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Abstract

All signals that are normally called “periodic” have some amplitude and phase variation from period to period. For example7
an active sonar system transmits a periodic pulse train to detect targets. The received pulses are not perfectly periodic due
to random modulation of the pulses from scattering and attenuation. Target scattering and propagation distortion of the9
transmitted and received signals produce seemingly random variation from pulse to pulse. A stochastic nonparametric model
of period-to-period variation is presented in this paper. This model is used to derive an asymptotic likelihood-ratio test for11
wide bandwidth pulses that undergo a random modulation from pulse to pulse. It is shown that the test statistic is a linear
combination of the matched 3lter using the expected value of the received signal as the matching vector and the signal’s13
periodogram.
? 2003 Published by Elsevier Science B.V.15
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1. Introduction

An active sonar system transmits a periodic pulse
train to detect objects in the water column or on the19
bottom. If the object is a perfect re:ector and the
medium is homogeneous then the re:ected pulses will21
have the same form as the transmitted pulses plus ad-
ditive ambient noise. For this idealized case the de-23
tector with the highest probability of detection for a
3xed false alarm probability is the matched 3lter pro-25
vided that the additive noise is gaussian [2, p. 390–
392]. If the noise is not gaussian but its joint density27
is known then the statistically most powerful detector
is the classic likelihood-ratio test. The optimality of29
the matched 3lter follows from the Neyman–Pearson
lemma [6, pp. 251, 252].

31
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For most active sonar environments there is consid-
erable pulse-to-pulse variation in the received pulse 33
train. As the sonar moves the transmitted pulses scat-
ter from a changing water column. Target scattering 35
and propagation distortion of the transmitted and re-
ceived signals produce variation from pulse to pulse. 37
This is especially true for sonar in a shallow water
environment where the medium is usually inhomoge- 39
neous and the boundaries scatter and absorb part of the
sound energy [3, Chapter 6]. The pulses re:ect from a 41
changing bottom and a stochastic water surface as the
sonar moves. The physics of scattering from an object 43
much larger than the mean wavelength of the pulse
results in variation from pulse to pulse of the received 45
pulses.
The considerable pulse-to-pulse variation is not dis- 47

cussed in standard books such as Burdic [2] nor in
Clay and Medwin [3] and thus it is not well known. 49
The author has analyzed classi3ed active sonar data

0165-1684/03/$ - see front matter ? 2003 Published by Elsevier Science B.V.
doi:10.1016/S0165-1684(03)00045-8

mailto:hinich@mail.la.utexas.edu


UNCORRECTED P
ROOF

2 M.J. Hinich / Signal Processing ( ) –

SIGPRO2233
ARTICLE IN PRESS

and found that the modulation of the pulses is a com-1
plicated random process.
There is pulse variation for certain types of radars.3

The classical radar processing texts present paramet-
ric random processes to model this variation. The ap-5
proach used in this paper employs a nonparametric
modulation model.7
The organization of this paper is as follows. A

stochastic nonparametric model of pulse-to-pulse vari-9
ation is introduced. This model is used to derive the
likelihood-ratio test for pulses with random modula-11
tion. It will be shown that the test statistic is a linear
combination of the matched 3lter using the expected13
value of the received signal as the matching vector
and the signal’s periodogram.15

2. Randomly modulated pulses

There is some random variation in any signal that is17
normally called “periodic” [5]. Consider the following
model for the random variation of an observed signal19
whose mean is periodic with period T = N�, � is the
time unit, and fk = k=T is the kth Fourier frequency:21

s(t) =
1
N

N=2∑
k=1

[(ak + uk(t)) cos(2�fkt)

+ (bk + vk(t)) sin(2�fkt)]; (2.1)

where for each period the {u1(t); : : : ; uN=2(t); v1(t);
: : : ; vN=2(t)} are random variables with a zero mean23
vector and a joint distribution that has 3nite cumu-
lants. The realizations from pulse to pulse may be25
dependent but the random modulation is periodic.
An example of such dependence across pulses is27
given by the models up+1

k (t + T ) = 0:9upk (t) + �
p
k (t)

and vp+1
k (t + T ) = 0:7vpk (t) + �pk (t) where upk (t) is29

the kth modulation process for each t in pulse p
(k=1; : : : ; N=2) and �pk (t) and �

p
k (t) are independently31

distributed white stochastic processes. Fig. 1 shows
an example of three randomly modulated pulses gen-33
erated using arti3cial data is present in Fig. 1.
Let35

p(t) =
1
N

N=2∑
k=1

[ak(t) cos(2�fkt)

+ bk(t) sin(2�fkt)]; (2.2)

u(t) =
1
N

N=2∑
k=1

[uk(t) cos(2�fkt)

+ vk(t) sin(2�fkt)]: (2.3)

Thus s(t)=p(t)+ u(t). Suppose that we observe one 37
frame of length T of either the randomly modulated
pulse plus noise x(t) = p(t) + u(t) + e(t) or noise 39
alone where e(t) is a noise process that is bandlim-
ited at fN=2 = 1=2�. Both u(t) and e(t) noise may be 41
non-gaussian. Assume that e(t) and u(t) are indepen-
dently distributed. 43
To simply exposition assume that the discrete-time

modulations are independently and identically dis- 45
tributed (pure white) noise processes that are mutu-
ally independent. Then {u(n�)} is a pure white noise. 47
Also assume that e(n�) is pure white noise.
The received signal is sampled and digitized at the 49

rate 1=2� and thus there are N digitized observations in
the pulse frame. The assumption of a large bandwidth 51
for the system ensures that N is a large integer.
For the active sonar example u(t) is the noise im- 53

parted to the re:ected pulse by the scattering of the
wave in the medium and the target. The additive noise 55
z(t) is the ambient noise picked by the receiving array.
When considering a single pulse it is common to 57

set the time origin at the time of 3rst observation.
The scaled discrete Fourier transform (DFT) for the 59
frequencies fk = k=T (k = 0; 1; : : : ; N=2) of one pulse
starting at time zero is 61

X (fk) =
1√
N

N−1∑
n=0

x(n�) exp(−i2�fkn�)

=
1√
N

N−1∑
n=0

x(n�) exp
(
−i2�

kn
N

)

=N−1=2Ak + Z(fk); (2.4)

where Ak=ak+ibk and Z(fk)=N−1=2∑N−1
n=0 (u(n�)+

e(n�)) exp(−i2�kn=N ) is the DFT of the sum of the 63
modulation noise and the ambient noise.
The full statement of the theorem and its proof is 65

presented in the appendix.
Let �2z denote the variance of z(n�)=u(n�)+e(n�). 67

Since the discrete-time noise measurements z(n�) are 69
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independently and identically distributed random vari-1
ables then it follows from the theorem presented in the
appendix that as N → ∞{Z(f1); Z(f2); : : : ; Z(fN=2)}3
are asymptotically independent complex gaussian
variables with mean zero and variance �2z .5
The standard large N application of this asymp-

totic result states that the joint density of X =7
(X (f1); X (f2); : : : ; X (fN=2))′ is

(2�)−N=4�N=2z

×exp

(
− 1
2�2z

N=2∑
k=1

|X (fk)− N−1=2Ak |2
)
: (2.5)

This complex gaussian density will then replace the9
true 3nite sample density in the likelihood ratio test.
Using such asymptotic results for hypothesis testing is11
common in statistical theory. From now on the like-
lihood will be understood to be the above large N13
gaussian approximation of the true likelihood.
The variance of z(n�) is �2z = E(x(n�) − p(n�))215

and it can be estimated from the observed signal since17

{p(n�)} is the mean frame. Since the two noises are
independent then �2z = �

2
u + �

2
e . If the ambient noise 19

variance �2e is known then the estimate of the variance
�2u is �̂

2
z − �2e where �̂2z is the estimate of �2z . 21

Then the likelihood ratio test statistic for the null
hypothesis that x(n�) = e(n�) for n = 0; 1; : : : ; N − 1 23
versus the alternative hypothesis that x(n�)=p(n�)+
u(n�) + e(n�) is 25

T =
N=2∑
k=1

[
2ReA∗k X (fk) +

�2u
�2e

|X (fk)|2
]
; (2.6)

where in this case the statistic is not normalized to
have unit variance. The component

∑N=2
k=1 ReA

∗
k X (fk) 27

is the frequency domain equivalence of the matched
3lter detector of the mean signal. The second term 29
is proportional to the variance of the observed pulse
since (2=N )

∑N=2
k=1 |X (fk)|2 = (1=N )

∑N−1
n=0 x

2(n�). 31
Thus, the optimal statistic is a linear combination
of a matched 3lter and the variance of the received 33
pulse. The weight factor �2u=�

2
e can be viewed as a

noise-to-noise ratio. The weight of the variance in the 35
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statistic relative to the matched 3lter is a linear func-1
tion of the variance of the modulation noise relative
to the ambient noise.3
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Appendix

The following central limit result is a special case
of Theorem 4.4.1 in [1]. This result can be generalized7
to the case where {z(n�)} is not pure noise.

Theorem. Assume that the discrete-time noise9
measurements {z(n�)} is pure white noise (inde-
pendently and identically distributed random vari-11
ables). As N → ∞{Z(f1); Z(f2); : : : ; Z(fN=2)} are
asymptotically independent complex gaussian vari-13
ables with mean zero and variance �2z of z(n�).

Proof. Let �m(z) denote the mth cumulant of z(n�).15
Choose any integer K and integers m1; m2; : : : ; mK
where m =

∑K
k=1 mk . The DFT of the noise is17

A(fk) =
∑N−1

n=0 z(n�) exp(−i2�kn=N ). The joint cu-
mulant of {Am1 (f1); Am2 (f2); : : : ; Amk (fK)} is N�m(z)19
if m1k1 + m2k2 + · · · + mkkK = 0mod(N ) and is

21

zero otherwise [4, p. 394]. This implies that the joint
cumulant of {N−1=2Am1 (f1); : : : ; N−1=2AmK (fK)} is 23(

K∏
k=1

N−(mk=2)

)
N�m(z) =N−(m=2)N�m(z)

=N (1−(m=2))�m(z):

This joint cumulant goes to zero as N → ∞ if m¿ 3.
Note that the rate of convergence increases with the 25
cumulant’s order increases. The gaussian distribution
is the only one that has zero third and higher cumu- 27
lants and joint cumulants. Thus the joint distribution of
{Z(f1); Z(f2); : : : ; Z(fN=2)} is asymptotically gaus- 29
sian.
In addition the complex covariance of Z(fk1 ) and 31

Z(fk2 ) is zero if k1 
= −k2 and thus the Z’s are
asymptotically independent since they are asymptoti- 33
cally gaussian.
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