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The maximum-likelihood estimator for passive range and depth estimation of an acoustic point 
source in a shallow-water waveguide is presented. The data from a vertical array of 
hydrophones are passed through a modal filter, the output of which is the set of complex 
modal amplitudes associated with the normal-mode model of acoustic propagation. The range 
and depth estimates are then found by a maximum-likelihood estimation procedure that uses 
these modal amplitudes as inputs. This technique is compared to the matched-field procedure 
and is shown to have better signal-to-noise and sidelobe behavior for a given scenario. Results 
are given for both synthetic and real data. The results with the real data demonstrate the 
importance of the mode-filtering property of the maximum-likelihood estimator presented in 
this work. 

PACS numbers: 43.60.Gk, 43.30.Jx, 43.30.Wi 

INTRODUCTION 

The idea of including environmental information within 
the sonar signal processing scheme has been put forth on 
several occasions. In the case of shallow-water passive local- 
ization, the problem has become tractable due to the exis- 
tence of sophisticated propagation models coupled with the 
advent of modern computer technology. In 1973, Hinich 1 
used the normal-mode model of propagation to develop the 
maximum-likelihood estimator for the depth of a point 
source using the data from a vertical array of hydrophones. 
This was probably the first time that a sophisticated propa- 
gation model was used for source localization. Later, 
Bucker 2 proposed a scheme that has become known as 
"matched-field processing." Here, a search is made over for- 
ward solutions of the propagation model, where each solu- 
tion assumes a particular source location. The estimation 
process consists of comparing these solutions, each of which 
constitutes a prediction of the field received on the measure- 
ment array, to the measured field. Bucker's method of mak- 
ing this comparison effectively consists of forming the inner 
product between the measured and predicted vector of array 
outputs. The squared magnitude of this estimator is then 
plotted on a range-depth map where the coordinates of the 
maximum constitute the estimate of the range and depth of 
the source. Various versions of this approach have been put 
forth. 3'4 More recently, direct inversion techniques have 
been investigated. 5-7 These approaches are based on normal- 
mode theory, which allows a set of linear equations in the 
modal amplitudes to be written that can be directly inverted. 
These amplitudes contain the range and depth information 
that must then be extracted as a second step. This second 
step can of course be cart led out by a forward search just as 
in the matched-field method; the difference being that the 
direct inversion approach allows mode filtering, since the 
modal amplitudes are solved for directly. 

•') Presently at: Naval Underwater Systems Center, Code 0IV, Newport, RI 
02841. 

In' both the matched-field and direct inversion ap- 
proaches, the scenario usually, but not necessarily, consists 
of a vertical array of hydrophones that samples the vertical 
structure of the field. The application of the model can then 
be viewed as being equivalent to the introduction of a 
matched beamformer, i.e., a beamformer that differs from a 
standard plane-wave beamformer in that it matches the con- 
figuration of the field peculiar to the particular acoustic 
propagation conditions. 
•- It should be pointed out that although the matched-field 

techniques can involve prohibitively large computation 
times, since they must reeompute the field for each assumed 
source location, they offer the luxury of allowing propaga- 
tion models of any desired degree of complexity, such as 
range-dependent models, whereas the direct-inversion tech- 
niques are based on the linearity of the modal equations and 
thus are basically limited to the range-independent case. 
However, since the direct inversion techniques essentially 
constitute a modal filter, they allow solutions to be carried 
out using as many or as few modes as desired. This can be an 
important advantage since numerical studies have shown 
that errors in the assumed value of the sound velocity profile 
assumed for the model can impact the modes in diverse 
ways, depending on the nature of the error? 9 

In this article we wish to address the question of the 
estimator itself. In particular, we show that, given the nor- 
mal-mode model of propagation, the maximum-likelihood 
estimator of the range and depth of the source follows direct- 
ly. The inversion of the modal equations leads directly to a 
maximum likelihood estimator of the range and depth. This 
basically constitutes a generalization of the work of Hinich • 
in which the maximum-likelihood estimator of the depth 
only is treated. In See. I the maximum-likelihood estimator 
is derived. In Sec. II a numerical example is presented in 
which the performance of the maximum-likelihood estima- 
tor is evaluated, for a particular scenario, for several values 
of the signal-to-noise ratio (SNR). Also a comparison is 
made between the maximum-likelihood estimator and the 
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matched-field estimator. In the last part of See. II the experi- 
mental results are presented. Section III contains a general 
discussion of the results along with comments on some of the 
theoretical aspects of the technique. 

I. MAXIMUM-LIKELIHOOD ESTIMATOR 

The scenario for the problem is as follows. An acoustic 
point source, located at depth Zo below the surface, is radiat- 
ing acoustic energy at circular frequency •0. The source is 
located at range r from a vertical array of N hydrophones. 
The acoustic propagation is assumed to be accurately de- 
scribed by the normal-mode model with Mbeing the number 
of modes being supported by the channel. The acoustic pres- 
sure at the nth hydrophone is then given by 

M elktar + iO 
p(z,t) = b e i•' • Z,, (Z)Zm (Zo) •, (1) 

rn = ! •m 1' 

where k,• is the horizontal wavenumber associated with the 
ruth mode. The modal functions are assumed normalized 

such that 

o•p (z)Z• (z)dz = l. (2) 
Here, p (z) is the density of the water at depth z (measured 
from the surface) and h is the depth of the water. The quanti- 
ty b is a scaling parameter the square of which is proportion- 
al to the signal power and 0 is an arbitrary phase term that 
must be removed by normalization. 

The complex Fourier amplitude at frequency to, using 
Eq. (1), is found tobe 

M 

y(z) = b 5: Z., (z)Z,. (Zo) 
e#•mr + iO 

q7 n(z), (3) 

where n(z) is additive noise. It is assumed that the noise is 
expressible as a modal expansion with random coefficients. to 
That is, 

M 

n(z) = (4) 
m 

The e,• are assumed to be independent complex Gaussian 
random variables with zero mean and complex variance o•. 
This means that the real and imaginary parts of e,, are inde- 
pendent Gaussian variates with means of zero and variances 
equal to ca,,/2. This representation of the noise is based on 
the crucial implication of normal mode theory for propagat- 
ing waves that any received signal is a linear combination of 
the normal modes. The e•, of course, could obey different 
statistics, but this would depend upon whatever physical 
noise model was assumed. Lacking any particular noise 
model, these statistics are not unreasonable. In this regard it 
should be emphasized that the assumption of independence 
is not crucial to this development. 

Now suppose thaty(z) is sampled at points z,, 1 •n<N. 
Equation (3) then can be written as 

y =Z(.• + e), (5) 

where 

y = [y(Zl)ty(Z2),...,.¾(Z•/) ] T, (6) 
e= [e•,e• ..... e•]r, (7) 

IZ •ik,r + iO ffik•r + iO fi= b i(Zo)--,Z2(zo) .... , 

eik •r + iO • T 
'l ' (8) 

and the m, n element of Z is given by Zm (Z,); l<n<N, 
1 <m <M. We now define x via the pseudoinverse operation 
as 

x = (zrz)-•zry, (9) 

where x is an M-dimensional vector given by 

x =/3 + e. (10) 
At this point a few comments are in order. Equation (9) 

can be recognized as a form of the normal equation. Thus the 
vector x can be considered to be a least-squares estimate of 
the vector of modal amplitudes. For our purposes, however, 
it is to be considered simply as a linear transformation that 
effectively resamples the data in order to reduce their num- 
ber to be equal to M, the number of degrees of freedom, i.e., 
the number of modes. Also, the transformation connects the 
covariance matrix in hydrophone space to that in modal 
space. Because of the statistics assumed for the noise model, 
the expected value of ee r is diagonal whereas the expected 
value of ZeerZris not. If the problem is not overdetermined, 
i.e., if N= M, the term (ZrZ) - •Zr simply reduces to Z- •. 
From a practical standpoint, Eq. (9) is a critical step in the 
solution of the problem since it contains a matrix inversion. 
Thus any sampling problems arising from improper hydro- 
phone spacing or insufficient aperture can result in problems 
of ill-conditioning. Also, it is at this point that the noise rep- 
resentation given by Eq. (4) can be appreciated, since it 
leads directly to the form ofy given by Eq. (5). In general, 
with other noise representations, e would not be a vector and 
thus the form of Eq. (9) would not be preserved. Hence, any 
algorithm based on Eq. (9) would break down. 

Since the e,, are independent complex Gaussian variates 
with complex variance oa,•, the maximum-likelihood estima- 
tors of r and Zo are solutions of the weighted least-squares 
problem given by 

• x,, -- bZ• (•o) • ,, = min. (11) 

Here, x• is the ruth element of x. The variances could be 
measured in the absence of any sufficiently comprehensive 
knowledge of the noise field. Of course, Eq. ( 11 ) could be 
evaluated as an unweighted least-squares problem, at the 
cost of some degradation in performance, thereby eliminat- 
ing the need for the noise variances. 

In the evaluation of Eq. (11), x, and bZ• 
X (•o)e&"?/kx/• must be normalized both in magnitude 
and phase. This was done in practice by normalizing to the 
first-order mode. Normalizing in this manner, x• and 
bZ• (•o)d•'*/k•? both equal unity. 

Let L (zo, r) denote the logarithm of the likelihood rune- 
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tion for the model. Denoting the expected value of x,, by 
b/tm, we have 

ik r 

= zm (Zo) (em / x/k-7r ) (12) 
ß and 

M 

-- 2L(zo, r) = Mlog(2rr) + 2 • 

I(xm-b)l 2 
+ • O•r, , (13) 

which for our purposes can be written as 

2L = const-- • oa,, (14) 
The Fisher information matrix elements are given by 

Ill a2L g b2 fZ• (zø)•2 

oqZL 

I12 • I21 m 

m_,•k•lPml211 + Otr-•)] 
(16) 

t9L 1 •t b 2 Z•,(Zo ) 

(17) 

where Z •, (Zo) = 8Z,,, (z)/Sz evaluated at z = Zo. The vari- 
ance--covariance matrix for the parameter estimates ? and •o 
has a lower bound given by the relationship 

vtS[•v> vtl- • (Zo, r) v . (18) 
In Eq. (18), r and z o are the true values of these parameters. 
The matrix Z• is the variance-covariance matrix, I is the 
Fisher information matrix, and v is a nonzero weighting ma- 
trix. It can be shown that the estimators ofz o and r are effi- 
cient and therefore the equality in Eq. (18) obtains in the 
limit as N-. oo. When evaluating the Fisher matrix, an esti- 
mate of the value of the scaling constant b can be directly 
computed from the log-likelihood function L, which is linear 
in this parameter. The solution is given by 

M Re[Xmlt. m b= •"'=' (19) 

The asterisk designates the complex conjugate. 
As mentioned in the Introduction, the estimator usually 

used in studies of this type is the matched-field estimator 
that we designate as E,•f and-is given by 

g•f = ly,'y•l 2 . (20> 
Here, Ya is the vector of measured hydrophone data and y, is 
the vector of hydrophone data as predicted by the model. 
The dagger designates complex conjugate transpose. In Eq. 
(20) it is assumed that y, and Ya are normalized. Note that if 
Eq. (20) is averaged, it can be written as 

E•r = Y•RYa, (21) 
where R is the covariance matrix of the data. 

II. NUMERICAL AND EXPERIMENTAL RESULTS 

A numerical and experimental study was carried out for 
a particular scenario, the configuration of which is depicted 
in Fig. 1. A vertical array of 32 hydrophones with 2-m spac- 
ing is located at a distance of 7.4 km from a 190-Hz acoustic 
source that is positioned at a depth of 50 m. The depth of the 
ocean is 103 m. The top hydrophone of the array is located 
30 m below the surface of the ocean. The propagation condi- 
tions support nine modes. Thus M = 9 and N = 32. 

The experimental data were taken in the Mediterranean 
Sea just north of the island of Elba, where the bottom is 
sufficiently flat and smooth to allow the propagation to be 
modeled as a parallel-plane waveguide and the bottom con- 
ditions are known. The sound velocity profile was pressure 
dominated (isothermal) since the experiment was carded 
out in late winter. The sound velocity profile and bottom 
parameters are tabulated in Table I. 

The numerical study was based on synthetic data gener- 
ated by SNAP, the SACLANT Centre's normal-mode mod- 
el. • • Noise was added to these data by drawing realizations of 
Gaussian random variables with a given variance from a ran- 
dom noise generator. The noise variance was defined by 

o•., = Ibltm I•/SNR, (22) 
where SNR is a signal-to-noise ratio to be specified. With 
this definition of variance the noise power per mode is pro- 
portional to the signal power per mode. Clearly, other forms 
for the noise variance could have been assumed. 

Vertical receiving array of 
32 equally spaced hydrophones 

o 

d=103 rn FIG. 1. Source-receiver configuration as used 
in the experiment and in the numerical example. 
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TABLE I. Acoustic channel parameters. 

Sound velocity profile in water 
Depth (m) Velocity (m/s) 

0.0 1503.0 

5.0 1503. I 

10.0 1503.2 

15.0 1503.3 
20.0 1503.4 

103.0 1504.7 

Sound velocity profile in bottom layer 
Depth (m) Velocity (m/s) 

0.0 1598 
0.1 1598 
0.2 1523 
1.6 1538 
2.5 1553 

Compressional velocity in layer = 1598 
Density of layer ---- i.84 g/m 3 
Compressional attenuation -- O. 15 d B/A 

The results of the numerical study are shown in Figs. 2- 
8. It should be pointed out that in the plots for the case of the 
maximum-likelihood estimator, the data have been inverted 
so as to show the minimum of the log-likelihood function as 
the maximum on the plot. This inversion was effected by 
dividing all 1he data into the minimum. Figures 2-4 show the 
results for SNR values of 0, 10, and 20 dB, respectively. 
Figure 5 is an example of the unweighted case, i.e., 
= constant, for the 0-dB case. Clearly, the weighting has a 
significant effect here. However, at higher SNR values, the 
weighting had no significant effect. The results for the 
matched-field estimator are shown in Figs. 6-8, which corre- 
spond to SNR values of 10 dB, 20 dB, and the no-noise case 
(SN R = oo ). These data are not inverted as in the case of the 
maximum-likelihood estimator since we seek the maximum 

FIG. 3. Inverted log-likelihood surface for the case of SNR ---- 10 dB. The 
maximum indicates the minimum of the log-likelihood function. 

of the matched-field estimator directly. It should be noted 
that the threshold in these plots has been elevated. This was 
necessary due to the poor sidelobe behavior of this estimator. 
With lower thresholds, the maximum was not easily dis- 
cerned from the plot. 

In Fig. 9 the experimental results for the maximum- 
likelihood estimator are shown. Here, as in the other maxi- 
mum-likelihood plots, the data have been inverted. In this 
plot only the first seven modes have been included. There 
were no solutions using •ither eight or all nine modes. Simi- 
larly, wilh the plots of the matched-field results, the thresh- 
old has been elevated in order to clarify the plot. There were 
no successful solutions using the matched-field estimator. 
However, there were also no successful solutions using the 

oø1 

FIG. 2. Inverted log-likelihood surface for the case of $NR -- 0 dB. The 
maximum indicates the minimum of the log-likel,hood function. 

FIG. 4. Inverted log-likelihood surface for the case of SNR = 20 dB. The 
maximum indicates the minimum of the log-likelihood function. 
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FIG. 5. Inverted log-likelihood surface for the case ofSNR = 0 dB and no 
weighting, i.e., o•m = constant. The maximum indicates the minimum ofthe 
log-likelihood function. 

FIG. 7. Value of the matched-field estimator for the case ofSNR = 20 dB. 

The threshold has been elevated for clarity. 

maximum-likelihood estimator when the top two modes 
were not filtered out. Therefore, the failure of the matched- 
field estimalor to produce an experimental solution probably 
was due to the deformation of the array, since it has been 
shown that array tilt can have disastrous results. a 

III. DISCUSSION 

It seems clear that, at least for this scenario, the maxi- 
mum-likelihood estimator outperforms the matched-field 
estimator. Although this is true in regard to the behavior as a 
function of signal-to-noise ratio, the major difference 
between the two estimaters is in their sidelobe behavior. 

Some investigators have shown that this sidelobe problem 

FIG. 6. Value of the matched-field estimator for the case of SNIR ---- 10 dB. 

The threshold has been elevated for clarity. 

can be dealt with by preprecessing the data with a high- 
resolution beamforming process. 3'4 However, this requires 
an accurate knowledge of the noise covariance matrix, where 
the maximum-likelihood approach presented here gives 
good results even when the noise covariance matrix is un- 
known. 

The effect of the weighting by the variances on the maxi- 
mum-likelihood estimator for low values of SNR is clearly 
significant. This would have been expected on the basis of 
the values of the variances that vary over quite a large range. 
This can be seen from Table II in which the modal ampli- 
tudes are tabulated. Since the variances are proportional to 
these modal amplitudes, their values are equal to the var- 
iances for SNR = 1. 

FIG. 8. Value of the matched-field estimator for the case of no noise 

(SNR = oo ). The threshold has been elevated for clarity. 
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FIG. 9. Inverted log-likelihood surface for the case of experimental data. 
The maximum indicates the minimum of the log-likelihood function. In this 
case only the first seven modes are included m the calculation. 

In order to gain some insight into the curvature of the 
log-likelihood surface, the Fisher information matrix was 
evaluated for the case of SNR = 0 riB. The results are given 
in Table III. Here, we see two interesting properties. First, 
the estimates are essentially uncorrelated, and second, the 
Cramer-Rao lower bounds on the estimates are quite small. 
As mentioned in Sec. , these bounds are obtained as N-, oo. 
From Eqs. ( 15)-(17), it can be seen that, not unexpectedly, 
these lower bounds vary directly in proportion to the vari- 
ance of the noise. In the case of this work, one would not 
expect the variances on the estimates to be nearly this small 
since the data are not well averaged since N, the number of 
hydrophones, is 32. 

In regard to the experimental results, it should be em- 
phasized that the data were selected. There were great diffi- 
culties in maintaining the array vertical and straight due to 
currents. As a consequence, the array was constantly in mo- 
tion and many of the time records produced poor solutions 
or no solution at all. Although several experimental solu- 
tions were obtained, that shown in Fig. 9 was selected for its 
low sidelobe behavior. In this solution a strong bias in depth 
is evident. This, most likely, is due to the distortion of the 
array. A further anomaly of the experimental results is that 

TABLE II. Modal amplitudes. 

Mode number Magnitude of modal amplitudes 

I 0.149 

2 0.027 

3 0.123 
4 0.064 

5 0.091 

6 0.078 

7 0.057 

8 0.07 I 
9 0.017 

TABLE IlL Elements of the Fisher information matrix for SNR = 0 dB. 

Ill = 0.44 
122 -- 3.4 
= 12• -- -- 95< 10 -6 

in no case could a solution be found without filtering out the 
two highest modes. It is speculated that this also is connected 
to the deformation of the array, since it would be expected 
that the phase information of the modes would be more dis- 
turbed the higher the mode order. Whatever the reason, this 
points out the importance of the mode filtering property of 
this estimator. Even in the case of a perfectly positioned ar- 
ray this filtering property can be of importance for other 
reasons. For example, in the case of an array of short aper- 
ture compared to the depth of the water column or an array 
with incorrect hydrophone spacings, one would expect that 
all modes would not be well sampled. In this case, the order 
of the system could be estimated from the data. Given this 
order estimate, the offending modes could then be filtered 
out. 

The issue of the array distortion is an example of a more 
general problem usually referred to as the "mismatch prob- 
lem," that is, the effect on the estimator of errors in the mod- 
el parameters. This has been shown to be a major limitation 
to these model-based passive localization techniques. 8'9 Re- 
cently, it has been demonstrated that by using a horizontal 
(towed) array instead of a vertical array, only knowledge of 
the modal wavenumbers is necessary to determine range. 
That is to say, direct knowledge of the sound velocity profile, 
water depth, and bottom conditions is not required. Further- 
more, with a sufficiently long physical array or by using syn- 
thetic aperture techniques, these wavenumbers can be di- 
rectly estimated from the data, thereby avoiding the need for 
a priori knowledge of the model parameters. •2 
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