(n) = a, + fir+ bya(n)+ ½½(n), (6b) 
for each n. Since the errors are Gaussian and have 

constant variance, the ordinary least-squ•res (OLS) 
estimators of a,, %, /3,, and/• are maximum liketi- 
hood? They atso have a joint Gaussian. distribution. 
The maximum-likelihood estimator of b is a weighted 

average of $, and •, the OLS estimators of b as com- 
puted from (6a) and (6b), respectively. The max[mum- 
likelihood estimators of the target coordinates are 
functions of these OLS estimators and are computed 
from the transforms defined in (4). These estimators 

are presented in Sec. In. Before presenting tl•e w, eights 
needed to compute •, the OLS estimators 
and their statistical properties are presented. 

The expressions for the OLS estimators of 
and b, are simplified ff the origin of the coordinate sys- 
tem is placed at the centtold of the platform's track 
during the sampling period. ff this is done, then 
Exa(•z) = Y. ys(n) = 0. The OLS estbnator of a, is 

a,= (?) 

Its variance is simply 

<,=N'Xg. 
Now define s(n)= õ(n) -•, where •=N'tZ•(n), the 

mean of •(n). The OLS estimators •, and $, can be ex- 
pressed in vector and matrix form as follows: 

Lznx.(. ] [ ](9) = gxa(ns(n) ' 

The sums are taken from n= -(N - 1)/2,..., (N - 1)/2. 
Thus 

•,= D'• • [Zx:s(n)Zns(n) - Znx•(n)•..xa(n)s(n)] , (10) 
and 

•),, = D;' [Zn:Zx a(n)s(n - ?.nx a(n) Zns(n) ] , (11} 
where 
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D. = Z.2Zx•(.) - [ZnXB(.) ] 2 . (12) 

From the triangle inequality, Dx= 0 if, and only •f, 
xB(n) is a linear function of n = •,. Thus D, ½ 0 • the 
tracker ½h•es co•se or speed dur• •e samplug 
peri•. 

The variance-covariance matr• of 

-- . (13) 
D• • -D•.(n) Dn • 

Thus the variances ot b• and • are 
•= • D• Zx.(n) , (14) 

and 

•= a•D•gn •. (15) 
It can be shown that •x is •correlated wi• •X •d •x. 

It shoed be obvious from (6•) and (6b) t•t theO• 
est•ators •, •, •d 
wi• y.(•) and •(•) 
= N'• •(n), 

•d 

• • = D] x [DnZDy.(n)c(n) - Zny.(n) Z.c(n) ] , (1•) 
where c(.)= 

Aga•, D• 0 if the tracker m•es a co•se or speed 
ch•ge. 

The est•ators •., •, and • are •dependent of •, 
•, and • since •e errors [•s(n)] are independent of 
[(e(•)]. It •en follows from statistical theory 
•e m•-l•el•ood est•ator of b, is the weighted 

averse (•+ •)'x(•g•x+ •;•). Thus 
• = (D.•.+ D•)/(D•+ D•) (19) 

and its var•nce is 

•: •(D,+ %)'•zn •. (•0) 
From (13) and (19), moreover, the covariance be•een 
• and • is -•(Dx+ D•)'x•.xs(.) and •e coratrance be- 

III. TARGET RANG E AND CooRDINATE ESTIMATES 
•ce•t • some spec•[ c•ses, •e v•[•ces o[ •e 

O• est•tors go [o zero as N- •. The rate a• which 
•is occurs is a f•ction of N •d depends upon the 
form of [XB(n),•,(n)], ke., the form of •e plafform's 
track. The variances also go to zero as vz, the vari- 
ance of •e bear• direction cos•e errors, goes 
zero. As is shown • •e follow•g theorem, •e m•i- 
m•-l•elihood est•ate of the range is biased ff Re, 
is not small. Ass•e then that N is s•ficiently •rge 
and • is s•fiCiently small so that R•b is small. 

Theorem 1. •= -(1/•) is the m•im•-l•elihood es- 
t•ator of R. The bias • • due to •e nonl•ear tr•s- 
formation of • is 

and its approximate root mean square error is 

rmse(•) = R•% + O(R3•), (22) 
where • is given by (20). Thus the bias is an order of 
m•nitude smaller th• the rinse when R% << 1. 

P•oof: • = b + • is the m•im•-likel•ood est•ztor 
of b = -R -•. ff f(b) is a cont•uously dffferentiable f•c- 
tion of b, then f(•) is the m•-l•el•ood est•a- 
for of f(b). Cons•uently, • is •he m•-l•elihood 
est•ator of R. 

The error % is Gauss•n •0, •). Thus E%= E(•= 0, 
E(•= Cb, •d E%= 3• b. S•ce 

R %+R %+''' , (23) 

it follows •at the e•ected value of }/R is 

S(}/a) = • + R• + O[(a•) 4] , (24) 
•d its me• sq•re error is 

mse(}/a) = a• + O[(R•)•]. (25) 
E•ressions (21) and (22) follow from (24) •d (25). 

Given }, the m•-l•el•ood est•ators of 
xr(u o) and 3r(Uo) c• easily be obeyed. Accurate es- 
timates of •ese •rget coord•tes r•uire that R% be 
small. 

Theo•e• 2. The m•l•elihood est•ators of 
[•g"o),•g"o)] •e 

}r("o) = }(a•+ "o•,), 
•d (26) 

They are •dependent. For large N, their distributions 
are zpprox•ately Gaussian wi• zero means and root 
mez• sq•re errors 

and 

. , ,gnx.(n) + :gx•(n\ "• 

rmse(•r) = R(Y (3 + y•(no).- /3, + D• 

Proof: Write a,= a,+ (,,, •,= p•+ %,, and 
•,• and %• are •eorre•ted Gaussi• errors. The er- 
ror % is corrected with %•. Apply (4) •d 
to ob• the follow•g l•ear approx•ation (• the er- 
rors): 

= (• + a•.) [•r(-o) + a% + 
•("o)+ a[%+•("o) q+"•%]. (2•) 

Apply (14), (20), •d the •ression for the covar•ce 
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between • and • to (27) to derive the expression for 
rinse (•). Derive the expression for rmse (•r) in a 
similar manner. 

IV. NONCONSTANT BEARING VARIANCE 

Now relax the restriction tlmt the SNR is constant 

during the sampling period. There are several meth- 
ods for estimating the SNR associated with a specific 
bearing estimate J. One method uses output from the 
beamformer. ff the noise field is isotropic in the sec= 
tor •-5<B<J+ 5, then the average of the energy in 
the beams spanning this 25 wide sector (excluding •) is 
an estimate of the noise field energy. Let e(5) denote 
this estimate. The energy in the J beam is an estimate 
of signal plus noise. Let e(j) denote this estimate. 
Then 

•= e(•)/e(5) - 1. (28) 
A somewhat mor e precise estimate uses the average 

of the coherence between pairs of sensor channels. To 
illustrate this method, let 9: denote the average esti- 
mated square coherence between two hydrophone chan- 
nels over the bandwidth of the signal. Then the SNR is 
estimated by 

% 

TARGET TRACK 

3.96 kyds. 

FIG. 2. Simulation geometry. 
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TABLE I. Results for the Ad Hoc Estimator when • = 19.8 
kyds, (r=0.2 ø. Maximum and minimum range during tracking: 
20.181 and 19.485; rmse(• T) =0.069, rmse(•r)=0.667. 

End of track Actual Mean Mean bias Stnd. dev. rmse 

}r(22) a 1,980 1.970 -0.011 0.092 0.092 
•r(22) a 19.800 19.785 -0,015 0,091 0.092 
/•r a 19.836 19.816 --0.020 0.895 0.895 
&•b 90.000 89.828 -0.172 0.549 0.575 
• c 0.360 0.359 -0.001 0.017 0.017 

a Distance measured in kiloyards. 
b Angles measured in degrees. 
c Velocities measured in kiloyards/minute. 

9/(1 -•), (29) 

if the noise field is spatially tincorrelated. 

The maximum-likelihood estimators are functions 

of the variznce of the direction cosines if these vari- 

ances change during the sampling period. Since the 
varim•ce depends on the SNR, it must be estimated 
every time a bearing is obtained if one desires to ap- 
proximate the statistical properties of maximum-like- 
lihood estimators. 

The adjustment for a changing error variance is easy 
using the linear model approach, i.e., use weighted 
least squares. s Simply divide the independent variables 
[n,xs(n) , and ys(n)] and the dependent variables [•(n) 
and O(n)] by the estimated variance for each n. Since 
the variance is inversely proportional to the SNR given 
a narrow-band signal, the adjustment is made by multi- 
plying the variables by b(n), a consisteat estimator of 
the SNR at time t= nt. All the expressions for the es- 
timators and their properties given in the previous 
sections hold ff n, xs(n), Ys(n), õ(n), and •(n) are 
mu/tiplied by •(n). If the true SNR for each n were 
known, then the adjusted estimators would be maximum 
likelihood. 

It is important to remember that • is an estimate of 
the SNR and not the true SNR for any type of estimator. 
The error inherent in • increases the error in the pa- 
rameter estimates. Consequently, it is generally bet- 
ter to use the ordinary least squares approach rather 
than weighted least squares (the multiplication adjust- 
ment) when the SNR is slowly varying during the sam- 
pling period. 

TABLE II. Results for the Ad Hoc Estimator when • = 19.8 
kyds, (r=0.4 ø. Maximum and minimum range during tracking: 
20.181 and 19.485; rmse(œr)=0.138, rmse(•)=1.334. 

End of track Actual Mean Mean bias Stnd. der. rinse 

}•(22) a 1.980 1.983 0.003 0.207 0.207 
•t(22) a 19.800 19.909 0.109 0.137 0.175 

R•/,• 19,836 19,941 0.105 2,017 2.020 
•r 90.000 89.833 --0.167 1.059 1.073 
•r c 0.360 0.361 0.001 0.038 0.038 

Distance measured in kiloyards. 
Angles measured in degrees. 
Velocities measured in kiloyards/minute. 
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TABLE Ill. Results for the AdHoc Estimator when •=39.6 
kyds, c=0.2 ø. Maximum and minimum range dieting tracking: 
39.951 and 39.281; rinse(} r) =0.138, rmse(• r) =2.653. 

End of track Actual Mean Mean bias Stnd. dev. rinse 

}•,(22) a 1.980 1.980 0.000 0ø208 0.208 
•,(22) a 39.600 39.712 0.112 0.137 0.176 
-•2' a 39.618 39.725 0.107 3.983 3.985 
•T b 90.000 89.873 -0.127 1.120 1.127 
Jr c 0.360 0.361 0.001 0.037 0.037 

Distance measured in kiloyards. 
Angles measured in degrees. 
Velocities measured in kiloyards/minuts. 

The following ad hoc compromise between ordinary 
least squares and weighted least squares estimation 
may provide a more robust estimation method. The 
compromise rejects a bearing estimate if its estimated 
SNR is below some threshold value. Suppose, for ex- 
ample, that the SNR for •(2) and •(2) is below the 
threshold. Then delete s(2), c(2), xs(2) , ys(2), and 2 
from the sums in the expressions for •, •, $x, and $•. 
The target parameters are estimated from those bear- 
ings whose SNR exceed the threshold, using the ordi- 
nary least squares approach. 

V. SIMULATION 

It is assumed the target is moving at a constant ve- 
locity of 90 yds/15 s or 0.36 kyds/min on a fixed head- 
rag. For convenience, the tracker's speed is set at the 
same rate. 

Upon observing the target, the tracker begins a cir, 
cular tracking maneuver. The radius of the circl• is 
such that the tracker completes two circles during the 
tracking sequence with a velocity of 0.36 kyds/min. 
This particular track was chosen for several reasons. 
First, it is symmetric. That is, one circle is com- 
pleted in each half of the trac. king sequence. Thus the 
centroid of the tracking sequence is the origin of the 
coordinate system. Second, the track of two circles 
yields two estimates of the target's direction cosines 
at each point where the tracker Lakes a reading. This 
enables the OLS routine to more accurately estimate 
the target's heading since any difference in the two es- 
timates of the target's bearing is due to a change in the 
target's position. And finally, a circular track mini- 
mizes the expected variance of the target's range for 

TABLE IV. Results for the Ad Hoc Estimator when .•=39.6 

kyds, a =0.4 ø. Maximum and minimum range during tracking: 
39.951 and 39.281; rmse(•T)=0.276, rmse(•r) =5.306. 

Endof track Actual Mean Mean bias Stnd. der.. rinse 

} 2,(22) a 1.980 2.048 0.068 0.471 0.475 
•.(22) a 39.600 41.085 1.485 0.206 1.499 
R•a 39.618 41.101 1.483 9.194 9.313 
&2- b 90.000 89.954 -0.046 2.188 2.189 
•r c 0.360 0.373 0.013 0.086 0.087 

Distance measured in kiloyards. 
Angles measured in degrees. 
Velocities measured in kiloyards/minute. 

TABLE V. Results for the Ad Hoe Estimator when •=18.1 
kyds, (• = 0.2 ø. Maximum and minimum range during tracking: 
19.933 and 16.462; rmse(•T)=0.016, rmse(•)=0.505. • 

End of track Actual Mean Mean bias Stnd. dev. rinse 

•2,(22 ) a 0.000 --0.063 -0.063 0.019 0.066 
•(22) a 16.371 18.712 2.342 0.041 2.342 

•r; 18.122 18.698 0.576 0.796 0.982 
(• 150.000 86.837 -63.163 1.094 63.173 
•, c 0.360 0.169 -0.191 0.008 0.191 

Distance measured in kiloyards. 
Angles measured in degrees, 
Velocities measured in kiloyards/minute. 

a smooth track when the tracker has no prior know- 
ledge of the target's heading. We set N= 45 in our sim- 
ulations, and thus the radius of the circular track is 
0.322 kyds. The tracker, therefore, travels 3.96 kyds 
after having first observed the target taking an obser- 
vation every 15 s or every 90•yds. 

The simulation program calculates •(n) = c(n) + •uc(n) 
and •(n)= s(n)+ 6us(n) for n= -22,..., 22 where [uc(n)] 
and [u•(n)] are computed by the pseudorandom Gaussian 
N(0, 1) generator GGNML in the ISML library. The 
seed value is advanced after each variate is generated 
so that the variates are independent. These statistics 
are used to estimate the range and {xr(22),yr(22)}, the 
target's coordinates at the end of the track, according 
to the formulae in this paper. Four hundred simula- 
tions are made fo• each set of parameter settings. 

At first we set a•, = 90 ø and centered the track so that 
x:,(0) = 0 (Fig. 2). After analyzing the results for R(0) 
= 20 kyds and •= 0, we discovered that the approxhna- 
tion (6b) for cos B was poor for this geometry due to 
insufficient variation in yT(n)-yr(n). The computed 
values of -b• and • were too small, but a• is accu- 
rate. To protect against this misspecification, we 
modified the estimator of b by selecting the larger of 
-$, and -•, which was always -• for the runs sum- 
marized in Tables I-IV. 

Table I presents the mean, bias, standard deviation, 
and root mean square error of • = -• for •= 0.2 ø and 
an average range of 19.8 kyds. These results are much 
better than those for the weighted estimator -•'•, which 
has a bias of 17 Ivyds and a standard deviation of 2.3 
kyds. The weighted estimator consistently overesti-' 

TABLE VI. Results for the Ad Hoc Estimator when • = 18.1 
kyds, a = 0.4 ø. Maximum and minimum range during tracking: 
19.933 and 16.462; rrnse(•T)=0.032, rmse(2•T)=1.009. 

End of track Actual Mean Mean bias Stnd. der. rmse 

•:r(22) a 0.000 -0.062 -0.062 0.039 0.073 
•r(22) a 16.371 18.814 2.444 0.059 2.445 
•ra 18.122 18.801 0.679 1.788 1.913 
•l. b 150.000 86.847 -63.153 • 2.128 63.189 
•r c ' 0.360 0.170 -0.190 0.018 0.190 

a Distance measured in kiloyards. 
b Angles measured in degrees. 
c Velocities measured in kiloyards/minute. 
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TABLE VII. Results for the Ad Hoe Estimator when • = 37.9 
kltds, •r=0.2 ø. Maximum and minimum range during tracking: 
39.667 and 36.261; rmse(2r)=0.034, rmse(•r)=2.319. 

End of track AeO•al Mean Mean bias Stnd. der. rinse 

22.(22) a 0.000 -0.030 -0.030 0.038 0.048 
•r(22) a 36.171 38.644 2.474 0.058 2.474 

' •2'• 37.903 38.633 0.730 3.763 3.833 
&r 150.000 88.351 -61.649 2.231 61.689 
•r c 0.360 0.176 --0.184 0.019 0.185 

Distance measured in kiloyards. 
Angles measured in degrees. 
Velocities measured in kiloyards/minute. 

mated the range in the runs we made. 

In addition to R, xr(22), a•d yr(22), •we estimated vr 
and mr. We used 
+j•)]'/•. The asymptotic rmse value of x• ahd yT are 
also computed. 

Table I shows the results when the direction cosine 

errors are doubled from 0.2 ø in Table I, to 0.4 ø. The 
doubling of the errors approximately doubles the 
rmse's of all the estimated variables. 

Table III presents the simulation results when the 
range to target is doubled but the bearing errors are 
0.2 ø . With'the exception of the estimated range, the 
rmse's of the estimates are approximately equal to 
those obtained when the errors were doubled. Increas- 

ing either the range to target or the errors on the bear- 
ing estimates by a multiplicative constahl, k, increases 
the bias by approximately k. This empirical relation-' 
ship does not hold for the estimated range. Although 
the rmse of the estimated range does approximately 
double when the bearing errors are doubled, it in- 
creases by approximately a factor of 4 when the range 
to target is doubled. 

The calculated rinse values of •(22) and/• are of the 
order of magnitude of their theoretical limits. The 
small rinse values'fort •r(22), •¾, and 9r are mislead- 

' ing since • 0 results from the small variation of 
yr(n) -ys(n), not because/•= 0. The poor fit of (6b) 
causes biases when •r• 0. 

To provide some insight into these biases, we made 
ot•= 150 ø but started the target at the same position as 
before. The results for •= 0.2 ø and 0.4 ø are shown in 

Tables V-VIIL The estimates of y•.(22), =r, and v• 

TABLE VHI. Results for the Ad Hoe Estimator when •=37.9 
kyds, •r=0.4 ø. Maximum and minimum range during tracking: 
39.667 and 36.261; rmse(•r)=0.067, rmse(•r)=4.639. 

End of track Actual Mean Mean bias Stnd. der. rinse 

22-(22) • 0.000 -0.032 -0.032 
•(22) a 36.171 39.899 3.728 
R2• 37.903 39.891 1.988 
&r h 150.000 88.503 -61.497 
•r c 0.360 0.182 -0.178 

Distance measured in kiloyards. 
Angles measured in degrees. 
Velocities measured in kiloyards/minute. 

0.081 0.087 

0.086 3.729 

8.584 8.811 

4.405 61.654 

0.042 0.183 

are biased but the results for • are good.. 
Further work with more realistic scenarios is needed 

to determine the value of our approach in future passive 
tracking systems. Our range estimator gives good re- 
suits for the simulations we performed. 
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