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Most array signal processing systems use delay-and-sum beamforming to estimate source bearings. This paper 
demonstrates the close relationship between beamforming and frequency-wavenumber spectrum analysis. 
The latter approach has computational advantages over beamforming when the noise is spatially correlated. 
The wavenumber approach is used to'derive the array response of a general linear or planar array to plane 
wave signals. The statistical properties of the maximum-likelihood estimators of source bearing and amplitude 
are presented for an array with many elements. Optimal array design is also discussed. 

PACS numbers: 43.60.Ok, 43.30.Vh 

INTRODUCTION 

Suppose that an array of sensors is receiving coher- 
ent radiation from a distant source. Most array signal 
processing systems use delay-and-sum beamforming to 
estimate the source bearing. t For sonar arrays, accu- 
rate bearing estimation of single or multiple targets is 
the main design goal; array design and signal process- 
ing are subproblems. 

There is a close relationship between beamforming 
and frequency-wavenumber Fourier analysis, which 
has computational advantages over beamforming when 
the noise is spatially correlated. This relationship is 
described in the first part of this paper. Then I show 
how to use the wavenumber approach to easily calculate 
the array response for any linear or planar array ge- 
ometry, and to mitigate the jamming effects of a co- 
herent interfering signal. The final secti6n deals with 
bearing estimation of a broadband wave when the noise 
is spatially correlated. 

I. WAVENUMBER SPECTRUM AND BEAMFORMING 

Let us begin with the simplest model: A linear array 
of M sensors and a single frequency plane wave signal 
m complex variable form. Let O o denote the wave's di- 
rection of arrival with respect to the array axis, let c 
denote the wave's velocity, and A= {A] exp(iq•) is its 
amplitude. The s•gnal at the kth sensor when there is ' 
no noise is 

s(•, x,) = A exp [i wo(t - x, cos Odc) ]. (1) 
where x• is the location of the kth sensor (x• <xa< ß ß ' 
<xu). The signal in a beam pointed at angle 0 (and -0) 
is 

B(t, 01=• s(t + ,,.x,) . (21 

where the kth delay is r,=x, cos0/c. Since a linear ar- 
ray cannot identify between eo and -•o, let us arbitrar- 
ily assume that 0o> 0. 

Since the wavenumber component on the array axis is 
%= (•Oo/C) cdS0o, it follows from (1) and (2) that for 

a)Thia work was supported by the Office of Naval Research 
(Statistics and Probability Program) under contract. 

K = (%/c) cos0 ' 

B(t, O) = A exp(i•ot) • exp[i(g - 

=• s(t,x,) e•i•) . (3) 

• other words, bemform• is the sine as comput• 
the spatMl Fo•ier transform • the M smuts from the 
array. The spatM• fr•uency g= (%/c) cos8 corre- 
sponds • •e look angie •. 

• actml practice, a beam is computed from a f•ite 
record of the M e•els, the bern outp• is fDter•-• 
a •rrowb•d a•ut %, and the filtered sM•l is 
•mred and smmed to give the averse energy • the 
b• got •e • set. • fr•uency-wavenmber •l- 
ysis• each e•el is fiRer• •d then tile spatMl 
Fo•ier tr•sform is compute. ff the receiv• sMnal 
is a wave, the •mre of the m•nit•e of this tr•s- 
form •s a p• of heMht (M B I) when g= go 
= (dc) cosOo. 

Now consider a p•r array of M sensors, and a 
p•e wave 

-- [. [. xneos0o+yn 

where • is wav&s direction wi• respect to •e x •is, 
and the kth sensor is located at {x•, yJ. The s•l • 
a be• po•ted •t a•le • is 

from (4) •d (5) tMt 

B(t, O) =• s(t,x,, y) e•[i(g•x,+ •0], (6) 

a• lB(t, 8){a •s a p• of heMht (M {A [)a when • 
= (o•c) coseo •d •={mo/C) s•O• Th• B(t, •) is •e 
•o-d•ensio•l s•t•l •o•ier transform • the •. 
• terms of •e wavenmber components, •= t•'ag•/•. 

II. ARRAY RESPONSE FOR RECEIVED WAVES 

Let • •e •e wavenmber appr•ch to compute •e 
res•nse of a given array, s•rt• with a l•ear geom- 
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etry. To simplify the discrete Fourier transforms, 
select the origin of the array axis so that x• = 0. Let us 
make the modest assumption that there exists a dis- 
rance d such that x,= n,d, where nk is a positive integer 
for each k= 2,...,M. This will hold ff the x, are ra- 
tional numbers. 

The question of array ali•sing (grating lobes) now 
arises? Let D denote the greatest common divisor of 
the integers {nz,..., n•t}. From Hinich and Weber, 3 the 
discrete Fourier transform DFT (3) is periodic with 
period 2g/Dd. Its principle domain is either -•/Dd 
• g • 7ff Dd or 0 -< • -.< 2g / Dd, depending on the convention 
used. This means that a real wave is not aliaseal if its 

wavelength ko= 2•rc/O•o>•2Dd. For example, ff xx = 0, 
x2= 11d, x3= 19d, and x= 30d, the wave is not aliaseal ff 
Xo> 2d. Assume that the n, are such that D= 1. 

Lets (g) denote the filtered plane wave A exp[-i(2n/Xo)x 
x coseo] at a point x on the axis. Define the counting 
sequence 

•(j) = 1, if there is a sensor at 

= 0, otherwise. (?) 

From (3), the filtered transform can be written 

o) : exp(ijJ), (8) 

where N an•. This transform can be computed for the 
grid {•t= 2•l/Nd: l = 0,1,...,N - !} using the FFT 
algorithm. Defining L to be the integer closest to 
to, the associated look angle grid is {e• = cos'•(ko//Nd) 
if O.<l•L, •md e•= cos-•[lo(/-N)/Nd] if N-L </<N-1}. 
For example eo= •/2 and e•= cos-•(1)= 0 if Nd is divi- 
sible by X o. 

These arccosine eqnations give a mapping betweea the 
• and a set of N look angles in the interval [0, n] that 
can accomodate any Xo>• 2d. For example if Xo= 2d, 
then L = N/2 (N even) or L = (N - 1)/2 (N odd). 

Since the right-hand side of (8) is 

- m)s(m) 

where 

• [i2•rjm\ 

then 

(9a) 

(9b) 

(10) 

The response at look angie 0• is defined to be B(O•) for 
the wave signal. The beam power pattern is the se- 
quence ( 

For example, suppose there is an integer lo such that 
eo= cos'•(Xolo/Nd) or 0o= cos'•[ko(l -N/Nd]. Then 

S( m ) = •. A exp (-i 2• expi 3• , 
=HA, ff m=/o, 

=0, ffm•l o. (11) 

Normalizing by setting A = 1, it follows from (9), (10), 
and (11) that the response is 

B(0,)=• •j)exp(i2•r j(/•lø)) (12) 
The peak response is 

which is clearly •epe•en• of •e sp•c[• of •e M 

ff •ere does not exist such a lo for • given N, then 
•e pe• response is smeared over several adjacent 
waven•bers. This smear• can be elected or re- 
duc• • e•e• the •) s•uence 
thus •creasi• N. ff N is s•ficienfly large, •ere 
ists l o such t•t [2glo/N-go[ is eEher zero or ve• 
smaa, 

Let us now t•n to the response of a p•r array. 
A•l•ous • •e l•ear 'geomet•, ass•e 
= n• a• y,= m• where n• and m, are positive integers 
for k= 2,...,M, a• x•=y•=0. 

Let s(x,y) denote the filter• p•ne wave s•l at lo- 
cation (x, y). From (6), the filtered •o-d•ens•o•l 
transform b g•ven by 

where •a• • •nd 

= 0• o•e•ise. 

•,•=0,1, .... •-l}, it follows from (Z3) 

B(e,..)=• • n(1 -m,k -u)S(m,.), (14) 
where 

and 

As lo• as k•+ l•=L •, the look a•le is as follows: 

=•n'•k/(1-N), • N-L <I•N-I.O•k•L. 

=[an'•(k-N)/(l-N), EN-L I<N-1,N-L<k 

•<N-1. (16) 
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These equations provide a mapping betWeen the/{,t and 
%• and a set of N: look angles in the interval (0, 2•r) 
that can accomodate any wave with Xo>• 2d. 

For example, suppose that the signal iS exp[-i(2*r/Xo) 
(x ½os8o+ y sin8o) ] , where >,•z cos8o= lo/Nd and X• x sin8 o 
=ko/Nd for some (lo, ko) , i.e., lo=L ½os8 o and ko=L 
sin8 o. Then from (15b), S(m,n)=N 2 for m= lo, n=k o 
and S(m,n)= O, otherwise. From (14), the response to 
this wave for look angle St. • is 

B(8,.•) = a(l - lo, k - ko). (17) 

III. ARRAY DESIGN 

If there is no a priori knowledge of the bearings of 
sources of interest, it will now be shown that the opti- 
mal geometry for a fixed aperture linear array with a 
fixed number of sensors is tWo subarrays, one on each 
end of the axis? Each subarray has its sensors equally 
spaced. By optimal, I mean the design conforming to 
the constraints on aperture and sensors that gives the 
maximum accuracy for the estimate of a source bearing 
when noise is present. As is shown in Hinich and 
Shaman, s the accuracy in terms of mean squared error 
depends on the sharpness (the concavity) of IR(K)[: at 
K= 0, where 

R(g) = • r(j) exp(igjd) . 
Thus we want to select the r(j)'s to maximize 

c(0) = (a'ya, I . (18) 
It is easy to show that 

tO) frO)- jr(j) , 
t--o •=o 

N-I N-I 
Simplif7ing roarers by making 3// even, it follows from 
(1•) that ½(0) is maximized by setting r(y)= 1 for y= 0, 
...,M/2-1,...,N-1 andr(y)=0, otherwise. This is 
the tWo subarray geometry mentioned above. From 
(12), its beam pattern for a wave with direct[on 8 o is 

= 4 cosZ [r (• _-•)(/ ''3sin2[•rM(l-to)/2N] sin---Zo-WY ' 
(•.0) 

If N >> M, the peak to sidelobe ratio at g -• % • 2•/Md 
is approximately (2/•)%-3.9 riB. At g-• Ko • 6•/Md, 
the ratio is approximately (2/3•)•: -13.5 dB. 

, By appropriately tapering the array (weighting the 
channels), the peak to first sidelobe ratio can be re- 
dueed, but at the expense of the height and width of the 
main lobe. This means that a tapered array gives a 
less accurate estimate of 8 o when noise is present than 
does the tintapered array discussed above. This array 
gives the best resolution and accuracy for weak sources 
when M and N are large. 

These results are easily extended to planar arrays. 
ß If we want the array's response to be the same for all 

look angles, then the geometry must be circular. The 
analogy to the tWo subarray design is a disk where the 
sensors are placed around its outer edge. In generaI, 
we want to select the r(j,j •) to maximize the concavity 
of the main lobe. Using similar calculations as were 
used to derive (19), we want to maximize. 

Z Z Z 
y_-o .4'--o $_-o y'--o 

(21) 

where 

N-1 

J = M 't •'• Z 
y=o 

and 

(22a) 

(22b) 

•. jj' r( j, j'> ; (22c) 
$=0 

In the next section, we deal with estimating source 
bearings when the received signal is a sum of coherent 
waves plus noise. 

IV. SIGNAL PLUS NOISE 

The major advantage of the frequency-wavenumber 
approach is the ease with which it handles spatlally 
correlated noise. Spatlally correlated noise makes the 
signal-to-noise ratio (SNR) direction dependent. Com- 
plicated calculations are needed to achieve optimal 
bearing estimation using time delay methods in this 
casefi The calculations are relatively easy for the 
½o-g approach. 

Once again it is easier to explain the method for a 
linear array and a single frequency wave. Suppose that 
the signal at x} is a plane wave plus stationary, zero- 
mean Gaussian noise denoted ½(t,x•). Filtering in a 
narrowband about Wo, the signal is 

s(x•) = A exp[-i(2•r/Xo)X • cOSSol + ½(x}) , 

= A exp(-i•ox•) + ½(x•), (23) 

where ((x,) is the filtered noise. If the noise is spa- 
ttally correlated, then the wavenumber spectrum of the 
noise is not flat. Let us go into this in some depth. 

In most applications the•signals are transient, and it 
is then easy to observe the noise alone at each sensor 
prior to the onset of the signals. From (8), (9), and 
(10), the spatial Fourier transform of the noise along is 

$(8, )--Nq Z R(I -m)U(m), 
rn=O 

where 

m.z /i2•rjm\ 
U(m)= Z ,<jd)exp[--•). (24> 

When N is large, {U(0),..., U(N-1)} are (approximate- 
ly) uneorrelated complex Gaussian varigres with zero 
means. ? Moreover, 
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EN" lain)p-•s.(•.), 
the wavenumber spectrum of the noise at %= 2•m/Nd. s 
Thus 

E [B(9,)[=•-N 't Z IR(I -m)]=S.(K=). (26) 

Assume that the array has a sidelobe pattern similar 
to the one given by (20). Since R(0)=M, it follows from 
(26) that 

½p-i )/2 

where p=(N/M) is assumed to be odd for simplicity. 
Assuming $,(•) is slowing varying in the 2gp/Nd•- 29/ 
Md hand about g•, 

(28) 

Using the complex Gaussian nature of the U{m), it can 
be shown that the distribution of 2 ]B(0•) ]2/MS,(%) is 
approximately chi-squared with two degrees of freedom 
(X} and thus the variance of M 'x [B(d•) [2 is approxi- 
mately S•g•). This means that we must average the 
M 'x [B(O•) [• in some way to obtain an accurate estimate 
of s,(•,). 

If the noise is truly stationary, an accurate estimate 
can be obtained by averaging M '• ]B(•) I z computed at 
different times. For example, if M '• IB(•) I • is com- 
puted for each I from 100 nonoveriapp'_mg records of the 
array output, the variance of the average 
is S•)/100. Let us assume that M,N, and the samp- 
ling time are sufficiently large so that we can treat 
$•(•) as kuourn for i=0,...,N-1. 

Returning to the signal, it follows from (12)• (23)• 
and (28) that 

E,r' IA I=M" I•(t -to)p+ s.(•,), (39) 
if there is an lo such that 0o= cos'X(xo/•/Nd). Since 

IA I'+ the norma/ized beam 
pattern has a peak of order •/IA I = against a backgro•d 
of order $,(•) Ior •he look angle 0•o= do, provided that 
• IA p >> s.(•) for g in a band about 

It is often useful to have a test statistic to,determine 
the statistical significance of the maximum energy peak 
in the beam output. Let the null hypothesis be A = 0, 
i.e., the peak is due to noise alone._ Consider the test 
statistic 

21B(0•)I • 
x= max '•S.(g•) ' (30) 

which is analogous to the statistic of the Fisher test 
for the presence of a sinusodd in additive noise. 9 The 
distribution of X is needed to compute the threshold for 
an a-level test of the null hypothesis. This distribution 
is hard to obtain since the beam outputs B(O•) are cor- 
related. But if the sidelobes rapidly diminish as M in- 
creases, as is the case for the •ptimal array or an 
equaUy spaced array, {B(O•): j= 1, .... M} are uncor- 
related for large M. Then the distribution of X is approxi- 
mately the same as the distribution of the maximum of M 

uncorrelatedx• variates. The cumulative distribution 
function (cdf) of this maximum is {F{X)]•,where 
F(x) is the cdf of a X• vat(ate. The cumulative 
rejected at the a level if X>xo, where xo satisfies 

a= t - [•Xo)]". (3•) 

Note that in (30), IB(9•) 12 is divided by the noise 
wavenumber spectrum. This division is the spatial 
analogy of prewhitening. If the beam outputs are to be 
visually inspected for the presence of a wave, then 
P(O•)= ]B(O•)[•/S,(g•) should be plotted for l=O,..., 
N-1. 

Suppose that P(O•) has a peak at 0•o that is statisti- 
cally significant. Then O•o is the natural estimate of 
0 o. If (2v/l o) cosO o is not equal to a %0' but falls be- 
tweea two grid points, there is a quantization error in 

d•o of order 1/Nd. 
When N is large, the root mean-equate error of •to 

due to noise is approximated by 

rmse0•o -• Xo/2•(2•pM) t / •x• sin0o, (32) 
where 

is a geometry factor, x• is the array length, and p is 
the power SNR in a narrowband about •o.'ø Since 
lim Mt/•rmse0•o is equal to the Cramer-Rao bound for 
the asymptotic variance of a consistent estimator bf 
•o, 0• o is approximately maximum likelihood for large 
M and N. For a large aperture array with many sen- 
sors, this bearing error component is often less than 
the quantization error. 

Now consider the problem of estL-nating the complex 
ampUtude A. If the noise is spaticily wncorrelated, it is 
shown in the Appendix that the maximum-likelibood es- 
timator of A is 

,• = (1/M)B(O,o) . 433) 
Since EB(0•o)•AR(0)=AM, it follows that ,• is unbi- 
ased, i_e., EA=A. From (29) the variance of ,• is 

E I • -A 12= •/M, (34) 
where •= 

If $.(•) is not flat, ,• is still unbiased. t• Its variance 
is approximately given by 

E 1,• - A 1'= [$.(%o)/M]. (35) 
Thus ,• is a precise estimator of A when M is large, 
and is useful in removing the effect of a coherent 
jamm/ng signal. 

The planar array processing is a simple straightfor- 
ward extension of the linear case, using two indices 
and two sums. For example, applying (14), (15), and 
(17) to (33), the estimator of A using a planar array is 

• = (1/•)s( • ,o.•o), (•6) 
where (lo, k o) jointly maximize {B(0•,•){2/S,(•=•, •), 
and S,(•=•, •=m) is the noise's wavenumber spectrum at 
(•,o •)- The variance of ,• is approximately 
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ß /"S.(K.,o. %0)' 
The estimator of 0• (0%,%) is given by the appropri- 

ate equation in (16) with l and k replaced by l o and k o. 
When N is large, x: 0%.% is approximately maximum 
likelihood and 

rmseOzo.% • Xo/2• (g•PM) •/2x u' (37) 

V. BLOCKING A JAMMING SIGNAL 

Suppose the filtered signal for the kth sensor is 

s (x a) = A exp [-i( 2n/Xo)X a cos 0 o ] 

+ A r exp[-i(2;r/Xr)x a cosOr] + •(xa), 

where At, Xr, and 0 r are the amplitude, wavelength, 
and direction, respectively, of a wave that is interlet- 
hag with the wave of interest. If Xr•Xo, then all or 
most of the jamming energy will be filtered out. Thus 
let X r = Xo, and assume that A• and 0 r are unknown. 

ff IAr I>> IAI, then the beam pattern will be domi- 
nated by the jammer. If this is the case, then 0 r is. 
estimated by the angle 0,r such that IB(O,•) I2/S•(•c•r) ts 
a maximum for l = 0,..., N - 1. The amplitude A• is 
estimated using (33) with l• in place of l o. 

The response of the jammer can be then subtracted 
from B(O,), and the adjusted' beam pattern defined by 

I la(0,) -rn(l- l,)I 
can be used to estimate the bearing •o. •s 

If JAr I is of the order of ]A I, we need to know e, 
(if 8r½8o) to block the jammer. If so, compute (38) 
with l r as the integer that makes a•r closest to a r. 

VI. BROADBAND SIGNAL PROCESSING 
Until now the signal has been assumed to be a single 

frequency plane wave. To exposfie the processing Of a 
broadband wave, let the array be linear and let 

s(t, x•) = s(t - c7•x• cos0 o) + •(t, x•), (39) 
where s(t) is a bandlimited signal whose upper frequen- 
cy is w u. Once again the noise is assumed to be Gaus- 
sian and to be stationary in time and space. 

All signals are transient. Select the time origin so 
that s(t)= 0 for t< 0 and t> T, where T is the signal 
duratio.n. Let H be the largest integer less than or 
equal to Twa/2•. The signal has the simple Fourier 
representation 

s(t) = Z A( wfl exp(iw•t) , (40) 

where w• = 2•j/T and 

A( wfl = • s(t) exp( -i wit) dr. (41) 
Assume A(0! = 0. 

Suppose that s(t,x•) is sampled at times t•= nZx(n= 0, 
ß .., Nr - 1) where • = •r/w, and Nr = (T/•).x• If cos8 o 
> 0, part of the leading edge of the signal is lost for k 
•1. The trailing edge is lost when tosco<0. These 

end effects are negligible if xu/c << T. Then from (40), 
NT-! 

%(xn) = N•, • E s(n/x , xn) exp(-iw•na) 
n=O 

= A(%) exp( -i% x•) + %(x•), (42) 
where %= (wt/c)cos0 o and ½t(x•) is a zero-mean com- 
piex Gaussian variate. Its variance for large N r is 

E I (fixa)I: ---N;tS,(co•), (43) 
where S,(w), the power spectrum of the noise, is inde- 
pendent of xa. Thus the DFT of the received Signals 
yields H single frequency waves plus filtered'noise. 
For each j= 1,...,H, compute 

B( O,, %)=•. %(xa) expi•,xa , (44) 
•=1 

for the •l grid discussed in See. 1I. Concentrating on 
bearing estimation let •$ = 8•o(W fl denote the look angle 
associated with the maximum ]B(•.,.,fi }:/S•(•). For 
large M and N the maximum-likelihood estimator of 
•o, denoted •o, is approximated by 

/ 

where (r• is the variance of •.x• Using the large sample 
approximation given by (32) with 
= TulA• }•/S,(%) and X o by 

ß J:l 

and its root-mean-square error is 

The SNR p• is estimable since A(wfl is precisely esti- 
mated by M'zB(O•o, wfl when M is large. 

Since a maximum-likelihood estimator has minimum 
•ean-square error when the sample size (M) is large, 
0 o is optimal in a mean-square sense for nonsparse ar- 
rays. There is no need for ad-hoc bearing estimators 
for such arrays. 

This paper has shown'the connection between beam- 
forming and frequency-wayønumber spectral analysis 
using discrete time and space measurements. A de- 
signer of a robust and effective array processing sys- 
tem should have a eomp'lete understanding of the re- 
lationships between physical models of propagating 
waves, background noise processes, and the statistical 
properties of øst(rectors of the key parameters in the 
signal models. 

APPENDIX 

If % is known, the maximum-likelihood estimator of 
A for the statistical model (23) is given by (33) when 
[•(x•)] are independent Gaussian N(O, •) var'mtes. 

-Proof: Since the errors are Gaussian, the least 
squares estimator of A is maximum likelihood. x• The 
least squares estimator is 
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E exp(-i•oX,,) exp(i•oX•) 
r (j)s(jd) exp(i Kava) 
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