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Abstract,  Vibroacoustic signals of rotating machinery are composed of sums of mod- 
ulated periodicities, broadband random components, and occasionally a set of transient 
responses. These signals are not ergodic as the modulated periodicities are partially coher- 
ent. Progressive wear of the rotating machine causes the nonlinear structure of the received 
signal to intensify, and nonlinearity results in transfer of energy between harmonics of 
the signal's periodic components. Statistics developed from bispectrum and second-order 
cumulant spectrum estimates of the measured signal are combined with power spectrum 
amplitudes as feature inputs for standard multivariate classifiers. The higher-order statis- 
tics measure, respectively, the extent of nonlinearity and intermodulation of the received 
signal. Classification results of simulated and actual incipient wear data coliected from a 
controlled experiment drilling circuit boards illustrate the potential of this novel statistical 
signal processing approach. 

Subject Classifications: Statistics: Nonparametric time series estimation for pattern analy- 
sis. Industries: Health monitoring and durability of rotating machinery. Reliability: Incipient 
failure inspection/quality control/system safety. 

* Received March 27, 1992; accepted August 30, 1992; revised May 21, 1992. 
1 Office of Secretary of Defense, Joint Tactical Missile Signatures, 1431 McGuire Street, Lackland 

AFB, TX 78236-5532. 
2 Graduate Program in Operations Research, Department of Mechanical Engineering, The Univer- 

sity of Texas at Austin, Austin, TX 78712. 
3 Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 

78713. 
4 IBM Corporation, 11400 Burnet Road, Austin, TX 78758. 



412 BARKER, KLUTKE, HINICH, RAMIREZ, AND THORNHILL 

1. Introduction 

Circuit boards are by now a common component in many of the products we use 
on a daily basis. Automobiles, telephones, personal computers, and even toasters 
contain circuit boards that provide the electronic control for their specific functions. 
Circuit board manufacturing is a major industry, with a production of roughly 
$24.12 billion worldwide, of which, according to [1], the United States makes up 
roughly $6.37 billion. This market is projected to grow to $31.9 billion by the year 
2000 [2]. 

Construction of circuit boards is dependent on the application requirements. 
Cost, operating temperature, moisture resistance, electrical characteristics, shock 
and vibration, and other environmental variables all affect the choice of materials 
used in the boards. Military applications, for example, often require ceramic boards 
for their thermal properties and electrical performance. A common material for 
most applications, including computers and telecommunications, is a glassy-epoxy 
composite known as FR-4. Circuit boards consist of many sheets of electrically 
insulating layers of composite material alternating with conductor layers (usually 
copper). Figure 1 illustrates the typical construction of FR-4 circuit boards. The 
sandwich is built up a layer at a time, with patterning and etching steps performed 
at each layer to create the circuitry. Insulating composite layers are created by 
first impregnating glass cloth with epoxy. Several layers of this material are then 
used to form the thicker insulating layer. The assembly is compressed by a heated 
platen, then goes through a final curing, and is trimmed and drilled. The number 
of conductor layers can vary from one to several dozen, and conductor thicknesses 
also vary due to required resistances. 
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Figure 1. FR-4 circuit board construction. 

Via 

Copper conductors 

To produce the requisite functional complexity, electrical interconnections be- 
tween layers are provided by copper-plated through holes called "vias" Vias are 
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made by drilling the board on high speed machines with miniature drill bits. Stan- 
dard vias extend completely through the board, intersecting one or more conductor 
layers (see Figure 1). Blind vias extend partially through the board thickness and 
are created by drilling to a predetermined depth or by drilling a subassembly be- 
fore final lamination. Buried vias are holes that interconnect internal layers of the 
board, but do not extend to either surface. Drilling of all via types exposes the 
internal conductors, and electrical connection is established by electrolytic plating 
of copper after the exposed conductor edges of the drilled board are desmeared 
by chemical or plasma etching to guarantee a good connection. Taper and other 
dimensional irregularities can degrade the uniformity of the plating process which 
increases the probability of open circuits. Most circuit board manufacturing defects 
are known to be due to problems in the drilling process [3]. 

The drilling process must be carefully controlled as hole quality significantly 
affects the plating quality of the finished board. Many defects are avoided by 
careful optimization of speeds and feeds, drill design modifications, increased 
drilling spindle stability, and manufacturing material improvement. Nevertheless, 
ragged and protruding glass fibers due to tearing by a dull drill bit degrade the hole 
plating quality. A worn drill bit must be changed before significant damage occurs 
and renders an expensive circuit board unusable. The value of finished boards can 
be hundreds of dollars, and poor hole quality is a leading cause of board scrap. 

Present industrial drill replacement strategy is conservatively based on the short- 
est observed useful life of a particular drill, and the cost of replacing drill bits is 
typically a large portion of the total cost of drilling in the manufacturing opera- 
tion. A medium-sized factory producing 50,000 finished boards yearly with 3,000 
holes each would use roughly 30,000 drills annually if each drilled 5,000 holes 
on average. At $2 per bit, yearly expense for bit replacement would be $60,000. 
Significant drill life is lost when drills are changed prematurely. We felt strongly 
that operations research techniques would be quite valuable in developing a reli- 
able monitoring methodology. On-line methods of monitoring drill condition are 
preferred in the circuit board fabrication industry as they offer the potential for 
maximizing drill usage, and minimizing machine down time due to drill replace- 
ment, without sacrificing hole quality. 

Drilling machines used in circuit board production are quite different from those 
used in metal cutting operations. The most significant difference is that metal 
drilling is generally done at speeds not more than several thousand revolutions 
per minute (RPM) while FR-4 board drilling requires speeds up to 200,000 RPM 
to achieve the desired surface contact speeds with the smallest drills. Drilling 
spindles are carefully constructed to avoid damaging shaking forces caused by 
dynamic imbalance, and spindle bearings must be capable of sustained operations 
at these high speeds. Newer drilling machines use externally pressurized air journal 
bearings because of their stability, long life, and low friction at very high speeds 
(see Figure 2). 

The drill is held in the spindle by either a split or centrifugal collet. The spindle 
is driven rotationally by either a reaction air turbine or electric motor, and thrust is 
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also carried by a two-sided air bearing. Infeed motion that is both programmable 
and tightly controlled is supplied by a cam. To maximize throughput of a drilling 
machine, several circuit boards are drilled simultaneously by assembling a panel 
stack. The stack consists of several identical boards with an entry and exit sheet 
(see Figure 3). 
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Figure 2. Industrial drilling machine. 

_.•" 0.3 mm f ~tTraY 

T i 1 ! 
0.7 mm ~ ~ T  

Figure 3. Panel stack configuration. 
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The stack is clamped to an X-Y table which positions the stack at the appropriate 
via locations under computer control. The stack is compressed by a pressure foot to 
control the formation of burrs between the panels and to avoid seizing of the drill. 
Drilling debris is collected by a vacuum system (not shown). Drilling hit rates are 
usually several holes per second. A single circuit board may contain approximately 
5,000 via holes. Some drilling machines can operate a number of spindles so that 
several panel stacks on multiple X-Y tables can be drilled. 

In this paper, we present an on-line, statistically based algorithm that addresses 
the random elements of the drilling process and provides a considerably more 
accurate classification scheme than is currently available. This work is a novel 
application of statistical signal processing to more accurately capture the charac- 
teristics of a nonlinear, nonstationary, and nonergodic wear signal. The paper is 
organized as follows. After this introductory section, Section 2 gives some details 
on how data was obtained on drill bit condition. Section 3 gives the pattern recog- 
nition formulation of the machine health monitoring problem. Section 4 defines 
relevant spectral representations of the stochastic processes viewed as providing 
important feature information for the random fault mechanisms of rotating machin- 
ery, and describes the Higher-Order Statistical (HOS) feature extraction method 
used. Section 5 discusses the performance of the algorithm using a testbed of simu- 
lated data and data from the controlled drilling experiment. Section 6 describes the 
projected implementation of this new monitoring approach, and Section 7 presents 
our conclusions. 

2. Monitoring drill bit condition 

Developing reasonable criteria for monitoring drill bit condition involves first 
defining tool failure. One definition which has received much attention in the 
literature is tool breakage (see references [4] through [ 10]). However, catastrophic 
failure of the tool is rarely the point at which machining should be terminated. In 
fact, breakage of the miniature carbide drills is rare when drilling FR-4; they are 
usually removed from operation because circuit board hole quality degrades as a 
result of worn drills. Hence, a better criterion for tool failure in FR-4 drilling is 
based on measurements of drill condition which leads to classification of incipient 
failures of drill bits; these are early failures that result in degraded performance 
but may not be noticeable to the naked eye. 

Direct monitoring methods use actual tool wear measurements to determine 
the remaining tool life. Indirect monitoring methods use other parameter measure- 
ments to infer the wear state and remaining tool life. Direct methods are generally 
preferable if the measurements are reliable and do not interfere with machine 
productivity. Since these two requirements are rarely met, indirect methods are 
frequently investigated as alternatives. Monitoring techniques are also categorized 
with regard to implementation strategy: on-line techniques are used while machin- 
ing, and off-line techniques require the machine to be stopped. Naturally, on-line 
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techniques are desired for use in high volume manufacturing environments or when 
machine interruption might affect finished part quality. Direct monitoring methods 
are very difficult to use on-line because of continuous contact between the tool and 
the workpiece. There are also instrumentation difficulties with measurements on 
rotating tools [ 11]. Many monitoring methods have been studied and reported in 
the literature but very few have actually been implemented in industry because they 
are generally not robust enough to detect all types of tool wear under all conditions 
[12]. Measurements, whether direct or indirect, have high degrees of uncertainty 
and are sensitive to cutting conditions and other environmental variables that com- 
plicate the proper selection of a sensing approach. Consequently, recent research 
focuses on finding ways to use multiple sensors and/or signal features simulta- 
neously. Collectively called sensor fusion methods, these techniques attempt to 
reduce monitoring system sensititivity to variables other than tool condition by 
combining different indicators to classify a tool as acceptable or unacceptable. 

While there are examples of models using a combination of sensors and sig- 
nal features for monitoring rotating tool wear (see, for instance, references [ 13] 
through [17]), little published work has dealt specifically with high speed circuit 
board drilling. Ramirez [18] was the first to investigate an on-line, indirect wear 
monitoring approach using shaft speed, shaft displacement, and spindle vibration 
in the manufacturing of electronic circuit boards from epoxy-glass composite. His 
monitoring methods are the source of data used for the classification algorithms 
discussed in this paper. The potential responses and instrumentation are shown 
schematically in Figure 4. 

Time series signals were collected, filtered, digitized, and then sampled us- 
ing a multi-channel transient recorder with 12-bit resolution. Signal capture was 
triggered using an optical switch that sensed the drill spindle height and began 
sampling just before the drill entered the panel stack. In this manufacturing envi- 
ronment, drills are typically replaced at 8,000 drilled holes, a conservative estimate 
of the minimum drill life. A 1.09 mm diameter drill with a nominal spindle speed 
of 47,000 RPM was used. While torque, displacement, and acceleration results 
are reported in [19], only the acceleration responses are of focus in this article. 
Accelerometers were placed at three locations, measuring the spindle vibration 
along the X, Y, and Z axes. 

As is typical when measuring the vibration response of physical systems, the 
signal contains spurious information (noise) that is not of interest to measuring 
drill wear. The cutting forces and resulting spindle vibration time series generated 
during high speed drilling of FR-4 produced good signal-to-noise ratios in the Z 
or thrust axis accelerometer; of the three accelerometers, this one was shown to be 
the most useful for monitoring drill wear [20]. This article consequently focuses 
on 240 Z accelerometer time series: 30 new (0 holes) and 30 slightly used (8,000 
holes) drill bit signals for each of four stack material/cutting load conditions. 

Typically, time series data are analyzed in the frequency domain using the power 
spectrum, the Fourier transform of the autocovariance function. While vibration 
power spectra observed in metal cutting and drilling are usually dominated by a few 
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Figure 4. Instrumentation of drill spindle. 

structural resonances, FR-4 power spectrum responses were strongly influenced by 
the internal structure of the composite. Cards are manufactured in the same facility 
with the same resin system but have different glass cloth and layer thicknesses. 
Figure 5 shows two different types of boards. Because the glass fibers (oval disks in 
diagram) cut during each hole are not uniformly configured in the board layers, the 
vibration signals have both periodic and aperiodic characteristics and reflect the 
effects of many different cutting geometries randomly encountered by the drill. The 
cutting forces and energy represented by the vibration measurements change within 
a certain layer of the board, and also for each revolution of the drill. The measured 
signal is thus composed of a sum of modulated periodicities, broadband random 
components, and occasionally a set of transient responses. The modulated periodic 
components are partially coherent, and thus the signal is not ergodic or mixing, i.e., 
there is a periodic "memory" in the signal. Transients are nonstationary, and the 
broadband signal may contain nonlinear structure. When the drills start to wear, 
the nonlinear structure intensifies in the received signal. Vibration measurements 
carrying wear information of the drill cutting edges should be sensitive to spectral 
correlations among the harmonics of the periodic components that are not present 
in the stationary case (see Figure 6). Consequently, subtle differences in energy 
transfer during the wear process are not sensed in the power spectrum alone, as 
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Figure 5. Internal view of composite circuit boards. 

the power spectrum measures energy in a stationary and linear stochastic process. 
Weaknesses of a power spectrum monitoring approach and the physics of the 

FR-4 cutting process motivated Barker [21] to investigate higher-order statisti- 
cal (HOS) methods, which extend the power spectrum estimation techniques for 
early or incipient (rather than severe) fault detection. The circuit board drilling 
application became the vehicle for testing the validity and marginal discrimination 
power of a HOS approach. The algorithm developed combines information from 
several types of spectral measurements (power spectrum, second-order cumulant 
spectrum, and bispectrum) from a single sensor to improve a monitoring system's 
classification performance. Evaluated first with simulated data and then with ac- 
tual accelerometer data, this new type of sensor fusion approach led to significant 
improvements in the classification of drill condition. Although only one sensor is 
used in this application, the approach is adaptable to multiple sensors. 

3. Pattern recognition formulation of the machine 
health monitoring problem 

In investigating multivariate group differences in a statistical setting, we have 
several objectives in mind. First, can we identify significant differences between 
groups with respect to their multivariate descriptions? This question is answered 
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by performing the multivariate equivalent to the (univariate) t-test on population 
means. A sample mean vector, or centroid, for each population is formed, and the 
null hypothesis of equal population centroids is tested using Hotelling's T statis- 
tic, or equivalently, Wilks' Lambda statistic when considering only two groups 
(see [22]). Second, what role do the measurement variables play in separating the 
groups? A discriminantfunction which may be a linear, quadratic, or other func- 
tion of the measured variables is used to answer this question. Simply put, a good 
discriminant function yields similar values for samples from the same population 
and different values for samples from different populations. Developing a dis- 
criminant function involves determining which measurement or feature variables 
are most important in separating the groups and corresponds to searching for a 
vantage point that provides a view of the data with maximum separation between 
groups or populations. We began this research by conjecturing that higher-order 
forms of spectra combined with power spectra will provide a better vantage point 
for separating data (in this case time series records) into groups. As will be seen, 
our conjecture was strongly supported by the signals collected and analyzed. And 
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finally, can we use the methods of detecting group differences to determine the 
group that generated a new time series record? This is the multivariate classifica- 
tion problem. In many applications of discriminant analysis, classification is the 
major objective. 

Many examples of machinery monitoring systems in the literature can be cat- 
egorized as using a general pattern recognition approach. One excellent commer- 
cial example is the statistically based system developed at Oak Ridge National 
Laboratory for continuous, on-line, unattended surveillance of dynamic reactor 
signals [23]. This monitoring system is based on identification of changes in the 
power spectrum of measured variables where change is detected using discrim- 
inant functions formulated to emphasize relevant features. As is typical of most 
pattern recognition systems, this system uses a heuristic feature extraction process 
to feed the raw time series data into Bayesian discriminant functions. "Features" 
are the properties of the time series used for classification purposes, and the choice 
of a feature set as well as its statistical properties affect monitoring performance. 
Additional details on the Bayesian approach used to select appropriate features in 
this study are included in [21]. 

4. Spectral representations of time series and the 
HOS approach 

4.1. Preliminaries 

Analyzing and interpreting time series measurements can be made in the time do- 
main or the frequency domain. Spectral or Fourier analysis decomposes functions 
representing fluctuating phenomena in space or time into sinusoidal components 
that have varying frequencies, amplitudes, and phases. Spectral analysis has an 
inherent consistency and efficiency in its application because all spectral density 
functions use the estimates provided by the direct discrete Fourier transform (DFT) 
of the raw time series. Definitions of terms used in cumulant spectral analysis fol- 
low. 

The characteristic function of a random variable X is given by 

F (b(t) = eitX f (x)dx, t E R, 
o o  

where f ( x )  is the density function of X. The rth cumulant, Kr, is defined as 
the coefficient of the rth term in the Taylor series expansion of log ~b(t). Special 
relationships exist between moments and cumulants of X; Hinich has developed 
a general formula for the expansion of moments in terms of cumulants (see [24]). 

Let (x(h) . . . . .  x(tu)) be a collection of N random variables with zero-mean 
marginals (E[x(ti)] = 0 for each i ~ (1 . . . . .  N)). Let cum(tl . . . . .  tN I N) denote 
the Nth order cumulant of (x(tl) . . . . .  x(tN)). The Nth order cumulant spectrum, 
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denoted by Cum Su( f l  . . . . .  fN), is the Nth order discrete Fourier transform of 
the Nth order cumulant: 

Cum SN(f)  = E cum(_t I N)exp[ - iZzr ( t ' f ) ] ,  
t~/2 

wheret = (q . . . . .  t N ) , f  = ( f l  . . . . .  fN),and/2 = {n:n = 0, +1, --1, +2, --2 . . . .  }. 
A stochastic process is called stationary if the probability law of the process is 

invariant to shifts in the time axis. For a stationary time series, the second-order 
cumulant is a function only of the lag (r  = tl - tz); i.e., 

c2(t�92 t2) = c2(~) = Cov[x(tl), x(tl + r)], q, t2, r E R. (1) 

The power spectrum is defined as the Fourier transform of (1). The third-order 
stationary spectrum (called the bispectrum) reflects the cumulant structure over 
a particular pair of frequencies and provides information about nonlinearity in a 
stationary stochastic process. For nonstationary processes, however, the second- 
order cumulant spectrum contains information beyond that contained in the power 
spectrum. Similarly, the third-order cumulant spectrum contains information on 
the process covariance structure beyond the bispectrum. Taken as a whole, the 
techniques used to estimate spectral densities beyond the power spectrum are 
known as higher-order statistics (HOS). While a little more computational effort is 
required to estimate these densities, they provide the foundation for more powerful 
feature characterization of measured signals. 

While the power spectrum represents the contribution to the second moment 
over a particular range of frequencies, the bispectrum represents the contribution 
to the third moment over a particular pair of frequencies. Nikias and Raghuveer 
list a wide range of bispectrum applications in [25]. Proceedings from the 1989 
Workshop on Higher-Order Spectral Analysis [26] contain some recent devel- 
opments in bispectrum theory with applications to signal processing. The latest 
developments are given in the IEEE Proceedings of the 1991 International Signal 
Processing Workshop on Higher-Order Statistics [27]. In this research, in addition 
to the power spectrum, the second-order cumulant spectrum and the bispectrum 
are estimated from the measured signal so that intermodulation and nonlinear ef- 
fects of random fault mechanisms of rotating machine systems are captured in the 
physical process representations. 

4.2. Classification via HOS feature extraction 

Because of the number of spectral estimates generated (several thousand) and the 
highly non-Gaussian and nonlinear nature of the data collected in this study, a 
feature extraction algorithm was needed to select a finite subset of the spectral es- 
timates for input to the classification algorithm. Although it is possible that power 
spectrum estimation and feature extraction may provide sufficient classification 
accuracy, performing HOS estimation and feature extraction will be worthwhile if 
it improves the overall classification performance of the power spectrum-based 
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approach. The HOS feature extraction approach is not only multivariate, but 
also multispectral. Algorithmic approaches for determining an appropriate fea- 
ture space are categorized into two major areas: selection and transformation. 
Feature variable selection is appropriate if cost or other factors present prevent all 
of the original set of features to be measured and used; it is thus a combinatorial 
analysis problem. When all the variables can be measured, variable transforma- 
tion is performed, but increased reliability occurs if a lower dimensional space is 
used. Variable transformation approaches include linear and nonlinear techniques. 
Both approaches assume that the number of potential features is much less than 
the number of training samples. This was not the case with the time series cases 
analyzed in this research, which typically had training samples of at most 60 time 
series records and many more potential features. A hybrid approach was necessary 
in this work. 

The HOS feature extraction algorithm consists of three stages. First, visual plots 
of ensemble averaged spectra and their differences between groups are generated 
after each spectral estimation process to obtain a rough idea of which estimates 
to use as possible feature variables. This is the graphical variable selection stage. 
Second, univariate analyses of variance are performed for the estimates of each 
spectrum type and the top 10 F-statistics are chosen as potential feature variables. 
This step accomplishes a dimensional reduction of the feature space. Third, a con- 
ventional stepwise variable selection algorithm available in SAS 6.05 is applied 
using the 30 spectral variables (10 each from the power spectrum, bispectrum, and 
second-order cumulant spectrum feature sets), identified from the second stage. 
Stepwise discriminant analyses are performed to obtain the best reduced and com- 
bined spectral feature space. The spectral feature sets composed of 10 similar 
feature variables (e.g., all power spectrum) are found to be average discriminators 
by themselves. However, when the different spectral feature sets are combined ac- 
cording to certain statistical criteria, their discrimination and classification power 
significantly increase. Feature selection and classification results are given next. 

5. Performance of the approach in simulated and actual 
wear data. 

Having developed the methodology, we needed data to thoroughly exercise our 
approach. Simulation provided a basis for generating an extensive testbed of prob- 
lems to test classification performance. It allowed us to generate, in a controlled 
way, a vast database of time series records that represented a range of difficulties 
in classification problems. The simulation was developed to mimic the physics 
and dynamics of the drilling process as it is currently understood (see [18]), and 
allowed us to study performance in a much broader range than is available exper- 

5 SAS is a registered trademark of the SAS Institute, Inc. 
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imentally. The following paragraphs give a brief description of the physics of the 
process that we simulated. 

Rotating machine signature signals received by sensors are represented by a 
harmonic process: 

k 

Vc(t) = E An cos(2~rnfct + ~bn) + n(t), 
n=O 

(2) 

where Vc(t) represents the voltage of the cosine wave carrier signal, A and ~b are 
the amplitude and phase terms of the driving force mechanism (drill rotation) or 
carrier signal, fc is the fundamental carrier frequency determined by the period of 
the driving force function and vibration characteristics of the machine system, and 
n(t) is the corrupting noise generated by other vibratory sources and distortional 
effects. Noise is assumed to be Gaussian and independent of the emitted vibration 
signal and k is the number of interacting sinusoids. 

The rotating drill spindle does not generate a signal that is a pure harmonic 
tone, cos(2Jrfct) = cos(wct), but rather is an amplitude and phase modulated 
representation of (2): 

Vampm(t ) = k[1 + maf(t)] cos(~Oct + (bc + mpg(t)) + n(t), 

where Vampm (t) is the amplitude and phase modulated cosine wave carrier signal, 
ma is the amplitude modulation index, f ( t )  is the amplitude modulating signal, 
~bc is the carrier signal phase, mp is the phase modulation index, and g(t) is the 
phase modulating signal. In this study, f ( t )  = cos O)at and g(t) = cos COpt were 
simple cosine waves. As the tool wears, small cracks and jagged edges develop and 
influence the signal signature. The primary interest for incipient fault detection, we 
felt, lies in classifying changes in the phase modulation index parameter, although 
we generated time series records over a broad range of changes in amplitude 
modulation as well. 

5.1. The simulation study 

The simulation experiments consisted of 250 independent classification runs us- 
ing 3 alternative feature extraction methods for 14 different detection problems. 
Three parameters (amplitude and phase modulation indices and standard deviation 
of an independent Gaussian noise term) were adjusted. The 14 problems are col- 
lected in the seven scenarios shown in Table I. Each scenario has two treatments 
that differ in phase modulation index at fixed levels of amplitude modulation and 
noise standard deviation. Numbers in parentheses are the simulation parameters: 
amplitude modulation index (AMI), phase modulation index (PMI), and standard 
deviation of Gaussian noise. Amplitude modulation levels were fixed for each 
scenario as they tend to represent changes in environment rather than changes in 
process state; however, amplitude modulation was varied between scenarios for 
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sensitivity and verification purposes. Three phase modulation levels were consid- 
ered; .7 was chosen as the base reference to represent a new process condition, 
and .71 and .72 represented an increasingly worn condition. Note that zero values 
for the modulation indices represent the pure cosine wave carrier frequency. 

Table L Seven incipient fault detection scenarios for simulated wear data. 

Scenario Number Simulation Parameters 
(AMI, PMI, Noise Standard Deviation) 

1A 
1B 

2A 
2B 

3A 
3B 

4A 
4B 

5A 
5B 

6A 
6B 

7A 
7B 

(.3,.7,.4) vs. (.3,.71,.4) 
(.3,.7,.4) vs. (.3,.72,.4) 

( .3,7,8) vs. (.3,.71,.8) 
(.3,.7,.8) vs. (.3,.72,.8) 

(.3,.7,1.4) vs. (.3,.71,1.4) 
(.3,7,1.4) vs. (.3,.72,1.4) 

( .3,4,4) vs. (.3,.41,.4) 
(.3,.4,.4) vs. (.3,.42,.4) 

(.3,.4,.8) vs. (.3,.41,.8) 
(.3,.4,.8) vs. (.3,.42,.8) 

(.3,.4,1.4) vs. (.3,.41,1.4) 
(.3,.4,1.4) vs. (.3,.42,1.4) 

(.5,.7,.4) vs. (.5,.71,.4) 
(.5,.7,.4) vs. (.5,.72,.4) 

The experimental design is a randomized complete block. Three strategies are 
employed to eliminate bias in the measurement of the two maj or response variables, 
probability of false alarm and probability of detection. First, since classification 
performance is directly related to the trained discriminant rule, 10 different training 
functions were calculated for each classification treatment. Each of the training 
rules was constructed from a randomly selected sample of 30 of the 250 signal 
ensembles for each class. A jacknife estimation procedure reported in [28] was 
applied. Misclassifications were tallied after thejacknife procedure was performed 
for all 30 time series. Third, paired comparison t-tests eliminated any classification 
performance variability due to different capabilities of the 10 training discriminant 
rules. 

Alternative spectral feature extraction approaches are compared by examin- 
ing two performance components that define the rate of correct classification: 
probability of detection and probability of false alarm. These classification perfor- 
mance measures are reported as relative comparisons via paired t-tests for each 
scenario/classification treatment. Two types of classification performance are re- 
ported: discriminant or training classification and test classification. Classification 
results revealed no significant statistical difference in classification performance 
between the alternative feature extraction methods for the four treatments with 
a high (1.4) level of noise standard deviation. However, some interesting results 
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were obtained for the other 10 treatments shown in Table I. Extracted feature sets 
for all simulated scenarios were composed of 28 power spectrum, 51 bispectrum, 
and 25 second-order cumulant spectrum feature variables. For each scenario, the 
HOS features were most significant in increasing discriminating and classification 
power. One type of feature extraction vector by itself (power spectrum, bispec- 
trum, or second-order cumulant spectrum) was never as powerful as a combination 
of feature types. Our simulation results were very encouraging. The substantial 
improvement gained by including HOS features clearly justified an investigation 
of the actual data. 

Table II shows the marginal contribution to training classifications of com- 
bining second-order cumulant spectral features (SCUM) to power spectra features 
(PS), and of combining bispectral features (B) to second-order cumulant and power 
spectra features. The data reported are relative performance differences of 10 dif- 
ferent discriminant rules over 30 classification runs. The statistical significance 
level reported is for rejecting the null hypothesis of equal performance means. 
Clearly, combining nonstationary feature information and stationary features im- 
proves both false alarm probability and detection probability with extremely high 
levels of statistical significance. Furthermore, the inclusion of nonlinear informa- 
tion gives better training classification performance with a high level of statistical 
confidence. 

Table II. HOS vs. power spectrum training classification for simulated wear data. 

Percent Change in: 
Feature Extraction False Alarm Significance Detection Significance 
Method Probability Level Probability Level 

PS and SCUM vs. PS - 4.9 .0004 + 4.8 .0018 
PS, SCUM, B vs. PS -10.4 .0001 +11.5 .0001 

Clearly, combining HOS features with power spectrum features improves train- 
ing classification of the simulated scenario data. More important to the evaluation 
of the feature extraction methods is an estimate of the actual test classification 
error rate. This measures a feature extraction method's capability to classify future 
time series samples. Tables III and IV, respectively, show the marginal contri- 
butions to test classification performance by combining second-order cumulant 
spectra features with power spectra features, and combining bispectra features 
with second-order cumulant and power spectra features. The numbers reported 
represent relative performance difference over 250 runs per classification prob- 
lem. As before, the significance level reported is for rejecting the null hypothesis 
of equal performance means. 
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Table I l l .  Second-order cumulant spectrum and power spectrum vs. power spectrum test 
classification for simulated wear data. 

Percent Change in: 
Simulation False Alarm Significance Detection Significance 
Parameters Probability Level Probability Level 

(.3,.7,.4) vs. (.3,.71,.4) -0 .3  .85 +2.7 .0001 
(.3,.7,.4) vs. (.3,.72,.4) -4 .5  .0001 +4.6 .0001 

(.3,.7,.8) vs. (.3,.71,.8) +2.7 .01 +2.7 .01 
(.3,.7,.8) vs. (.3,.72,.8) +1.2 .21 +3.5 .0006 

(.3,4,4) vs. (.3,.41,.4) -0.1 .90 +2.8 .002 
(.3,4,4) vs. (.3,.42,.4) -3.1 .006 +4.5 .01 

(.3,4,8) vs. (.3,.41,.8) +3.6 .01 +3.6 .01 
(.3,.4,.8) vs. (.3,42,8) +0.2 .97 +2.4 .003 

(.5,.7,.4) vs. (.5,.71,.4) +1.5 .16 +3.1 .0001 
(.5,.7,.4) vs. (.5,.72,.4) +0.8 .45 +5.9 .02 

Table IV. Bispectrum, second-order cumulant spectrum and power spectrum vs. power 
spectrum test classification for simulated wear data. 

Percent Change in: 
Simulation False Alarm Significance Detection Significance 
Parameters Probability Level Probability Level 

(.3,.7,.4) vs. (.3,.71,.4) -1 .0  .45 +3.4 .0001 
(.3,.7,.4) vs. (.3,.72,.4) -4 .9  .0001 +6.8 .0001 

.3,.7,.8) vs. (.3,.71,.8) +0.2 .88 +0.3 .81 

.3,.7,.8) vs. (.3,.72,.8) +1.2 .30 +3.9 .001 

.3,.4,.4) vs. (.3,.41,.4) -1 .5  .32 +1.8 .002 

.3,.4,.4) vs. (.3,.42,.4) -6 .5  .0001 +6.2 .002 

.3,.4,.8) vs. (.3,.41,.8) +3.0 .005 +3.0 .005 

.3,.4,.8) vs. (.3,.42,.8) +0.07 .01 +1.0 .0009 
(.5,.7,.4) vs. (.5,.71,.4) -0 .4  .73 +4.6 .0001 
(.5,.7,.4) vs. (.5,.72,.4) -0 .5  .69 +7.0 .004 

When the feature information set includes both stationary (power spectrum) and 
nonstationary (second-order cumulant spectrum) components, better test classifi- 
cation performance is obtained. Significantly, detection performance is increased 
for all treatments. Additionally, within each pair of  treatments, or scenario, a 
greater change in the phase modulation index parameter is accompanied with an 
increased false alarm and detection capability. Thus, HOS features appear sen- 
sitive to greater changes in phase modulation, which implies that they have an 
increasing ability to detect more severe wear condition states. Noise does impact 
classification performance, but the HOS approach still maintains its superiority 
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over the power spectrum approach. Combining nonlinear (bispectrum) feature in- 
formation further improves test classification performance. Therefore, modulated 
signal simulations revealed an increasing marginal benefit for conducting HOS 
estimation for subsequent feature extraction and input to a linear classifier. 

5.2. Analysis of actual tool wear data 

Results from the simulations were quite encouraging, and we were anxious to see 
whether the method worked as well on actual rotating machine wear data. For 
computational purposes, each 3 mil/rev (4 mil/rev) accelerometer time series was 
divided into appropriate record lengths to avoid the effects of leakage when per- 
forming spectral estimation procedures. Examples of"typical" raw accelerometer 
time series are shown in Figures 7 and 8. 
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Figure 7. Accelerometer time series for a typical new drill bit. 

O b s e r v a t i o n  N u m b e r  

Figure 8. Accelerometer time series for a typical slightly used drill bit. 
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Power spectrum, cumulant spectrum, and bispectrum estimates are computed 
over blocks within each time series record. Each spectral estimate is averaged 
over the block length, and then incorporated into the ensemble average over all 
samples in its particular class. Visual inspection of each type of ensemble averaged 
spectral plot gives a preliminary look at which frequency variates are bit class 
distinguishable. Figures 9 and 10 show, respectively, typical power spectrum and 
bispectrum estimates (these for NIP stack ch~p load at 3 mil/rev with new and 
slightly used bits) that are supplied to the feature extraction algorithm. 
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Figure 9. Ensemble averaged power spectrum differences---NIP stack load 3. 

Differences in ensemble averaged power spectrum plots for all four stack/chip 
load cases were quite similar to those shown in Figure 9. Power spectra exhibited 
the presence of strong spectrum peaks at frequencies below 5 kHz. These peaks 
occurred at the shaft spindle rotational frequency f0 and its harmonics, 2f0 and 
4f0, and reflect the periodic cutting forces due to hardness differences of the 
glass and epoxy material in the circuit board layers. Most of the signal content 
occurs at these harmonic frequencies; however, there are two frequency ranges 
that appear to be much more useful as potential wear indicators: frequency values 
near one-half the fundamental rotational frequency of the drill spindle, .5f0, and 
between 14-14.5 kHz. Other researchers have noted this subharmonic structure 
with journal bearings in high speed turbomachinery, sometimes referring to it as 
a whirl frequency [12], and the differences observed in the power spectra may be 
due to different frictional forces of a worn drill bit. The higher range of frequency 
values is near a torsional resonant frequency of the drill spindle. It appears that 
the spindle torsional mode is more strongly excited by new drills than worn drills 
[181. 
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The bispectrum estimate in Figure 10 is in the form of difference of chi-square 
test statistics (this procedure is described in [29]). The bispectrum difference plots 
clearly show the general regions and the particular frequency interaction pairs 
that are class distinguishable. Significantly different frequency interactions were 
observed between the harmonics of the fundamental rotational frequency and fre- 
quencies greater than 14 kHz. This significantly different frequency structure may 
be due in part to parametric coupling of the torsional resonant frequency with 
each of its lower harmonics. Also significant is that for all the stack/load cases, 
bispectrum estimates are most significantly different in the outer triangle region 
of the bispectrum principal domain. This provides evidence and motivation for 
further investigation with cumulant spectrum estimation and feature extraction as 
it demonstrates that nonstationary generating sources are present in the time series 
records [30]. 
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Figure 10. Ensemble averaged bispectrum differences--NIP stack load 3. 

Actual feature extraction performance results were obtained for both discrimi- 
nation and classification. Of the features extracted, second-order cumulant features 
were the most statistically significant. Further breakout of the actual feature vari- 
ables is given in [21]. Table V shows total classification performance results (per- 
centage of correctly classified time series). The "combined load" category tested 
the impact of stack variation, the "combined stack" category tested the impact of 
load variation, and the "load/stack" category is averaged over all drilling process 
parameters. PS denotes power spectrum estimates only, 2C denotes the addition of 
second-order cumulant spectrum estimates to the feature set, and B denotes the ad- 
dition of bispectrum estimates. The classification schemes used are labelled LDF 
and QDF, respectively, for linear and quadratic discriminant functions, and NN for 
a non-parametric classifier based on the nearest-neighbor distance measure. 
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Table V. Total classification averages (percentage of correctly classified signals) for actual 
incipient wear data. 

Features and Combined Datasets Homogeneous Datasets 
Classification Comb. Load Comb. Stack Load and Stack 
PS and LDF 75.1 79.1 84.5 
PS, 2C and LDF 77.9 82.6 83.8 
PS, 2C, B and LDF 78.3 84.6 87.8 
PS and QDF 74.5 80.5 79.7 
PS, 2C and QDF 77.9 81.7 84.0 
PS, 2C, B and QDF 86.7 86.7 86.3 
PS and NN 75.4 71.6 83.5 
PS, 2C and NN 85.4 85.4 86.8 
PS, 2C, B and NN 84.1 87.5 90.6 

Table V clearly demonstrates the increasing marginal benefit of HOS informa- 
tion for each of the classifiers. Average stack/load QDF classification is degraded 
with power spectrum features and has no consequential impact on either averaged 
load or stack classification. However, the impact on averaged total QDF classifica- 
tion accuracy using a full HOS feature set is significant, especially in the combined 
stack and combined load datasets. For the stack/load case, the false alarm rate in- 
creased more than the corresponding increase in detection capability so there was 
a slight decrease in overall QDF classification performance for this database parti- 
tion. However, the masking of wear effects due to variations in board construction 
is not as great with HOS features and QDF classification. In fact, variations in board 
construction and chip load had no wear masking effect when full HOS feature sets 
were used with a quadratic classifier. Direct comparisons of 4-nearest neighbor 
classification results clearly show the increased total classification power of the 
HOS feature extraction approach. 

6. Implementat ion  as an  on-l ine tool 

This study clearly demonstrated the ability to correctly classify worn tools using 
HOS information. In addition to establishing the feature extraction and classifica- 
tion methods, instrumentation must be designed and installed and the modifications 
made for commanding the tool change when required. IBM has begun work on a 
prototype monitoring system based on the results obtained in [21 ] and [20]. Figure 
11 shows schematically the elements of a circuit board drill monitoring system 
based on the techniques presented in this paper. 

Accelerometers mounted to each drill spindle measure thrust axis vibration and 
their signals are selected for processing using a switch. In this example, samples 
are collected from each sensor once every fourth hit, or once every 1.33 seconds 
at a peak drilling rate of 3 hits/second. Since drill lifetimes are generally several 
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Figure 11. Drill monitoring system. 

thousand hits or more, a large number of signals can be obtained for each drill 
for wear classification purposes. Each sampled signal, tracked by a cell controller 
to identify spindle location and hole location on the board, is pre-processed to 
remove noise and to avoid leakage. The power and higher-order spectrum estima- 
tion is then performed. The features relevant to wear detection are extracted and 
input to a classifier. The output of the classifier is either an alarm or a score. To 
improve the reliability of an alarm, a series of such classifications are combined by 
regression methods. Finally, a scheduling algorithm determines the next available 
stopping point for a drill change if the immediate response would unnecessarily 
slow production. All signal processing, classification, and scheduling steps are ac- 
complished using a single small computer. While computational restrictions might 
have been significant in the past, modern workstations are capable of performing 
these steps quite rapidly (for example, calculation of a 2,048 point power spectrum 
and HOS using a Fast Fourier Transform algorithm can now be accomplished by 
digital signal processing chips in milliseconds.) 

7. Conclusions 

Evidence obtained from both simulated and actual incipient wear data clearly sup- 
ports the hypothesis that HOS features are significant in reflecting class differences. 
Moreover, the data confirmed that second-order cumulant spectrum estimates off 
the diagonal support lines (i.e., that measure periodic correlations) best charac- 
terized incipient faults in the rotating machinery we analyzed. A HOS approach 
for incipient fault detection has increased discrimination and classification power, 
and is less sensitive to process and noise conditions than solely a power spectrum 
approach. Selecting and combining HOS features that capture the nonstationary, 
aperiodic, and nonlinear characteristics of the cutting forces as the drill bit pen- 
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etrates the circuit board layers clearly enhances the total classification capability. 
The evidence clearly advocates for the adoption of  a HOS feature fusion approach 
in a condition monitoring scheme for rotating systems. 

This paper is the first work to provide a rigorous study of  the HOS approach in 
detecting incipient faults. The methodology presented in this paper is applicable to 
many other monitoring systems where the time series records contain nonlinear and 
nonstationary elements. We are currently applying these techniques to monitoring 
newly developing cracks in the turbine blades of je t  aircraft for the United States 
Air  Force, and other applications come to mind as well. 

Most  incipient fault detection methods are tested against one specific alterna- 
tive monitoring system. Clearly, a statistical and experimental design framework 
provides a more thorough investigation of a monitoring approach. In this paper, we 
have demonstrated the consistency of  the HOS approach through both simulated 
and actual wear data. A new tool is now available for investigating and exploit- 
ing a much wider range of time series characteristics generated by random fault 
mechanisms. These techniques have great potential for improving maintenance 
decisions and increasing product quality while reducing operational costs. 
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