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Abstract

Detection of underwater electromagnetic pulses at low frequencies is complicated due to

waveform distortion even at relatively short propagation distances mainly caused by the con-

ductivity of the sea water. Additionally, the individual pulses exhibit variability in shape,

amplitude and time of arrival caused by random variations in the propagating media. The

detection performance of a estimator-correlator detector is highly dependent on the quality of

the signal estimator in order to form the correlator replica. Here we introduce an alternative

approach for the signal estimation by means of signal coherence. The replicas based on the

coherent part of the mean frame demonstrate potential to serve as a representative candidate

to the waveform of the pulses to be detected. The detection performance for both simulations

and real data show promising results.

1 Introduction

There is an increased interest towards applications in underwater active electromagnetic systems.

The attenuation and propagation velocity of electromagnetic (EM) pulses in sea water are highly

frequency dependent. The waveform distortion of the pulses is high even at a moderate distance

due to the conductivity of the water. Therefore, the shape of the transmitted EM-pulse can be

optimized for a speci�c propagation distance in order to maximize the received pulse amplitude.

Song and Chen [6] found a time domain solution for the optimum antenna current at a particular

distance with a maximum intensity. However, often in real situations the propagation distance

varies. One possibility to circumvent this problem is to generate a bank of di�erent pulses within a

certain range. The less distorted pulse or the mean frame, based on stacking several pulses, is used

for detection. However, this is diÆcult if the pulse-to-pulse random variation is large both in time

and amplitude. Also, it may be impractical in underwater surveillance. Another way to increase

detection and estimation performance is to introduce an improved signal model. The EM signal

model we use here belongs to a recently introduced class of signals known as Randomly Modulated

Periodicity (RMP), e.g. [2]. With RMP a periodic signal is modeled as a sum of complex sinusoids

with an additive random modulation. This modulation accounts for a broadening of the spectrum

around the fundamental frequency and a small time jitter that is inevitable in many real-world

applications. If this jitter cause large random variations the conventional mean frame estimate is

not the best correlator replica to be used in detection.

The RMP model can be described by two components; harmonic and modulation. We estimate

the signal coherence, which is a measure of the jitter at the particular frequency. The signal coher-

ence is a generalization of the concept of signal-to-noise ratio (SNR) referring to the (statistical)

degree of deviation from a pure sinusoid in a harmonic signal. After thresholding the coherence

spectra and applying the inverse Fourier transform, the remaining coherent signal is used as a EM

pulse replica in a estimator-correlator detector.
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In �g.(1) the signal generating system under consideration is sketched with the EM source, re-

ceiver and the three layered environment depicted. If the water depth d is shallow the three layered
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Figure 1: The source transmitted EM pulses represented by Et and Ht and the receiver picked up

the propagated pulses here denoted by Er and Hr.

environment signi�cantly a�ects the characteristic of the propagation and has to be accounted for

in the construction of the optimized pulses. The solution to wave propagation of EM pulses in a

three layer environment can be found in [5].

2 Signal Detection

The basic problem under consideration is to detect the presence or absence of a signal, x, in a

recorded sequence, y, corrupted by an additive noise, v. This problem can be treated mathemati-

cally as a statistical hypothesis test with the following two hypotheses

H0 : y = v

H1 : y = x+ v
(1)

where y = [y(0); : : : ; y(T � 1)]T is the received and digitized EM signal, v = [v(0); : : : ; v(T � 1)]T

is the ambient EM noise with the probability distribution pv and x = [x(0); : : : ; x(T � 1)]T is

the signal to be detected representing the propagated EM pulses. The shape of each received

pulse varies due to random variations in the sea water. Hence, the signal, x, can be considered as

stochastic with the multivariate probability distribution px. In this work the signal, x, is modeled

as an RMP, which is presented in the preceding section. The �nal objective is to formulate a

decision rule for the hypothesis testing problem. A more complete theory of signal detection can

be found in [4]. In a general framework the decision rule can be expressed as

Æ(y) =

(
H0 if L(y) < �;

H1 if L(y) > �:
(2)

where L(y) is a detection statistic and � is a threshold. In order to formulate an optimal detector for

the hypothesis testing problem in eq.(1) it is necessary to theoretically derive a detection statistic

and threshold � . There are several strategies which can be adopted when selecting the statistic and

threshold, e.g. Neyman-Pearson, Minimax. In this paper, we have adopted the Neyman-Pearson

criteria

max
Æ

fPD(Æ)g under the constraint PF � �; (3)

where PD is the probability of detection, PF is the probability of false alarm and � is a user de�ned

maximal probability of false alarm. The probability of detection is

PD =

Z
�1

p(yjH1)dy; (4)



and the probability of false alarm is

PF =

Z
�0

p(yjH0)dy; (5)

where py(yjHj) for j = 0; 1 is the conditional probability distribution for the received signal, y,

under the two hypothesis, �1 = fy 2 R
N jL(y) > �g is the acceptance region and �0 = fy 2

R
N jL(y) < �g is the rejection region. Hence, the Neyman-Pearson criterion ensures a decision

rule which maximizes the probability of detection for a given maximal probability of false alarm.

Further, the Neyman-Pearson lemma indicates that a suÆcient statistic for the hypothesis testing

problem in eq.(1) is the likelihood ratio [1]

L(y) =
py(yjH1)

py(yjH0)
: (6)

By using eq.(1) and noting that py(yjH0) = pv(y) and py(yjH1) = Exfpv(y�x)g , where Ef�g is
the expectation operation, eq.(6) can be rewritten as

L(y) =

Z
RN

pv(y � x)

pv(y)
px(x)dx =

pv(y � x̂)

pv(y)
(7)

where the second equality holds for some x̂ 2 RN and relies on the assumption that pv is suÆciently

regular. By using the assumption of i.i.d. Gaussian ambient noise, v � N(0; �2v), eq.(7) can be

expressed

L(y) = exp

�
x̂
T��2v y �

1

2
x̂
T��2v x̂

�
: (8)

This expression is known as the estimator-correlator form of the likelihood ratio. In an interpreta-

tion of eq.(7) and eq.(8), the signal x̂ can be seen as an estimate of the most representative member

of the stochastic signal x. Further, x̂ is treated as a coherent signal and is used as the correlator

replica in a matched �lter x̂T��2v .

In order to assess the performance of the detector we have followed the commonly used approach

in line with the Neyman-Person strategy where the probability of detection is presented versus the

probability of false alarm for a speci�c SNR. This representation goes under the name; receiver-

operating-characteristic (ROC). The SNR serves as a measure of the diÆculty of the detection

scenario at hand. In this paper we use following SNR de�nition

SNR = 10 log
10

�
EfxTxg
EfvTvg

�
: (9)

3 The RMP Signal Model

A signal x(t) can be called a randomly modulated periodicity RMP with period N if it is of the

form [2]

x(t) =
1

K

K=2X
k=�K=2

[�k + uk(t)] e
i2�fkt for fk =

k

N
(10)

where �
�k = ��k, u�k(t) = u�k(t), and Efuk(t)g = 0 for each k and � denotes the complex conjugate.

The K=2+1 fuk(t)g are jointly dependent random processes with �nite moments. The signal can

also be separated into two parts as

x(t) = s(t) + u(t) (11)

where

s(t) =
1

K

K=2X
k=�K=2

�ke
i2�fkt and u(t) =

1

K

K=2X
k=�K=2

uk(t)e
i2�fkt (12)



Due to the periodicity of the narrow-band signal x(t) the covariance between x(t) and a delayed

version x(t +�t) does not reach zero as �t increase to a large number, i.e. the contributions are

not decorrelated even at a fairly large time delay, �t. The mean of x(t) is equal to the periodic

component of s(t). The additive term u(t) in eq.(11) is a random variation of x(t) from the mean

periodic signal s(t). A RMP signal is created by some physical mechanism, which has a more

or less stable inherent periodicity. For example, the radiated sound �eld from a low frequency

transducer in shallow water [3].

The discrete samples in the mth frame is xm(0); : : : ; xm(N � 1). Its discrete Fourier transform

(DFT) at frequency fr = r=N for each r = 1; : : : ; N=2 is

Xm(r) =

N�1X
t=0

xm(t)e�i2�frt

=

N�1X
t=0

1

K

K=2X
k=�K=2

[�mk + umk (t)] e
i2�kt=Ne�i2�rt=N

= �mr + Um(r) where Um(r) =

N�1X
t=0

um(t)e�i2�frt

(13)

We assume the joint distribution to be the same for each frame, thereby the index m will be

omitted. The variability of X(r) about its mean �r depends on the complex variance of U(r) and

the covariances of U(r1) and U(r2) is EfU�(r1)U(r2)g = �U (r1; r2), where

�U (r1; r2) =

N�1X
t1=0

N�1X
t2=0

cu(t1; t2)e
i2�

r1t1�r2t2

N (14)

and

cu(t1; t2) = Efu(t1)u(t2)g = Efu(t1)u�(t2g = c�u(t1; t2): (15)

If u(t) is weakly stationary then cu(t1; t2) = cu(�t) where �t = t1 � t2. It then follows that

the variance of U(r) is �U (r1; r2) = �2U (r) since r1=r2=r. For a more detailed discussion of the

properties of �2U (r) see [2]. We are now able to introduce a measure called signal coherence x(r)

de�ned by

x(r) =

s
j�rj2

j�rj2 + �2U (r)
: (16)

Suppose we have recorded M frames, each of length N , of y(t) = x(t) + v(t) where x(t) is

de�ned in eq.(10) and v(t) is the ambient noise used in eq.(8). Then the mean frame can expressed

as

�y(t) =
1

M

MX
m=1

ym(t) (17)

which is an unbiased estimator of the signal s(t) if v is white and has zero mean. Asymptotically

the mean frame, �y(t), is normally distributed with mean s(t) and variance M�1(�2x(t) +�2v). If M

is suÆciently large then M�1(�2x(t) + �2v) is negligible. Further,
�Y (r) is a consistent estimator of

�r with an negligible error for large M [2]. Since ym(t) = sm(t) + um(t) + vm(t) we can de�ne

�ym(t) = ym(t)� �y(t); (18)

and let �Ym(r) denote the rth DFT component of [�ym(0); : : : ;�ym(N � 1)]. It follows that

�Ym(r) is the rth DFT component of [um(0) + vm(0); : : : ; um(N � 1) + vm(N � 1)] plus an error

of order Op(M
�1=2). The estimate of the variance �2U (r) is

�̂2U (r) =

"
1

M

MX
m=1

j�Ym(r)j2
#
� �2v : (19)



This estimate is approximately normally distributed with mean �2U (r) and variance decreasing with

Op(M
�1). In order to acquire an estimate of the signal coherence, x(r), based on real data we

can use �Y (r) as an estimate of �r and �̂2U (r) as an estimate of �2U (r) to obtain

̂x(r) =

s
j �Y (r)j2

j �Y (r)j2 + �̂2U (r)
: (20)

This is a consistent estimator of the signal coherence at frequency fr with an error of order

Op(M
�1=2). To obtain a correlator replica for the detector in eq.(8) this coherence spectra is

transformed to the time domain via an inverse Fourier transform. To further suppress the inu-

ence of the noise and random modulation in the construction of the correlator replica we applied

a threshold where all coherence spectral components bellow 0:95 were set to zero before transfor-

mation to time domain. This time domain replica is called the coherent part of the mean frame

(CPMF).

The assumptions for connecting the RMP model and the EM pulses are; at a very short

source-receiver distance, the signal is received with a fairly low level of time-of-arrival jitter with

a modulation only caused by the amplitude pulse-to-pulse variation. This gives similar properties

for both the mean frame (MF) and CPMF value in eq.(20). At larger source-receiver distances

the EM pulses are strongly a�ected by the wave propagating medium introducing both temporal

and amplitude modulations. The MF is not necessarily able to estimate the best replica for the

individual pulses. The CPMF is less sensitive to the temporal modulation and therefore keep the

waveform of the replica less distorted as long as frame synchronisation is possible, i.e. only one

pulse in each frame.

4 Simulations and Experiment

The experimental setup is sketched in �g.(1), where the transmitter consisted of a 6m long rod

attached with two 1m long titanium cylinders, the later constituting the transmitter electrodes.

The receiver antenna was made out of Ag/AgCl electrodes 1m apart. Both the receiver and

transmitter were at a depth of approximately 8m. The received EM signals were transformed to

voltage and digitized with a sampling rate of 50kHz. Signals were recorded with the receiver located

at three di�erent distances, 70m, 115m and 140m from the source. At each distance an optimized

pulse were transmitted. In the location of the experiment the water depth were approximately 15m.

Due to the shallow depth the three layered environment signi�cantly a�ects the characteristic of

the propagation and has to be accounted for in the construction of the optimized pulses [5].

In order to set up a fairly realistic simulation of the detector performance, in terms of ROC

curves, the measured EM noise signal were analyzed. In �g.(2) a histogram of the EM noise

and a Gaussian probability distribution function are presented. The close agreement between the
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Figure 2: Histogram of the recorded EM noise (solid) and a Gaussian probability distribution

function with the same mean and variance as the recorded EM noise (dashed).



curves indicates that the amplitude distribution of the EM noise can be modeled as a Gaussian

distribution. Further, in order to investigate if there exist dependence between the recorded EM

noise samples the auto-correlation coeÆcient were computed. The result is depicted in �g.(3). The
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Figure 3: Auto correlation coeÆcient of the recorded EM noise

results shows that there is some correlations in the recorded EM noise, although relatively small.

These small correlations could also be artifacts caused by the anti-aliasing and notch �ltering at

50[Hz] that were used during the experiment. Nevertheless, the assumption of an i.i.d. Gaussian

noise distribution for the real EM noise is a realistic model.

During the experiment 100 consecutive pulses were transmitted at each distance. The pulses

were separated by 20ms which corresponds to a frame length of 1000 samples. Fig.(4) shows one

frame of a real received pulse. From �g.(4) it is clear that the ambient noise is dominating. Based
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Figure 4: Time series of the real signal plus noise recorded at a distance of 115m from the trans-

mitter.

on the recorded pulses the coherent part of the mean frame (CPMF) were estimated. An example

of the estimated CPMF signal is shown in �g.(5), where the pulse is clearly visible.

The test model for the signal used for the simulations is

x(t) =

KX
k=1

[sk + u1(t)] cos(2�fkt) + [sk + u2(t)] sin(2�fkt) (21)

where sk = (2 � (k � 1)=4K)=
p
2L, fk = k=L, K = 47 and L = 1000 is the frame length. The

modulations u1(t) and u2(t) were generated by two AR models

u1(t) = �u1(t� 1) + e1(t) and u2(t) = �u2(t� 1) + e2(t); (22)
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Figure 5: Estimate of the coherent part of the mean frame (CPMF) for the real signal recorded at

a distance of 115m from the transmitter.

where � = 0:9, e1(t) and e2(t) are independent i.i.d Gaussian noise processes i.e. N(0; �e) where we

chose �e = 5 to account for the pulse-to-pulse variability. The parameter values for the simulated

signal were chosen to roughly resemble the received real EM pulses in terms of time duration,

shape and pulse-to-pulse variability.

ROC curves for di�erent SNR's were computed to obtain an indication of the performance of

this new way of constructing an estimator-correlator detector. The ROC curves were generated

by estimating PD and PF by feeding simulated signals to the estimator-correlator detector and

counting the number of detections and false alarms. The simulated signals consisted of 600 frames

containing noise only or signals with an additive noise. These results are presented in �g.(6). From
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Figure 6: ROC curves based on simulated signals for the SNRs �5dB (solid), �7dB (dashed),

�10dB (dash-dotted) and �15dB (dotted).

�g.(6) it is clear that a estimator-correlator detector based on the coherent part of the mean frame

perform quite well.

The detector performance in terms of ROC curves were also estimated based on the recorded

signals. In order to relate the ROC curves based on the real data to the simulated ROC curves

the SNR of the recorded signals had to be estimated. The SNR estimate were computed as

SNRest = 10 log
10

�
EfyTyg �EfvTvg

EfvTvg

�
; (23)



where y = x+ v. This SNR estimate reduces to eq.(9) if Efvg = 0 and x and v are independent.

The ROC curves computed on real data shown in �g.(7) indicates an even better performance than

for the simulation.
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Figure 7: ROC curves based on real signals recorded at distances of 70m (dashed), 115m (solid)

and 140m (dash-dotted)

5 Conclusions and Discussion

The waveform variability of low frequency underwater EM pulses are well modeled by the class

of signals called randomly modulated periodicity (RMP). By using the RMP model we estimate

the signal coherence for both simulated and real EM pulses. The signal coherence of the pulses

are high even at a quite large randomness in amplitude and time-of-arrival. By thresholding the

signal coherence we are able to �nd a replica called coherent part of the mean frame (CPMF) to

be used in the detector. The detection performance for this replica are able to perform well even

if the variability of the pulses are large. Another important issue in the �eld of active underwater

EM is target feature estimation. If the CPMF is a robust replica for correlator detection it can be

a strong candidate for increased target identi�cation.
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