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1. INTRODUCTION

In the literature, the identification of non-linear systems using functional series has been
approached in many different ways. Since the earlier work by Wiener [1] great attention
has been devoted to find algorithms for estimating the coefficients of the so-called Volterra
models [2]. These models are a direct result of the work of Frechet [3] on the theory of
functionals. Examples of recent development on the field can be found in references [4, 5]
and references therein.

A method is presented in this paper for estimating the linear and quadratic complex
transfer function of a weakly non-linear system. The input to the system that is excited by
a signal especially constructed for the purpose. The excitation signal is a sum of sinusoids
with the same amplitude and pseudo-randomly jittered phases that are selected for the
experiment and recorded.

To motivate the non-linear frequency-domain linear plus quadratic model presented in
section 2, consider the following simple example. Assume that a non-linear system has
only one output and the system response satisfies the homogenous non-linearly perturbed
differential equation:

y00ðtÞ þ ly0ðtÞ þ kyðtÞ þ dy2ðtÞ ¼ 0; ð1Þ

where l and d are small positive constants. This equation describes weakly non-linear
oscillations of the type found in rotating machinery and in non-linear electric circuits
[6, section 5.1]. An approximate solution for the linearized approximation of this equation
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given a two frequency periodic forcing function xðtÞ ¼ g1 sino1t þ g2 sino2t [7, p. 296] is

yðtÞ ¼ � dg21
2kðk � o2

1Þ
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: ð2Þ

This approximate solution is a linear combination of the excitation tones with
frequencies o1 and o2 and the combination tones 2o1; 2o2; o1 þ o2; and o1 � o2 plus a
constant (zero frequency) term. If the excitation has more than two tones, then all the sum
and difference frequencies will be in the output signal.

This superposition of combination tones in the output of a nearly linear system is a
general result when the excitation contains more than one tone. If the system satisfies an
equation similar to equation (1) but with higher non-linear terms in the restoring force, the
output may contain sums of all of the input tones rather than only the sum and difference
tones.The above assumption is true when weakly non-linear system are investigated and
will be used throughout this paper to justify the use of a method for estimating the linear
and quadratic transfer functions.

The objective of this paper is two-fold: (1) the estimation of complex transfer functions
using the best and simplest algorithm available on the statistical literature and (2) the
design of input signals which leads to an ‘‘orthogonal design’’ in a statistical sense.

The combination tones approximation to equation (1) for an excitation containing a
number of harmonically related tones is generalized in section 2. In section 3 an input
signal is proposed so as to lead to an ‘‘orthogonal design’’ in the statistical sense. Section 4
presents a method for estimating the linear and quadratic transfer functions in the
frequency domain. The validity of the proposed method is demonstrated by the examples
given in section 5. The main points of the paper are summarized in section 6.

2. LINEAR PLUS QUADRATIC TRANSFER FUNCTIONS

Suppose that a weakly non-linear quadratic system is excited by a bounded periodic
signal denoted xðtÞ whose period is T : Let yðtÞ denote the measured output of the system.
The complex amplitudes of xðtÞ and yðtÞ for Fourier frequency ok ¼ 2pk=T are the
discrete-frequency Fourier transforms:

XðkÞ ¼
Z T=2

�T=2

xðtÞe�iokt dt and YðkÞ ¼
Z T=2

�T=2

yðtÞe�iokt dt; ð3Þ

where X ð�kÞ ¼ X nðkÞ since xðtÞ is real and similarly for Y ð�kÞ: Let k0 denote the number
of the highest frequency component. The model that will be used to approximate the
response of the non-linear system for the excitation xðtÞ is

YðkÞ ¼ HðkÞX ðkÞ þ
Xk0

j¼k�k0

Qð j; k � jÞX ð jÞXðk � jÞ þ UðkÞ; ð4Þ

where HðkÞ is the discrete-frequency complex transfer function of the linear part, Qðk1; k2Þ
is the complex transfer function of the quadratic part of the system response and UðkÞ is a
lack of fit error term. Note that equation (4) is linear in lagged X ’s and products of lagged
X ’s.
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Taking the inverse double Fourier transform of equation (4) the non-linear system
approximation is the quadratic Volterra system [8]

yðtÞ ¼
Z 1

s¼0

hðsÞxðt � sÞ ds þ
Z 1

r¼0

Z 1

s¼0

qðr; sÞxðt � rÞxðt � sÞ dr ds: ð5Þ

Bendat [9] calls the quadratic part of expression (5) a bilinear system. Bendat makes
illusions to the connection between this ‘‘black box’’ type of system modelling and
standard non-linear differential equations but avoids dealing with the important issues of
approximation and stability, which are treated in a mathematically rigorous way by
Sandberg for continuous time Volterra models [10–12] and discrete-time models [13–15].

For discrete-time measurements of xðtÞ and yðtÞ the model in equation (5) is a
linear statistical model whose independent variables are xðtk � skÞ for lags s and xðtk �
rkÞxðtk � skÞ for lags r and s: Assume that the measurement noise in the input xðtÞ is
negligible and that the variance of the measurement noise in the output yðtÞ is a known
small quantity.

There is no need to accept this solution on blind faith since the transfer functions will be
estimated using the type of least-squares statistical methodology commonly applied in
economics and biostatistics. If the model is improperly specified the statistical fit will be
poor, as defined later. A poor fit is an indication of model misspecification since the
measurement noise in the input has been assumed to be negligible and the measurement
noise of the output is small.

Assume that Qðk1; k2Þ ¼ Qðk2; k1Þ for all k1 and k2 in the band and that HðkÞ and
Qðk1; k2Þ are bounded. Since Y ð�kÞ ¼ Y nðkÞ then Qðk1; k2 � k1Þ ¼ Qnð�k1;�k2 þ k1Þ or
equivalently Qðk1; k2Þ ¼ Qnð�k1;�k2Þ: The symmetries of Qðk1; k2Þ are shown in
Figure 1(a). Figure 1(b) shows the symmetries as a function of u1 ¼ k1 and u2 ¼
k1 þ k2; which pertain to the Q’s in the sum in expression (4).

The sum in expression (5) is twice the sum of Qð j; k � jÞX ð jÞXðk � jÞ from j ¼ k=2 to
k0 for k ¼ 2; . . . ; k0 because of the symmetry of Q around u2 ¼ 2u1: There are k0 � k2 such
integers in the band where k2 ¼ k=2 if k is even and k2 ¼ ðk þ 1Þ=2 if k is odd. The term
for k ¼ 1 is excluded since p=T is not a Fourier frequency.

Figure 1. (a) Symmetries of Qðk1; k2Þ and (b) symmetries as a function of u1 ¼ k1 and u2 ¼ k1 þ k2:
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Let us now deal with the specification of the input signal. There is a method for
designing a pseudo-random excitation signal, which will facilitate the identification and
estimation of the transfer functions components.

3. CREATING AN INPUT SIGNAL

We employ the statistical theory of least squares to estimate the system’s response.
When one can control the input to a linear system, the best statistical method is to make
the covariance matrix of the independent variables diagonal. This is called an ‘‘orthogonal
design’’ in the statistics literature.

Designing an orthogonal excitation signal is part of a measurement methodology for
studying a system’s response patterns. The approach taken in this paper is to excite the
system with a sequence of finite duration waveforms and sample the output during a
sequence of frames of length T that is synchronized with the input. The system’s response
is assumed to be constant over the time span of the experiment.

Each excitation waveform excites the non-linear system. The output signal plus noise is
bandlimited at the waveform’s highest frequency o0 ¼ 2pk0=T and sampled at the Nyquist
rate 2k0=T to avoid aliasing. Thus there are L ¼ 2k0 observations in each frame of the
input and output. The sampling interval is d ¼ T=2k0 and let L ¼ T=d:

The true midpoint time of frame p is denoted tp where p ¼ 1; . . . ;N: The input will be a
periodic signal if the time between two adjacent midpoints is T : If the frames are taken at
times when the system can be measured then the frames can be concatenated into a
periodic signal with an artificial time origin. For example, each frame could be taken at a
different time over a sequence of days. This is the type of experimental design that is used
in biological experiments where a given subject responds to the same stimulus at different
times.

The time origin is unimportant for this application. The time index tn ¼ nd for frame p

used in the notation from now on is relative to the midpoint time tp: The midpoint times
will now be suppressed to simplify notation.

A simple method for generating the N excitation waveforms requires a set of pseudo-
random variates. Generate k0N pseudo-random uniform ð0;TÞ variates using any
standard pseudo-random number generator. These generated variates, denoted skp for
k ¼ 0; 1; . . . ; k0 and p ¼ 1; . . . ;N; should have the statistical properties of ðk0 þ 1ÞN
independently distributed realizations of the rectangular density 1=s for 04s4T : The
waveform for frame p is the following sum of time-shifted cosines for discrete-time points
tn ¼ nd for n ¼ 0; . . . ;L � 1:

xpðtnjspÞ ¼ cosðs0p=TÞ þ 2

k0

Xk0

k¼1

cosojkjðtn þ skpÞ; ð6Þ

where sp ¼ ðs0p; . . . ; sk0pÞ is the vector of pseudo-random time shifts for frame p:
From now on the adjective ‘‘pseudo’’ will be dropped. The k0N variates will be treated

as independently distributed uniform ð0;TÞ random variables when expected values and
variances are discussed. A purist notation requires the use of capital letters for random
variable and lower case letters for their realizations.

The mean of cosoðtn þ SÞ is zero if S is a uniform ð0;TÞ random variable. The variance
of cosoðtn � SÞ is 1

2
: Thus the variance of the waveform is 2k�1

0 ¼ L�1 for each frame. An
example of two successive frames generated in this manner but scaled to have unit variance
is shown in Figure 2 for L ¼ 50 and k0 ¼ 24:
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The complex amplitude of the waveform xpðtnjspÞ for frequency ok ¼ 2pk=T for
k ¼ 1; . . . ;L=2 frame p is

XL�1

n¼0

xpðtnjspÞe�ioktn ¼ eðiokskpÞ; ð7Þ

which only depends on the delay skp: The zero frequency complex amplitude is expðis0pÞ:
The product of the complex amplitude for frequencies oj and ok�j; denoted Xpð j; k � jÞ

is

Xpð j; k � jÞ ¼ eioj sjpeiok�j sðk�jÞp ¼ eiðoj sjpþok�j sðk�jÞpÞ: ð8Þ

Each complex number eiokskp is a realization of the complex random variable eiokSkp ;
where the Skp are ðk0 þ 1ÞN independently distributed uniform ð0;TÞ random
variables. The expected value of eioS equals ½eioT � 1�=io for a uniform ð0;TÞS; and
thus EeðiokSkp ¼ 0 for each k and p: The variances of eðiokSkp and eioj Sjpeiok�jSðk�jÞp are equal
to one for each j; k and p:

In addition the joint cumulant of feiok1
Sk1p1 ; . . . ; eiokn Sknpn g is zero for any set of integers

fk1; . . . ; kng and independently distributed random variables fSk1p1
; . . . ;Sknpn

g: This
implies that (1) eiojSjp is uncorrelated with eiokSkp for all j=k; (2) eiojSjp and eiol Slpeiok�l Sðk�lÞp

are uncorrelated for all j and k=l; and (3) eiojSjpeiok�jSðk�jÞp and eiol Slpeiok�l Sðk�lÞp are
uncorrelated.

From now on, the distinction between the random variable denoted with a capital letter
and the realization denoted by a lower case letter will be dropped. The distinction between
a random variable and its realizations is important but it often makes notation
cumbersome, as is the case at this point of the exposition.

It then follows from the above that the covariance matrix of the vector

vðkÞ ¼ ðeiokskp ;Xpðk2; k � k2Þ;Xpðk2 þ 1; k � k2 � 1Þ; . . . ;Xpðk0; k � k0ÞÞT ð9Þ

is a Mk ¼ ðk0 � k2 þ 1Þ-dimensional identity matrix.
These results for the complex amplitudes of the excitation waveforms are used in the

next section to establish the sampling properties of least-squares estimates of the linear
and quadratic transfer functions of the non-linear coupling.
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Figure 2. (a) Input and (b) output signals for the first frame of the data collected from the rotating disk
experiment.

LETTERS TO THE EDITOR 5

YJSVI: 5173



UNCORRECTED P
ROOF

4. ESTIMATING THE LINEAR AND QUADRATIC TRANSFER FUNCTIONS

Assume that the system’s output contains an additive stationary noise error component
denoted by uðtÞ: Recall that the pth excitation frame’s complex amplitude for frequency ok

only depends on the delay skp: Thus the complex amplitude for frequency ok of the pth
output frame ok only depends on the delay skp: The complex amplitude of the pth output
frame and its additive noise component are the following discrete-time, discrete frequency
Fourier transforms:

YpðkÞ ¼
XL=2

n¼�L=2

ypðtnÞeioktn and UpðkÞ ¼
XL=2

n¼�L=2

uðtnÞeioktn : ð10Þ

Applying the symmetries of Q; model (2) implies that for each k ¼ 2; . . . ; k0 ¼ L=2 and
p ¼ 1;N;

YpðkÞ ¼ HðkÞeiokskp þ 2
XL=2

j¼k=2

Qð j; k � jÞXpð jÞXpðk � jÞ þ UpðkÞ: ð11Þ

Equation (11) for each k is a linear statistical model whose independent variables are
expðiokskpÞ and 2Xpð jÞXpðk � jÞ and whose dependent variable is YpðkÞ observed for each
frame p: The number of independent variable and parameters is Mk ¼ L=2� k2 þ 2: The
parameters for each equation are HðkÞ and the Qð j; k � jÞ for j ¼ k2; . . . ;L=2:

To briefly summarize the statistical theory of least squares using standard statistical
notation consider the linear system y ¼ Xbþ u; where X ¼ ðxpjÞ is a N � M matrix whose
columns are linearly independent vectors of complex valued measurements of M

independent variables. The elements of vector y ¼ ðy1; . . . ; yNÞT are complex-valued
measurements of the dependent variable. The elements of the vector u ¼ ðu1; . . . ; uNÞT are
complex-valued model errors, and b ¼ ðb1; . . . ; bMÞT is a vector of parameters. In
statistical terminology N is called the sample size. The least-squares estimate of b is #bb ¼
ðN�1XnXÞ�1ðN�1XnyÞ where Xn denotes the transpose and complex conjugate of the
matrix X: One standard reference on the theory of least-squares fitting of linear statistical
models for real-valued variates is reference [16].

Assuming the errors up are uncorrelated and have the same variance denoted by s2
u then

Eð#bbÞ ¼ b and the covariance matrix of #bb is N�1s2
uðN�1XnXÞ�1 [16, section 2.3]. The

distribution of
ffiffiffiffiffi
N

p
ð#bb� bÞ is asymptotically multivariate Gaussian as N ! 1:

If the elements of X are realizations from NM independently and identically distributed
bounded random variables with zero means and unit variances then EðN�1XnXÞ ¼ IM :
Thus from the central limit theorem the large sample covariance matrix of #bb is
approximately N�1s2

uIM for large values of N; and is bounded [17, section 30]. The sample
variances and covariances quickly converge to their expected values as N grows large since
the dependent and independent variables.

The model is identified if N5M: The only reason to have N > M is to have a non-zero
vector of residuals #uu ¼ y� X#bb to estimate s2

u; the variance of the errors uðtÞ: The mean sum
of squared residuals is the standard estimate of the error variance. If s2

u is known then one
can have N ¼ M but a prudent approach in this case is to check by using a few more
observations than the number of parameters.

Returning to equation (11), the error term in each equation for each frame is UpðkÞ: To
simplify exposition assume that the noise uðtÞ is a stationary white random process. The
variance of each UpðkÞ is Ls2

u: In addition, the expected value of UpðkÞ is zero and
the correlation between Upðk1Þ and Upðk2Þ is of order OðL�1Þ: These statistical results
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hold even if the noise uðtÞ is not white as long as it has a bounded spectrum and
trispectrum [18].

Since L will be larger than 50 for most applications, the L=2 equations are
approximately uncorrelated and thus the parameters for each equation can be estimated
by the method of least-squares applied equation by equation. The separate fitting of each
equation is both computationally and statistically efficient.

A least-squares fit of each equation yields a set of unbiased estimates #HHðkÞ and
#QQð j; k � jÞ of the parameters HðkÞ and Qð j; k � jÞ for j ¼ k2; . . . ;L=2: The Mk

dimensional vector whose elements are
ffiffiffiffiffi
N

p
½ #HHðkÞ � HðkÞ� and the

ffiffiffiffiffi
N

p
½ #QQð j; k � jÞ �

Qð j; k � jÞ� is asymptotically multivariate Gaussian with a mean vector of zero as N goes
to infinity.

The covariance matrix of the least-squares estimates HðkÞ and the Qð j; k � jÞ is N�1s2
u

times the sample covariance matrix of the independent variables. Since the covariance
matrix of vðkÞ was shown in section 3 to be a diagonal matrix whose diagonal elements are
all L; the expected value of the covariance matrix of the independent variables is diagonal
with the ð1; 1Þ term equal to one and the rest equal to four. Thus the least-squares
estimates are approximately uncorrelated, the variances of the #HHðkÞ are equal to
LN�1s2

u þ OðN�3=2Þ; and the variances of the #QQð j; k � jÞ are equal to 4LN�1s2
u þ

OðN�3=2Þ: The correlations are of order OðN�3=2Þ:
This simple result has important implications for identifying and estimating the transfer

function terms. Since the noise variance s2
u has been assumed to be small, the least-squares

estimates #QQð j; k � jÞ will be accurate for all values of L if N5Mk ¼ L=2� k2 þ 2: The
least-squares estimates #HHðkÞ will be accurate when N4Ls2

u : Note that the variance of the
estimates does not depend on the number of non-zero values of the parameters nor does it
depend on the magnitudes of the parameters.

5. EXAMPLES

In this section two examples are given to demonstrate the proposed method.

5.1. SIMULATED EXAMPLE

To illustrate how this least-squares method can identify non-zero quadratic transfer
function values, we used a simple model with many terms to generate artificial data
examples. The complex-valued least-squares approach was programmed in Fortran 90.
The source code is available upon request.

The excitation amplitudes were generated as described above using a standard uniform
random number generator. No linear terms were used. The quadratic transfer function
values for each k were Qð j; k � jÞ ¼ 1þ i for j ¼ k2; . . . ; k2 þ 4: The rest of the quadratic
values were zero. The additive error values were generated using a standard Gaussian
random number generator.

Consider the results when L ¼ 1000; N ¼ 502; and s2
u ¼ 10�3: The noise variance is

half of the signal variance since the variance of the waveforms is 1=L: The program took
41�8 s to generate the data and fit the model and output the results using a Pentium
233 MHz pc. The standard deviation of the difference between the true coefficients and the
estimated coefficients is 0�66e� 3 for the real part and 0�67e� 3 for the imaginary part.
These standard errors are not statistically significant from each other. The mean
differences are not statistically significant from zero, which is consistent with theory. The
maximum absolute error is 1�e� 3:
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u ¼ 10�1 are as above with e� 1 instead of
e� 3:

5.2. ROTATING DISK

The complete rotating disk experiment is described in reference [19]. The set-up was
composed of a plexiglass tank, with a 760 900 mm2 cross-section and a depth of 700 mm;
mounted on a metal frame. This enclosure houses a disk, 500 mm diameter and 30 mm
thick, placed in a horizontal plane 1�70 m from the ground and mounted on a vertical
drive shaft. The complete disk/vertical drive shaft assembly is machine-tooled in stainless
steel and immersed in water. Measurements in the boundary layer were performed. The
data used in this paper included the measurement points corresponding to 60 disk
rotations. For more details, please refer to reference [19].

In reference [20] it is shown that Volterra-type models can model the dynamics of the
rotating disk for many different Reynolds (Re) numbers. The data set for Re ¼ 380 will be
used for identification purposes. The data were divided into 128 frames with 64 points
each. Figure 2 shows the input and output signal for the first frame.

The complex linear and quadratic functions were estimated using the method described
in section 4. The magnitude and phase for the quadratic transfer function are shown in
Figure 3.

6. CONCLUSIONS

A simple least-squares methodology has been presented for estimating the linear
and quadratic complex transfer function of a weakly coupled non-linear system. The
input to the system is excited by a signal especially constructed for the purpose.
The excitation signal is a sum of sinusoids with the same amplitude and pseudo-randomly
jittered phases that are selected for the experiment and recorded. The method can easily be
generalized to a non-linear coupling model with three way and higher couplings. One
needs to add the appropriate products of the waveform amplitudes into the linear
statistical model.
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Figure 3. (a) Magnitude and (b) phase for the quadratic transfer function estimated directly from data
collected from the rotating disk experiment.
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