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Abstract

This paper proposes two new tests for linear and nonlinear leadrlag relationships
between time series based on the concepts of cross-correlations and cross-bicorrelations,
respectively. The tests are then applied to a set of Sterling-denominated exchange rates. Our
analysis indicates that there existed periods during the post-Bretton Woods era where the
temporal relationship between different exchange rates was strong, although these periods
have become less frequent over the past 20 years. In particular, our results demonstrate the
episodic nature of the nonlinearity, and have implications for the speed of flow of
information between financial series. The method generalises recently proposed tests for
nonlinearity to the multivariate context. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Researchers in economics and finance have been interested in testing for
nonlinear dependence in time series for almost a decade now. Following relatively

Ž . Ž .early work by Brock 1986 , Hsieh 1989a; b , and Scheinkman and LeBaron
Ž .1989a; b , the number of applications has increased dramatically. There appear to
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be at least two reasons for the popularity of this line of research. First, if evidence
of nonlinearity is found in the residuals from a linear model applied to a financial
time series, this must cast doubt on the adequacy of the linear model as an
adequate representation of the data. Second, if the nonlinearity is present in the
conditional first moment, it may be possible to devise a trading strategy based on
nonlinear models which is able to yield higher returns than a buy-and-hold rule.

The most popular portmanteau tests for nonlinearity employed have been the
Ž . Ž .BDS test of Brock et al. 1987 , now published as Brock et al. 1996 , and the
Ž .bispectrum test of Hinich 1982 . The vast majority of researchers to use these

Ž Ž .tests have found strong evidence for nonlinearity see Brock et al. 1991 and
Ž . .Brooks 1996 for surveys and applications , although the usefulness of nonlinear

time series models for yielding superior predictions of asset returns is still
Žundecided see LeBaron, 1993; Nachane and Ray, 1993; Weigend and Gershen-

. Ž . Ž .feld, 1993; etc. . Although Baek and Brock 1992 , Gallant et al. 1993 and
Ž .Hiemstra and Jones 1994 provide contradictory results, the majority of studies to

date examining the issue of nonlinearity have been entirely univariate in nature,
considering each series in isolation. This is highly restrictive, since relationships
between variables over time are clearly of importance.

There also exists a parallel literature which seeks to determine whether
observed nonlinearities in financial time series are due to the existence of

Ž .stochastic nonlinear relationships or fully deterministic chaotic dynamics. Al-
Žthough there is almost no evidence in favour of the latter see Ramsey et al., 1990;

.Cecen and Erkal, 1996a,b; Brooks, 1998 , it appears that most of the nonlinearity
Žcan be explained by reference to the GARCH family of models e.g., see Baillie

.and Bollerslev, 1989; Hsieh, 1989a,b .
This paper attempts to draw the two somewhat disparate areas of research into

nonlinearity and multivariate time series analysis together proposing a new test for
nonlinearity which allows for cross-bicorrelations between pairs of series. Tests of
simple cross-correlations are also considered. These tests can be viewed as natural

Ž .multivariate extensions of the Hinich 1996 portmanteau bicorrelation and white-
ness statistics which search for nonlinear cofeatures between time series. The
method is more general than the tests for common features that are proposed by

Ž .Engle and Kozicki 1993 , since no knowledge of the kind of dynamics purported
to be present in the data is required to detect the dependence. 1 The present paper
hopefully provides an additional tool to the nonlinear Granger causality tests

Ž .employed in the t literature by Baek and Brock 1992 and Hiemstra and Jones
Ž .1994 . The test proposed in this paper is able to pick up any form of nonlinear
dependence of the third-order statistic between two series and might also help
researchers to determine the functional form of the nonlinear relationship between

1 Although generality can be viewed as a virtue of a test, one might also reasonably argue that it
reduces the test’s power.
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the two series by determining in which directions the bicorrelations flow and
which of the lags are significant.

The remainder of this paper is organised as follows. Section 2 outlines the
testing methodology used; Section 3 describes the data employed, while Section 4
offers some analysis and concluding remarks.

2. Testing methodology

Let the data be a sample of length N, from two jointly covariance stationary
� Ž .4 � Ž .4time series x t and y t which have been standardised to have a samplek k

mean of zero and a sample variance of one by subtracting the sample mean and
dividing by the sample standard deviation in each case. Since we are working with
small subsamples of the whole series, stationarity is not a stringent assumption.
The null hypothesis for the test is that the two series are independent pure white

Ž .noise processes, against an alternative that some cross-covariances, C r sx y
w Ž . Ž .x Ž . w Ž . Ž . Ž .xE x t y t qr or cross-bicovariances C r,s sE x t x t qr y t qsk k x x y k k k

w Ž . Ž . Ž .xare nonzero. As a consequence of the invariance of E x t x t y t to permu-1 2 3
Ž .tations of t , t , stationarity implies that the expected value is a function of two1 2

Ž . Ž .lags and that C yr,s sC r,s . If the maximum lag used is L-N, thenx x y x x y
� 4the principal domain for the bicovariances is the rectangle 1FrFL, yLFsFL .

� Ž .4 � Ž .4Under the null hypothesis that x t and y t are pure white noise, thenk k
Ž . Ž .C r and C r,s s0;r,s except when rsss0. This is also true for thex y x x y

less restrictive case when the two processes are merely uncorrelated, but the
theorem given below to show that the test statistic is asymptotically normal
requires independence between the two series. If there is second or third order

Ž . Ž .lagged dependence between the two series, then, C r or C r,s /0 for atx y x x y

least one r value or one pair of r and s values, respectively. The following
statistics give the r sample xy cross-correlation and the r,s sample xxy cross-bi-
correlation, respectively:

Nyr
y1C r s Nyr x t y t qr , r/0, 1Ž . Ž . Ž . Ž . Ž .Ýx y k k

ts1

and
Nym

y1C r ,s s Nym x t x t qr y t qsŽ . Ž . Ž . Ž . Ž .Ýx x y k k k
ts1

where msmax r ,s . 2Ž . Ž .
The cross-bicorrelation can be viewed as a correlation between the current

value of one series and the value of previous cross-correlations between the two
Ž .series. Note that the summation in the second-order case 1 does not include

contemporaneous terms, and is conducted on the residuals of an autoregressive fit
to filter out the univariate autocorrelation structure so that contemporaneous
correlations will not cause rejections. For the third-order test, we estimate the test
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on the residuals of a bivariate vector autoregressive model containing a contempo-
raneous term in one of the equations. The motivation for this prewhitening step is
to remove any traces of linear correlation or cross-correlation so that any remain-
ing dependence between the series must be of a nonlinear form. It can then be
shown that:

E C r s0, 3Ž . Ž .x y

E C r ,s s0, 4Ž . Ž .x x y

y12E C r s Nyr , 5Ž . Ž . Ž .x y

y12E C r ,s s Nym . 6Ž . Ž . Ž .x x y

under the null hypothesis. Let LsN c where 0-c-0.5. 2 The test statistics for
nonzero cross-correlations and cross-bicorrelations are given by

L
2H N s Nyr C r , 7Ž . Ž . Ž . Ž .Ýx y x y

rs1

and
L LX

2 XH N s Nym C r ,s , –s/y1,1,0 , 8Ž . Ž . Ž . Ž . Ž .Ý Ýx x y x x y
ssyL rs1

respectively. These tests are joint or composite tests for cross-correlations and
Ž Ucross-bicorrelations in a similar vein to the Ljung–Box Q test for autocorrela-

.tion , where the number of correlations tested for is L and the number of
Ž .cross-bicorrelations tested for is L 2 Ly1 . We use theorem 1 from Hinich

Ž .1996 , namely:

2 Ž .Theorem 1. H and H are asymptotically x with L and L 2 Ly1 degreesx y x x y

of freedom, respectiÕely, as N™`,

Ž .which is proved in the appendix to Hinich 1996 for the univariate bicorrelation
test statistic. An extension of this theorem to the multivariate test proposed in this
paper is presented in abbreviated form in Appendix A. The full version is available
from the authors upon request.

3. The data and preliminaries

The analysis presented here is based on 5192 daily mid-price spot exchange
rates of the Austrian schilling, the Danish krone, the French franc, the German

2 In this application, we use cs0.25, although the results and the null distribution of the test are not
very sensitive to changes in this parameter.
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mark, the Italian lira, the Japanese yen, and the U.S. dollar data, denominated
against the UK pound. The sample period taken covers the whole of the post-Bret-
ton Woods era, specifically from January 2, 1974 until July 2, 1994 inclusive. We
analyse the differences of the log of the exchange rates, which can be interpreted
as continuously compounded daily returns. The cross-correlations and cross-bicor-
relations are examined via pairwise comparisons between all combinations of two

Ž .of the exchange rates from the set of seven 21 pairs . The three currencies with
the largest world turnover 3 denominated against the pound are the U.S.

Ž .dollarrpound 8.5% of average daily world turnover , the German markrpound
Ž . Ž .4.9% , and the Japanese yenrpound -1% . These three exchange rates are
considered together with a number of less frequently traded European currencies 4

to consider whether these smaller-volume currencies returns follow those of the
Žother European currencies, or whether they take their lead from the larger mostly

.non-European currencies.
The data are split into a set of 148 non-overlapping windows of length 35

Ž .observations i.e., about 7 trading weeks . Samples of this size suggest a use of
Ls350.25, which is rounded to 2. The reason for using many short windows is
that potential arbitrage opportunities induced by non-contemporaneous cross-corre-
lations or cross-bicorrelations are not likely to last long. Hence, the use of long
data series would probably yield very little, 5 and hence nonlinearities which
persist only for short periods of time would remain hidden. This is a major
advantage of the testing approach used here relative to many of its competitors
which require large volumes of data to have sufficient power, and which have poor
small sample properties.

The results of a small Monte Carlo study to determine size of the test for
samples of the length used here are given in Table 1. Two series, each of length 35
are generated using a Gaussian, uniform or Student’s t distribution with 5 or 10
degrees of freedom. The two series drawn from the same distribution are then
tested for cross-correlations or cross-bicorrelations. This procedure is repeated
6000 times.

The results of the simulation clearly demonstrate that the tests are conservative
at small samples for the uniform distribution, and the empirical sizes of the tests
are close to their nominal values for the Gaussian data. The last two columns of
Table 1 also show the empirical size of the test when data are drawn from a

3 All figures quoted in this section refer to the year 1992, and are taken from International Capital
MoÕements and Foreign Exchange Markets: A Report to the Ministers and GoÕernors by the Group of
Deputies, Rome, April 23, 1993.

4 Excluding the German markrpound, all other intra-EMS currency pairs make up only 7% of world
daily average turnover.

5 Indeed, an application of an identical procedure to that used here for the whole data series used as
one single window gave no significant cross-correlations or cross-bicorrelations for any of the
currencies, even at the 10% level.
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Table 1
Size of the cross-correlation and cross-bicorrelation test statistics for small samples

Test under Nominal Actual size Actual size Actual size Actual size
study size of of test for of test for of test for of test for

Ž .test % Gaussian uniform Student’s t Student’s t
Ž . Ž .data % data % with 5 with 10

degrees of degrees of
Ž . Ž .freedom % freedom %

xxy 5 3.8 2.3 4.9 4.5
1 1.4 0.4 2.2 1.4
0.1 0.4 0.1 0.8 0.3

yyx 5 4.1 2.7 5.4 4.4
1 1.6 0.6 2.2 1.4
0.1 0.6 0.1 0.9 0.4

xy 5 3.3 3.7 4.1 3.9
1 0.4 0.8 0.6 0.7
0.1 0.1 0.1 0.2 0.2

t-distribution with 5 and 10 degrees of freedom, respectively; these distributions
are more likely to be representative of financial asset return series since they are
fat-tailed. The simulation shows that the test is only modestly over-sized for the t
with 5 degrees of freedom, and is appropriately sized for the slightly less fat-tailed
distribution. Thus, the test statistic is well behaved with respect to the asymptotic
theory, even for rather small samples. One should also be able to obtain similar

Žresults for x and y being drawn from different distributions e.g., one set of
.Gaussian draws and one set of uniform , so long as the two were independent

processes with finite first six moments.

4. Results

The p-values for the cross-correlations that are significant at the 1% level are
shown in Table 2 together with the dates of the windows in which this occurred.

Ž .These cross-correlation statistics are calculated on the residuals of an AR 3 fit
to each series to filter out any linear autoregressive dependence. 6 Many signifi-

6 The test is asymptotically invariant to linear filtering, and so may be applied to the residuals of a
linear model, or to the raw data. It is important that linear dependence in the data is removed, for its
presence could lead to spurious rejections of the null hypothesis. In theory, it would also be possible to

Ž . Ž .apply the tests to the residuals from a nonlinear model, for example, the MA 1 -GARCH 1,1 model is
often used to summarise the first two moments of financial returns. However, such a step is
unnecessary with the correlation and bicorrelation tests since the presence or otherwise of ARCH-ef-
fects will not cause a rejection of the null hypotheses. This arises from the fact that the tests are
effectively tests for cross-relationships in the conditional mean rather than in the conditional variance.
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Table 2
Dates and p-values for test statistics for cross-correlations, and values of most significant cross-correla-
tions

Ž . Ž .Series xr y Dates star–end p-value for Most significant
aŽ .xy statistic correlation at lag

Austrian schillingrDanish krone No significant cross-correlations
Ž .Austrian schillingrFrench franc 9r10r74–10r28r74 0.0043 0.49 y1
Ž .6r20r85–8r7r85 0.0098 0.52 y1
Ž .3r27r92–5r19r92 0.0082 0.53 1
Ž .Austrian schillingrGerman mark 8r2r77–9r20r77 0.0000 0.66 y2
Ž .1r15r81–3r4r81 0.0038 0.48 2
Ž .6r20r84–8r7r85 0.0070 0.52 1
Ž .Austrian schillingrItalian lira 8r2r77–9r20r77 0.0003 0.39 y2
Ž .Austrian schillingrJapanese yen 12r15r78–2r6r79 0.0047 0.46 y2
Ž .Austrian schillingrU.S. dollar 3r17r80–5r7r80 0.0078 0.35 2
Ž .Danish kronerFrench franc 4r30r85–6r19r85 0.0070 0.33 1
Ž .3r13r89–5r3r89 0.0032 0.43 2
Ž .Danish kronerGerman mark 8r28r75–10r15r75 0.0054 0.49 1
Ž .1r15r81–3r4r81 0.0093 0.49 y2
Ž .4r30r85–6r19r85 0.0065 0.31 y1
Ž .3r13r89–5r3r89 0.0002 0.42 2
Ž .Danish kronerItalian lira 9r13r82–10r29r82 0.0018 0.62 2
Ž .3r13r89–5r3r89 0.0011 0.44 2
Ž .Danish kronerJapanese yen 12r15r78–2r6r79 0.0011 0.48 y2

Danish kronerU.S. dollar No significant cross-correlations
Ž .French francrGerman mark 9r10r74–10r28r74 0.0009 y0.56 2
Ž .1r15r81–3r4r81 0.0009 0.58 2
Ž .10r26r87–12r11r87 0.0049 y0.55 1
Ž .3r13r89–5r3r89 0.0065 0.34 y2
Ž .French francrItalian lira 10r27r78–12r14r78 0.0037 0.39 2
Ž .French francrJapanese yen 8r20r84–10r8r84 0.0075 0.29 2
Ž .French francrU.S. dollar 8r20r84–10r8r84 0.0031 0.31 2
Ž .German markrItalian lira 9r10r74–10r28r74 0.0020 0.44 y1
Ž .8r2r77–9r20r77 0.0031 0.46 2
Ž .1r15r81–3r4r81 0.0091 0.50 y2
Ž .3r13r89–5r3r89 0.0043 0.33 2

German markrJapanese yen No significant cross-correlations
German markrU.S. dollar No significant cross-correlations

Ž .Italian lirarJapanese yen 12r15r78–2r6r79 0.0054 0.45 0
Ž .Italian lirarU.S. dollar 8r20r84–10r8r84 0.0036 y0.63 1
Ž .Japanese yenrU.S. dollar 8r28r92–10r15r92 0.0076 0.49 1

a x leads for positive lags, y leads for negative lags.

cant test statistics are caused by contemporaneous cross-correlations, but there are
also many that are not contemporaneous. The former is hardly surprising, and
could be interpreted as arising from Sterling-related news which affected two
bilateral exchange rates against sterling in a similar fashion. The leadrlag
cross-correlations are, however, of considerably greater interest, and indicate that
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for some currencies, there may have been a degree of predictability at certain
times over the past 20 years. For example, there was a correlation of 0.66 between
the Austrian schillingrpound lagged two periods, and the and the German
markrpound, indicating that if the German mark rises one day during that period,
we would have expected the Austrian schilling to rise two trading days later. Many
such relationships exist between the currencies, although there are many more
cross-correlations between the intra-European currency pairs than between pairs
containing the Japanese yen or U.S. dollar.

The number and percentage of significant cross-bicorrelation windows for each
pair of exchange rates are given in column 2 of Table 3.

The results for cross-bicorrelations outlined in the ensuing analysis are esti-
mated on the residuals of a bi-variate vector autoregression of order 3 in each

Ž Ž ..equation a BVAR 3,3 . The proportion of significant cross-bicorrelation win-
dows is much larger than the nominal 1% threshold used, indicating that signifi-
cant nonlinear leadrlag relationships existed between currencies. Correlations
between the values of the xxy and yyx statistics are given in column 3 of Table 3.
On the whole, they show a very high degree of correlation, indicating that the

Table 3
Ž .Number and percentage of significant at the 1% level cross-bicorrelation windows and correlations

between xxy and yyx, and between xxy and the simple cross-correlation for all windows

Ž . Ž .Series xr y No. % sig. cross- Corr Corr
Ž . Ž .bicorrelation windows xxy, yyx xxy, xy

Ž .Austrian schillingrDanish krone 40 27.0 0.646 0.205
Ž .Austrian schillingrFrench franc 40 27.0 0.680 0.285
Ž .Austrian schillingrGerman mark 44 29.7 0.643 0.238
Ž .Austrian schillingrItalian lira 37 25.0 0.490 0.160
Ž .Austrian schillingrJapanese yen 36 24.3 0.438 0.132
Ž .Austrian schillingrU.S. dollar 29 19.6 0.452 0.320
Ž .Danish kronerFrench franc 42 28.4 0.695 0.275
Ž .Danish kronerGerman mark 44 29.7 0.695 0.271
Ž .Danish kronerItalian lira 46 31.1 0.620 0.118
Ž .Danish kronerJapanese yen 29 19.6 0.446 0.202
Ž .Danish kronerU.S. dollar 28 18.9 0.365 0.281
Ž .French francrGerman mark 43 29.1 0.728 0.322
Ž .French francrItalian lira 47 31.8 0.652 0.069
Ž .French francrJapanese yen 31 20.9 0.406 0.334
Ž .French francrU.S. dollar 29 19.6 0.395 0.201
Ž .German markrItalian lira 42 28.4 0.478 0.207
Ž .German markrJapanese yen 32 21.6 0.415 0.256
Ž .German markrU.S. dollar 26 17.6 0.394 0.197
Ž .Italian lirarJapanese yen 34 23.0 0.413 0.187
Ž .Italian lirarU.S. dollar 36 24.3 0.413 0.072
Ž .Japanese yenrU.S. dollar 30 20.3 0.521 0.239
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nonlinear relationships may be bidirectional. The correlation between the values of
Ž . Ž .the cross-correlation xy and the cross-bicorrelation xxy statistics are much

lower, however, indicating that linear and nonlinear relationships between the
series need not occur at the same time. A more detailed analysis of the significant
cross-bicorrelation is given in Table 4.

Only bicorrelations with xxy or yyx values that are greater than 0.5 in absolute
value are shown in Table 4 due to space constraints, so that we concentrate on
only the very largest bicorrelations. It is evident that there are many more
significant cross-bicorrelations than cross-correlations, although the former are
much more difficult to interpret. The majority of the significant cross-bicorrela-
tions occur for the smaller-volume European exchange rates, particularly the
Austrian schillingrpound and the Italian lirarpound. The p-values associated with
the test statistics are typically much smaller than would be generated by a

Žfat-tailed distribution if the data were i.i.d. such as those given in the Monte Carlo
.study outlined above . It is also evident that there are more significant cross-bicor-

relations during the earlier part of the series. The significant windows appear to
occur in clusters; the most recent prolonged period of dependence was during late
1992, around the time of Sterling’s departure from the European Exchange Rate

Ž .Mechanism ERM .
Ž .A recent paper by Karolyi and Stulz 1996 has shown that cross-correlations

between the shares of U.S. and Japanese companies trading in the U.S. are not
significantly affected by macroeconomic announcements, or interest rate shocks.
They show that co-movements between the series are high when the individual

Ž .markets are volatile, or when ‘‘the markets move a lot’’ p. 984 . The cross-corre-
lation framework proposed here provides a natural testing ground for this conjec-
ture. If the markets do indeed move closely together, this will imply that the

Žcross-correlation and cross-bicorrelation statistics the latter being calculated after
.prewhitening using a VAR , should have small values when the individual

Žvariances of the series are high. In other words, we would expect Corr xy,
. Ž . Ž . Ž . ŽVarX , Corr xy, VarY , Corr xxy, VarX , Corr xxy, VarY , Corr yyx,
. Ž .VarX , Corr yyx, VarY to be negative and fairly large. The results of Table 5

show, however, that this hypothesis is not borne out, with no strong relationship
Ž .either positive or negative between the test statistics and the variances, except in
the case of the Danish kronerU.S. dollar, where the simple cross-correlation
statistics are negatively correlated with the individual variances. These results

Ž .contrast with those of Karolyi and Stulz 1996 , where co-movements and
variances did tend to be positively related. However, Karolyi and Stulz considered
only linear cross-correlations, and they examined stock returns rather than ex-
change rates.

Our findings have important implications for the ability of investors to interna-
tionally diversify portfolios, since strong contemporaneous co-movements between
series coupled with high individual variances imply that fewer apparently
country-specific risks are internationally diversifiable, so that the riskiness of the
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Table 4
Dates and p-values for cross-bicorrelation tests statistics together with values of most significant bicorrelations

Ž . Ž .Series xr y Dates start–end p-value for p-value for Most significant xxy Most significant yyx
Ž . Ž .xxy statistic yyx statistic bicorrelations at lags bicorrelations at lags

Austrian schillingrDanish krone No significant cross-bicorrelations
Ž . Ž .Austrian schillingrFrench franc 4r1r75–5r19r75 0.0121 0.0003 0.41 2, 0 0.78 2, 1
Ž . Ž .1r27r76–3r15r76 0.0003 0.0302 0.56 2, 1 0.47 1, 1
Ž . Ž .6r25r76–8r12r76 0.0200 0.0029 0.61 2, 2 0.48 1, 2
Ž . Ž .2r26r86–4r17r86 0.0301 0.0671 0.54 1, 1 0.26 1, 2
Ž . Ž .Austrian schillingrGerman mark 10r29r74–12r16r74 0.0499 0.0005 0.51 2, 1 0.28 1, 1
Ž . Ž .9r24r81–11r11r81 0.0076 0.0001 0.35 1, 2 0.51 1, 0

Ž .10r9r84–11r26r84 0.7268 0.0019 – 0.53 1, 2
Ž .8r8r85–9r27r85 0.0001 0.4955 0.75 1, 2 –

Ž .11r15r85–1r7r86 0.3863 0.0001 – 0.58 2, 1
Ž .Austrian schillingrItalian lira 4r23r90–6r12r90 0.0047 0.7926 0.62 2, 2 –

Ž .1r1r91–2r18r91 0.7781 0.0033 – 0.55 1, 2
Ž .8r17r93–5r10r93 0.4963 0.0001 – 0.80 1, 2

Austrian schillingrJapanese yen No significant cross-bicorrelations
Ž . Ž .Austrian schillingrU.S. dollar 9r10r74–10r28r74 0.0239 0.0005 0.64 2, 1 0.69 1, 0

Ž .4r15r82–3r6r82 0.6949 0.0098 – 0.59 1, 1
Ž . Ž .Danish kronerFrench franc 8r28r75–10r16r75 0.0000 0.0303 0.44 2, 2 0.56 2, 2
Ž . Ž .1r27r76–3r15r76 0.0000 0.0066 0.58 2, 1 0.59 1, 1
Ž .Danish kronerGerman mark 9r21r77–4r8r77 0.0001 0.9981 0.62 1, 1 –
Ž .9r13r82–10r29r82 0.0045 0.9714 0.64 2, 2 –
Ž .11r1r82–12r17r82 0.0000 0.2576 0.87 2, 0 –
Ž .6r10r86–7r28r86 0.0068 0.4884 0.62 1, 0 –
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Ž .Danish kronerItalian lira 5r6r76–6r24r76 0.6116 0.0000 – 0.75 1, 1
Ž . Ž .8r13r76–10r1r76 0.0693 0.0000 0.48 1, 2 0.63 1, 0
Ž .6r20r85–8r7r85 0.0001 0.7395 0.69 1, 1 –
Ž .8r28r92–10r15r92 0.0008 0.9582 0.56 2, 1 –

Ž .Danish kronerJapanese yen 5r24r83–7r12r83 0.8143 0.0032 – 0.65 1, 2
Ž .Danish kronerU.S. dollar 9r21r77–8r11r77 0.0000 0.4406 0.54 1, 2 –

Ž .4r15r82–6r3r82 0.8218 0.0044 – 0.52 1, 1
Ž .3r8r85–4r29r85 0.0003 0.1219 0.60 2, 1 –
Ž . Ž .French FrancrGerman mark 1r27r76–3r15r76 0.0230 0.0000 0.52 1, 1 0.35 2, 1
Ž . Ž .8r2r77–9r20r77 0.0000 0.0021 0.61 1, 2 0.56 1, 2
Ž .1r15r81–3r4r81 0.0006 0.8692 0.77 2, 2 –

Ž .11r15r85–1r7r86 0.5314 0.0008 – 0.56 1, 2
Ž .2r26r86–4r17r86 0.0018 0.8432 0.51 1, 1 –
Ž . Ž .French FrancrItalian lira 5r6r76–6r24r76 0.0038 0.0061 0.59 2, 1 0.53 1, 1

Ž .8r13r76–10r1r76 0.3210 0.0000 – 0.59 1, 0
Ž .6r4r82–7r22r82 0.0092 0.4661 0.77 1, 1 –
Ž .11r1r82–12r17r82 0.0049 0.5174 0.56 1, 1 –
Ž .12r20r82–2r9r83 0.0000 0.8099 0.59 2, 2 –
Ž . Ž .3r13r89–5r3r89 0.0054 0.0971 0.53 1, 1 0.32 1, 1
Ž .8r28r92–10r15r92 0.0006 0.9862 0.70 2, 1 –

Ž .8r17r93–10r5r93 0.5460 0.0064 – 0.55 1, 1
Ž . Ž .3r7r94–4r26r94 0.0202 0.0084 0.52 2, 1 0.45 2, 1

Ž .French francrJapanese yen 8r13r76–10r1r76 0.4363 0.0001 – 0.60 1, 2
Ž . Ž .French francrU.S. dollar 1r27r76–3r15r76 0.0479 0.0000 0.54 1, 1 0.50 2, 1
Ž .4r22r77–6r13r77 0.0000 0.88660 0.53 2, 2 –
Ž . Ž .2r10r83–3r30r83 0.0421 0.0008 0.32 1, 1 0.68 1, 1
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Ž .Table 4 continued

Ž . Ž .Series xr y Dates start–end p-value for p-value for Most significant xxy Most significant yyx
Ž . Ž .xxy statistic yyx statistic bicorrelations at lags bicorrelations at lags

Ž .German markrItalian lira 9r10r74–10r28r74 0.0068 0.9694 0.71 1, 1 –
Ž .5r6r76–6r24r76 0.3530 0.0057 – 0.59 1, 1

Ž . Ž .8r13r76–10r1r76 0.0864 0.0006 0.37 1, 2 0.58 1, 0
Ž . Ž .9r24r81–11r11r81 0.0142 0.0013 0.54 1, 2 0.30 1, 0
Ž .12r20r82–2r9r83 0.0000 0.5858 0.54 2, 2 –
Ž .12r26r86–2r13r87 0.00660 0.6078 0.60 1, 1 –
Ž .8r28r92–10r15r92 .0002 0.9992 0.73 2, 1 –

Ž .8r19r93–5r10r93 0.7725 0.0024 – 0.57 1, 1
German markrJapanese yen No significant cross-bicorrelations

Ž . Ž .German markrU.S. dollar 9r10r74–10r28r74 0.0023 0.0377 0.56 1, 1 0.44 1, 0
Ž .Italian lirarJapanese yen 1r27r76–3r15r76 0.8231 0.0051 – 0.53 1, 2

Ž . Ž .8r13r76–10r1r76 0.0000 0.0000 0.71 1, 0 0.55 1, 2
Ž .9r8r78–10r26r78 0.0072 0.7623 0.69 1, 1 –
Ž .10r9r84–11r26r84 0.0000 0.2005 0.65 1, 1 –
Ž .1r18r85–3r7r85 0.0001 0.3889 0.57 2, 0 –
Ž .Italian lirarU.S. dollar 12r4r75–1r26r76 0.0000 0.5887 0.72 2, 0 –
Ž . Ž .5r6r76–6r24r76 0.0041 0.0249 0.52 1, 0 0.44 2, 1

Ž .8r13r76–10r1r76 0.9434 0.0021 – 0.69 1, 2
Ž .11r22r76–1r11r77 0.0000 0.9870 0.66 1, 1 –
Ž .2r20r78–4r10r78 0.0006 0.8740 0.58 2, 2 –
Ž .1r18r85–3r7r85 0.0057 0.0299 0.55 2, 0 –

Ž .8r8r85–9r26r85 0.9151 0.0075 – 0.66 1, 2
Japanese yenrU.S. dollar No significant cross-bicorrelations
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Table 5
Correlation of the correlation and bicorrelation test statistics with the individual variances of the series

Ž .Series xr y Corr Corr Corr Corr Corr Corr
Ž . Ž . Ž . Ž . Ž . Ž .xy, VarX xy, VarY xxy, VarX xxy, VarY yyx, VarX yyx, VarY

Austrian schillingrDanish krone 0.06 0.04 0.01 y0.03 0.05 y0.09
Austrian schillingrFrench franc 0.05 0.04 0.05 0.04 0.12 0.16
Austrian schillingrGerman mark 0.01 y0.21 0.14 0.14 0.07 0.12
Austrian schillingrItalian lira y0.08 y0.12 0.18 0.22 0.16 0.16
Austrian schillingrJapanese yen y0.01 0.00 0.10 y0.09 y0.01 y0.02
Austrian schillingrU.S. dollar 0.08 y0.03 0.14 0.05 0.01 y0.03
Danish kronerFrench franc 0.00 0.02 y0.14 0.02 0.00 0.11
Danish kronerGerman mark y0.03 y0.01 0.05 0.04 y0.05 0.03
Danish kronerItalian lira y0.08 y0.04 0.15 0.28 0.11 0.18
Danish kronerJapanese yen y0.09 y0.06 0.13 0.03 0.03 y0.03
Danish kronerU.S. dollar y0.37 y0.37 0.03 0.19 y0.01 y0.01
French francrGerman mark y0.05 y0.05 y0.03 0.11 0.00 0.12
French francrItalian lira y0.05 y0.01 0.13 0.01 0.20 0.15
French francrJapanese yen y0.08 0.00 0.02 y0.02 0.02 0.04
French francrU.S. dollar y0.04 y0.05 0.03 y0.16 0.11 0.00
German markrItalian lira y0.05 0.00 0.23 0.21 0.16 0.19
German markrJapanese yen 0.01 0.10 0.16 y0.05 0.06 0.04
German markrU.S. dollar y0.02 0.03 0.05 y0.03 0.06 0.11
Italian lirarJapanese yen y0.08 y0.09 0.10 y0.02 0.02 0.08
Italian lirarU.S. dollar y0.03 y0.14 0.11 y0.08 y0.06 y0.01
Japanese yenrU.S. dollar 0.18 0.14 0.04 y0.04 0.01 0.07
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portfolio overall increases. This issue is becoming increasingly important follow-
ing increases in capital mobility and the openness of trade. Also, countries which
are part of the European ERM coordinating fiscal and monetary policies more
closely in order to meet the ‘‘convergence criteria’’ for forming a single currency
mans that the correlations between currencies within Europe are likely to become
stronger over the next few years.

5. Conclusions

In this paper, we have examined a new approach to testing for nonlinear
interactions between series, and we have illustrated the method on a set of
exchange rates. The method provides a complement to Granger causality analysis,
and is general enough to detect many types of nonlinear dependence between
series in their conditional means. We find a much larger number of significant
cross-correlations and cross-bicorrelations than one would expect if the data were
generated by independent white noise processes. Moreover, this type of structure
cannot be generated by one of the GARCH family of models, so long as the
GARCH model is a Martingale difference sequence. A Martingale difference has

w Ž . Ž . Ž .xzero bicorrelations except for E x t x tqr y tqr , which is not included in
the sum for the bicorrelation statistics. Therefore, GARCH models should give rise
to third-order statistics that are not significantly different from zero.

The episodic nature of the observed linear and nonlinear co-dependence should
Ž .be noted. We find that, in common with the analysis of Ramsey and Zhang 1997

of the univariate case, multivariate activity in financial markets are relatively
short-lived and surrounded by longer periods of apparent randomness. It is,
perhaps, also not surprising that the cross-correlations and cross-bicorrelations all
feature a small-volume European exchange rate on at least one side, and that there
is little dependence between, for example, the Japanese yen and the U.S. dollar.
The currencies which are less frequently traded and which are likely to be less
closely scrutinised by dealers, are also likely to be slower to respond to new
information. So, for example, the return on one of these currencies today may still
be reflecting information that was fully incorporated into the ‘‘bigger’’ currencies
yesterday. Thus, the return of the ‘‘smaller’’ exchange rate today will be corre-
lated with the return of the larger exchange rate yesterday. This will manifest itself
as a nonzero cross-correlation or cross-bicorrelation for the relationship between
the two need not necessarily be linear. This argument was first suggested by Fisher
Ž .1966 to explain serial correlation in stock market indices and portfolios contain-

Ž Ž .ing the stocks of small firms see Perry 1985 or Chelley-Steeley and Steeley
Ž . .1995 for more recent applications of this logic . This argument has been played
down in much of the recent literature, which argues that the effects of this
phenomenon will be small for data sampled at daily or lower frequencies.

Ž .Boudoukh et al. 1994 , however, argue that this nonsynchronous trading effect
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has been understated in the literature, and that most of the apparent predictability
Ž .observed by, for example, Cohen et al. 1986 , can be explained by this effect.

The dependencies observed in this paper must, by definition, be present for
more than a few days to be detected. Hence, we conjecture that the observed level
of cross-correlation and cross-bicorrelation between currencies cannot be entirely
attributed to nonsynchronous trading, and their existence must be considered
evidence inconsistent with the weak form of the efficient markets hypothesis.
Although further research is required to determine whether profitable trading
strategies could be developed from this analysis, and building an appropriate
multivariate nonlinear model of the switching type is not a simple task, our results
are encouraging, and suggest that further investigation is worth while. The
cross-bicorrelation test is, however, suggestive of an appropriate functional form
for a nonlinear model since the cross-bicorrelation is essentially a test of

w Ž . Ž . Ž .xE x t x tqr y tqs . If we restrict ourselves to consider the case where r and
Ž .s are negative, then one might be able to predict x t on the basis of the lags of

Ž . Ž .x tqr y tqs ; a brief description of one method of implementing such models
Ž .is given by Brooks and Hinich 1998 .
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Appendix A. Proof of Theorem 1

� Ž .4 � Ž .4The null hypothesis is that x t and y t are mutually independent i.i.d.k k

zero mean series. Set s ss s1. Redefine the three time points in the triplex y
Ž . Ž . Ž . Ž .product x t x t qr y t qs for a given r,s as follows: t s t ,t s t qk k k k k k k1 2

Ž . Ž . w Ž . Ž . Ž .x Ž .r,t s t q s k s 1, . . . ,l . Then a E x t x t y t s 0, and bk k k k k3 1 2 3

w Ž . Ž . Ž .x2E x t x t y t s1.k k k1 2 3

The nth-order cumulant of a product of variates can be related to the joint
cumulants of the variates, but the relationship is more complicated than the one
between the moments and cumulants stated above. There is no simple approach to
deal with the combinatorial relationships between the nth-order joint cumulants of

Ž . Ž . Ž . Ž .the triple product P t t t sx t x t y t for various values of t , r, andk k k k k k k1 2 3 1 2 3

Ž . Ž . Ž .s, and the cumulants of u t even though the x t ’s and y t ’s are independent.k k

The relationships rest on a definition of indecomposable partitions of two
Ž Ž .dimensional tables of subscripts of the t’s see Leonov and Shiryaev 1959 and
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Ž ..Section 2.3 of Brillinger 1975 . We display the table of the t’s next to the table
of their subscripts which Brillinger uses in his exposition.

ŽConsider the following l=3 table of t s t , t s t qr , t s t qs ksk k k k k k k k1 2 3

.1, . . . ,l :

Times Using delay notation

t t t t t qr t qs11 12 13 1 1 1 1 1
. . . . . .. . . . . .. . . . . .

t t t t t qr t qsl1 l2 l3 l l l l l

Let nsn j PPP jn denote a partition of the k in this table into M sets1 M ji

where js1, . . . ,l and is1,2,3. There are many partitions of the l=3 times from
the single set of all the elements to l=3 sets of one element.

Ž .The mth set in the partition is denoted Õ s k , . . . ,k where q ism j i j i1Ž m. 1Žm. q Žm. q Žm.

w Ž . Ž .xthe number of elements in the set. The cumulant of x k , . . . , x kj i j i1Ž m. 1Žm. q Žm. q Žm.

w Ž . Ž .x w Ž .xis k x k PPP x k . The symbol k n m will be used for this jointj i j i1Ž m. 1Žm. q Žm. q Žm.

cumulant.
Ž . Ž .If no two ji are equal for a set n m , then n m is called a chain. A partition is

called indecomposable if there is a set with at least one chain going through each
Ž .row of the table all the rows are chained together . A partition is decomposable if

one set or a union of some set in n equals a subset of the rows of the table.
Consider, for example, the following 2=3 table:

k k k11 12 13
A.1Ž .

k k k21 22 23

Ž . Ž .The decomposable partitions are: k ,k ,k j k ,k ,k , which is the11 12 13 21 22 23

union of the two rows and all its subpartitions. Three indecomposable partitions of
Ž . Ž . Ž . Ž . Ž .this 2=3 table are k , k j k ,k j k ,k , k ,k j k ,k j11 21 12 22 13 23 11 22 12 21

Ž . Ž . Ž .k ,k , and k ,k ,k ,k j k ,k . Each pair of these partitions are13 23 11 21 12 22 13 23

chains.
Ž .Let n sn j PPP jn denote the r th indecomposable partition of Eq. A.1r 1 M r

w Ž . Ž . Ž . Ž Ž . Ž . Ž .xinto M sets. The joint cumulant of x t x t y t , . . . , x t x t y tr k k k k k k11 12 13 q 1 q 2 q 3

w Ž .xis the sum over r of the products of the M cumulants k n m of the n in eachr m

indecomposable n .r
w Ž . Ž . Ž . Ž . Ž . ŽIt is easy to check that k x t x t qr y t qs , . . . , x t x t qr y t qk k k k k k1 1 1 1 1 1

.xs s0 unless t s PPP t s t. It then follows by an enumeration of each of thek k1 1

cumulants of the sets in the indecomposable partitions nsn j PPP jn that1 p

most of the products of cumulants are zero for a given partition. A summary of the
w Ž . Ž . Žsecond-order joint cumulants of the triples is as follows: k x t x t qr y t q1 1 1 1

. Ž . Ž . Ž .xs x t x t qr y t qs s0 unless t s t s t,r sr sr, and s ss ss.1 2 2 2 2 2 1 2 1 2 1 2
w 2Ž .xIf so, then k p t,tqr,tqs s1.
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Ž . Ž . wŽ .Ž .xy1r2The covariance of C r ,s and C r ,s is Nys Nysx x y 1 1 x x y 2 2 1 2
Žtimes a double sum of covariances of the P ’s. There are Nys nonzero terms all

.equal to one in the double sum of covariances. Then from the theorem.
w Ž .x Ž . Ž . w Ž . Ž .xVar C r,s s Nys r Nys s1 and Cov C r ,s , C r ,s s0.x x y 2 x x y 1 2 x x y 2 2

To obtain the third-order joint cumulants, consider the following 3=3 table of
0-r -s :k k

t t t t t qr t qs11 12 13 1 1 1 1 1

t t t t t qr t qs21 22 23 2 2 2 2 2

t t t t t qr t qs31 32 33 3 3 3 3 3

Using the delay notation for indices, first consider the following indecompos-
Ž . Ž . Ž .able partition: n s t ,t ,t j t qr ,t qr ,t qr j t qs ,t qs ,t qs .1 1 2 3 1 1 2 2 3 3 1 1 2 2 3 3

Ž . Ž . Ž .If 1 t s t s t , 2 r sr s r , 3 s ss ss , then the third-order cumu-1 2 3 1 2 3 1 2 3

lants of the three columns equal g and thus the product of the cumulants is g 3. If
Ž . Ž . Ž .any one of these equalities in 1 , 2 , or 3 do not hold then the product is zero.

Ž . ŽNow consider the indecomposable partition: n s t ,t ,t j t qr ,t qr ,t2 1 2 3 1 1 2 1 3
. Ž .qr ,t qs j t qs ,t qs . The only nonzero product of cumulants holds for3 1 1 2 2 3 3

w 3Žt s t s t s t, r sr sr sr, and s ss ss ss, which yields k p t,tq1 2 3 1 2 3 1 2 3
.x 3r ,tqs sg .1 1

ŽSuppose that s /r . Consider the indecomposable partition a subpartition of3 1
. Ž . Ž . Ž . Ž .n n t ,t ,t j t qr , t qr j t qr ,t qs j t qs ,t qs . Then if2 3 1 2 3 1 1 2 1 3 3 1 1 2 2 3 3

t s t s t s t and r sr , s ss , r ss , the product of the cumulants is near1 2 3 1 2 2 3 3 1
Ž . Ž .zero since x tqs and y tqs are independent. The pattern should be clear.1 1

All the other indecomposable partitions have at least one zero cumulant. From the
theorem, the third-order joint cumulant of the C are zero.x x y

We also require an understanding of the higher order joint cumulants to prove
the asymptotic properties of our test statistic. The general form can be deduced
from the fourth-order case by enumerating the sets in the indecomposable parti-
tions of the 4=3 table:

t t t t t qr t qs11 12 13 1 1 1 1 1

t t t t t qr t qs21 22 23 2 2 2 2 2

t t t t t qr t qs31 32 33 3 3 3 3 3

t t t t t qr t qs41 42 43 4 4 4 4 4

The major term in the error of the approximation is a function of the nonzero
products of the following two types of indecomposable partitions of this table:

Ž . Ž . Ž . Ž . Ž .n s t ,t j t ,t j t q r ,t q r j t q r ,t q s j t q s ,t q s j4 1 3 2 4 1 1 2 2 3 3 4 4 1 1 2 2
Ž . Ž . Ž . Ž . Žt q s ,t q s , n s t ,t ,t ,t j t q r ,t q r j t q r ,t q s j t q3 3 4 4 5 1 2 3 4 1 1 2 2 3 3 4 4 1

. Ž . Ž . Ž .s ,t qs j t qs ,t qs . If 4 t s t s t s t s t, 5 r sr /r sr , and1 2 2 3 3 4 4 4 3 2 1 1 3 2 4
Ž .6 s ss /s ss then the cumulants of all the pairs in n are one and the1 3 2 4 4

product then one, and the cumulant of the first column in n is k , which is the5
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product of the cumulants of n . The cumulant products of the other indecompos-5
Ž . Ž . Ž .able partitions of the table are all zero given constraints 4 , 5 , and 6 . Thus

w 2Ž . 2Ž .x Ž .k p t,tqr,tqs p t,tqr ,tqs s 1qk .2 2
Ž . Ž .For each r ,s and r ,s , these nonzero cumulant products equalities hold1 1 2 2

w 2 Ž . 2 Ž .xfor at most Nt’s. Thus the fourth-order joint cumulant k c r ,s c r ,sx x y 1 2 x x y 2 2
wŽ .Ž .Ž .Ž .xy1r2 Ž .Ž . Ž y1 .Ž .is Nys Nys Nys Nys O N 1qk sO N 1qk . There1 2 3 4

Ž 4.are of order O L such pairs of indices where r /r and s /s which have1 2 1 2

these joint cumulants. If r sr or s ss , then there are a lot more fourth-order1 2 1 2

nonzero cumulants. An enumeration of indecomposable partitions with nonzero
cumulant products yields the following two results:

4 3 2k p t ,tqr ,tqs sk q9k q27kq24 A.2Ž . Ž .

and

2 2 2k p t ,tqr ,tqs p t ,tqr ,tqs sk q6kq8.Ž . Ž .1 2

The same pattern holds of partitions of the general l=3 table of subscripts into
w 2Žpairs with identical indices. The major nonzero cumulants are k p t,tqr ,tq1

. 2Ž .x Ž y1 . w 2Žs PPP p t,tqr ,tqs sO N when l is even, and k p t,tqr ,tq1 lr2 lr2 1

. 2Ž . Ž .x Ž y1 . Žs PPP p t,tqr ,tqs p r ,s sO N for a restricted set of r1 Ž ly1.r2 Ž ly1.r2 l l k
.ys when l is odd. Thus the lth joint cumulant of the C ’s is of orderk x x y
Ž 1y lr2 .k O N .

These results will now be applied to prove that the test statistic H isN
w Ž .xasymptotically normal. It has already been shown that Var C r ,s sx x y m m

w 2 Ž .x Ž .E C r ,s s1 and thus E H s0 under the null hypothesis. From thex x y m m N

relationship between the covariances and the fourth-order cumulants,
w 2 Ž . 2 Ž .x w 2 Ž . 2 Ž .xV ar C r , s C r , s s k c r , s c r , s q 2, andx x y 1 1 x x y 2 2 x x y 1 1 x x y 2 2
w 2 Ž . 2 Ž .x w 2 Ž . 2 Ž .x 2 w Ž .Var C r ,s C r ,s s k c r ,s c r ,s q 2k c r ,s -x x y 1 1 x x y 2 2 x x y 1 1 x x y 2 2 x x y 1 1
Ž .xc r ,s . Suppose that r sr sr sr sr, and s ss ss ss ss. Thenx x y 2 2 4 3 2 1 4 3 2 1

Ž . w 4 Ž .x Ž Ž . . Ž . 3 2from Eq. A.2 , k c r,s sO m k rN where m k sk q9k q27kq24.x x y
w 2 Ž .x Ž Ž . .Thus Var C r,s s2qO m k rN .x x y

Ž Ž . Ž ..If r sr /r sr and s ss /s ss constraints 5 and 6 , then1 3 2 4 1 3 2 4
w 2 Ž . 2 Ž .x ŽŽ . .k c r ,s c r ,s sO 1qk rN . If r sr , then the joint cumulant isx x y 1 1 x x y 2 2 1 2
Ž Ž . . Ž . 2 w 2 Ž . 2 Ž .xO n k rN , where n k sk q6kq8. Thus Cov C r ,s C r ,s sx x y 1 1 x x y 2 2
Ž y1 . 2 Ž . 2O N . Since the number of C r ,s y1 terms in the sum is L r2x x y m m

Ž c. Ž . Ž 2 .LsN , Var H s1qO L rN ™1 as N™` since 0-c-1r2. There areN
3 Ž . Ž . Ž . Ž .approximately L such r ,s , r ,s , r ,s , and r ,s in the double sum1 1 2 2 3 3 4 4

Ž . Ž .which satisfies constraints 5 and 6 and thus the error in the variance of H dueN

to these covariances is of the order Ly2 L3Ny1 sN cy1.
To complete the proof, we will now demonstrate that the cumulants of H ofN

order lG3 go to zero as N™`. The lth cumulant of H depends on the 2 l orderN
2 Ž .joint cumulant of the C r ,s for ks1, . . . ,l. From above, these cumulants arex x y k k

of order L2LylN 1y lr2 which goes to zero as N™` for lG3.
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