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Abstract

Detection of narrow-band signals in noise is often done by identi-
fying high peaks in the periodogram (spectrogram) with the presence
of a signal. Mathematically this can be motivated by Fisher’s (1929)
test (and relatives) in which a ratio between the largest value and the
average of values of the periodogram in a certain frequency interval is
compared to a threshold. However, the (normalized quadratic) struc-
ture of the test statistic then employed is postulated and not derived
from underlying assumptions, which in particular implies loss of phase
information. Moreover, the signal model implicit in this approach is for
many applications unrealistic since it assumes perfect sinusoids (with
no amplitude/frequency variation). Here we develop an alternative,
Fourier-domain based, class of tests derived from a more realistic model
for narrow-band signals utilizing so called Randomly Modulated Peri-
odicites (RMPs). We show that the proposed class of tests can realize
optimal detection according to variants of several of the standard crite-
ria (e.g. Neyman-Pearson and deflection) and we suggest a frame-wise
adaptive detector that also utilizes phase information.

1 Introduction

Detection of narrow-band signals in noise by Fourier spectral methods is a
central problem in many applications of statistical time-series analysis. The
mathematical treatment of the problem has its roots in the search for ‘hidden
periodicities’ in time-series data initiated in the late 19:th century. One of
the first to present a rigorously derived solution to this decision problem
was R.F. Fisher [1] who formulated it in terms of a statistical test based
on the periodogram (or more correctly, spectrogram) of the signal. The
test, which later has become known as Fisher’s test [2], [3]-[5], determines
the presence of a narrow-band signal in Gaussian white noise by comparing
the value of the periodogram of at a certain frequency with its average
over all frequencies. If there is a significant deviation from the average at
a certain frequency then the decision is made that there is a narrow-band
component present at this frequency. The idea of basing the decision on
a ratio between the value of the periodogram at a certain frequency and



the average over neighboring frequencies has prevailed and been developed
in various directions [6]-[9], in particular the whiteness and Gaussianity
conditions on the noise were relaxed [10], [11] (c.f. also [4]). One important
application is moving target detection/indication in radar [12].

Starting with Fishers seminal paper, a common model for what is called
a narrow-band signal in time-series analysis and signal processing is a si-
nusoid whose amplitude and frequency are assumed to be fixed (but often
unknown). A pure sinusoid should really be called a zero-band signal though,
since it has no bandwidth; it is a ‘line’ in the spectrum. The simplistic zero-
band model is a useful first approximation to a truly narrow-band signal
and can serve to rationalize the periodogram as the statistic to be used in
detecting a sinusoid in additive noise. A more realistic model for a narrow-
band signal, however, requires a model of the modulation which produces a
non zero bandwidth of the signal. ! The ‘line broadening’ alluded to here is
a general phenomenon which is always present in real life periodic signals as
a consequence of the inevitable random modulation effects in the generation
mechanism. For example, the rotational speed of a motor which is operating
at a fixed load has some variation over time around the mean rpm of the
shaft. Thus, a time-series over the acoustic pressure generated by its vibra-
tion will contain a signal which will have some positive bandwidth around
the rotation frequency. In view of this it is clear that any efficient detec-
tion strategy for real life narrow-band signals must be based on a statistical
model of the modulation of the signal, and this is the motivation behind the
approach taken in the present work.

The class of models we employ to analyze the detection problem for
narrow-band signals in noise is called randomly modulated periodicities
(RMP). An RMP is defined in terms of the coefficients of a discrete Fourier
transform of the signal, essentially as a signal-plus-noise model of the signal
itself but in the Fourier domain. This makes it very easy to analyze the
statistical properties of the narrow-band components and to address the as-
sociated hypothesis testing problem. A Fourier-transform based approach
also enables us to look at the Fisher statistic in a new light and reexam-
ine some of the conclusions about the optimality of quadratic test statistics
often drawn (implicitly) from it. We shall show that there are indeed cir-
cumstances under which a Fourier-domain based test statistic should be
quadratic but that in general the optimal detector is linear-quadratic. This
qualitative conclusion holds for several different optimality criteria and for-
mulations of the detection problem. It turns out that the structure is some-
what subtly connected to the type of a priori knowledge available about the
underlying signal at the time of detection and we shall advocate a mixed

'As E.A. Robinson [13] puts it (on the concept of line spectra in optics): “Real ‘lines’
have finite with. This means that real lines behave like narrow-band noises and not like
either single frequencies or a constant-amplitude lightly frequency-modulated signal.”



linear-quadratic type of detector where the structure is allowed to change
with time (even in a stationary scenario). Allowing the structure of the de-
tector to change is very reasonable in Fourier-domain based detection since
the signal processing in then normally done frame-wise, on data partitioned
into (possibly overlapping) time frames. This means that the available a pri-
ori knowledge about the signal, like its mean phase relative to the frames,
is likely to change from frame to frame, and by incorporating such informa-
tion one can improve on a detector which depends only on the energy in a
frequency band.

2 Randomly Modulated Periodicities

As a basic model for signals comprised of narrow-band components we will
take (real-valued) signals z(t),? € R of the form
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where s, are (deterministic) complex numbers with the symmetries s_; = s},
and uk(t) are (possibly jointly dependent) zero mean fourth order ran-
dom processes satisfying the symmetry condition u_(t) = uj(t), for k =
—K,...,K and all times . Time t is here naturally divided into frames,
the m:th time frame F,, being the interval [mT, mT + T — 1), and the sig-
nals in (1) are assumed to posess two properties relating to this division;
periodic frame stationarity and finite dependence. Periodic frame station-
arity means that the distribution of (ug,(t1),...,u,(tn)) is the same as
that of (uk, (t1 +T),...,uk,(tn + T)), for any indices ki,...,k, and times
t1,...,t, in a frame F,,. Finite dependence concerns the joint distribu-
tions of (uj, (t1), ..., %y, (tm)) and (ug, (11), ..., uk, (7n)) which are required
to be independent for any indices ji,...,Jm,k1,---,k, and time points
t1 <+ <ty <1 <--- < 7y such that ¢, + D < 71, for some maxi-
mal range of dependence D. Signals of the form (1) are called randomly
modulated periodicities (RMP) (with period T') [14].

For a randomly modulated periodicity z(¢) we shall refer to the mean of
z(t) as the periodic component s(t) and the deviation of z(¢) from its mean
as the modulation component u(t). In other words, z(t) can be decomposed
into its periodic and modulation components, respectively, as

z(t) = s(t) + u(t) (2)

K K
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The RMP structure can provide a more realistic model in many real world
scenarios containing signals with periodicities because it makes it possible
to explicitly take into account the often present amplitude—phase ‘jitter’ of
such signals in a straightforward way. Once the statistics of the modulation
component are specified the RMP approach yields a model for the variation
in amplitude and phase which is expressed additively, as a deviation from a
nominal pure sinusoidal behaviour. By doing so the inherent structure of the
associated likelihood ratio test becomes much clearer and easier to exploit
when carried over into the Fourier domain. An RMP can be viewed as a
special case of a general (strongly) cyclostationary process [15] where the
variations in amplitude and phase are related to the division onto frames.

The signal model (1),(2) describes the noise-free case. In practice, how-
ever, all measurements are corrupted by noise. This is introduced in the data
model in the standard fashion as additive noise. Thus, the noise corrupted
randomly modulated periodicity y(t) is defined as

y(t) = «(t) + n(d),

where n(t) is a (real) noise process to be specified later. At this point it
is convenient to pass over entirely to the Fourier domain and in doing so
we will also discretize time, i.e. we will use the discrete Fourier transform
(DFT) formulation. For simplicity we assume (uniform) sampling at the
Nyqvist rate (sampling interval T'/2K) which means that there are 2K dis-
crete time samples in a time interval of length 7'. We may thus from now
on assume that time is normalized so that 2K = T and that the sampling
points are positioned so that one sample is taken exactly at time zero. The
discrete time signal thereby obtained is likewise divided into time frames,
each consituting 7' consecutive samples, where the m:th frame is given by
the points mT,mT +1,...,mT+T —1. By the assumptions the distribution
of the samples is the same for each frame.

The DFT of z(t) over the 0:th frame evaluated at frequency f, = r/T is
denoted X (r) and is given by

T-1

X(r) =Y xz(t)exp(—i2nfrt) = S(r) + U(r), (3)

t=0

where S(r) is the corresponding DFT of the periodic component s(¢) and
U(r) is the DFT of the random modulation u(t), i.e.

S(r)= z_: s(t) exp(—i2n frt), U(r)= 1y u(t) exp(—i2n frt).  (4)
t=0 t=0

Similarly we will denote the DFT of the noise process n(t) over frame 0 at
frequency f, by N(r) and we have

Y(r)=X(r)+ N(r), (5)



where Y'(r) is the resulting DFT of the noise corrupted RMP. It is useful to
note here that by the linearity of the DFT and the expectation operation
the mean value of X (r), which is S(r), is the DFT of the mean value s(t) of
z(t), and that the deviation U(r) of X (r) from its mean is the DFT of the
deviation u(t) of z(t) from its mean. In the following we will use (3) as the
representation of an RMP and (4),(5) for its noise corrupted counterpart.

3 Detection of an RMP

In order to address the problem of detecting an RMP in noise we need
to impose some further statistical assumptions on data. The most impor-
tant assumption will be that the RMP in the Fourier domain is Gaussian
distributed. This can be motivated in several ways. First, in many applica-
tions it is reasonable to assume that the modulation components uy(t) for
k= —K,...,K are jointly (complex) normal 2 which implies that the same
holds for the different frequency bins of U(r) (also after a possible averaging
of frames) and thereby also for X(r). Second, if data is not normal in the
first place it can often be made so by frame averaging. An average of L
frames of noise-free DFT data will be (pointwise) asymtotically (complex)
normal as L — oo because of the M-dependence [17, sec. 27| induced by
the assumptions. Therefore, we will henceforth assume that X(r) for all
frequencies is multivariate Gaussian. 3 We shall also make the assumption
that the noise n(t) is multivariate Gaussian, so that this holds for all fre-
quencies of N (r), and that N(r) is independent of X (r) (across frequencies).
When formulated in the Fourier domain like this, our problem of detecting
presence of a given frequency component can therefore naturally be formu-
lated as a test to discriminate between two Gaussian hypotheses. In order
to simplify notation we shall denote by X(r) the two-dimensional random
vector obtained by simply stacking the real and imaginary parts of X (r) in
a vector and similarly we shall denote by N(r) the two-dimensional vector
obtained from N(r).

3.1 Likelihood Ratio Test

To begin with we shall assume that the hypotheses testing problem is formu-
lated as a test between two simple hypotheses for a single-frequency RMP.

*With complex normal we here mean simply that the real and imaginary parts are
bivariate normal. A modulation component u(t) with jointly complex real and imagi-
nary parts has a Rayleigh distributed absolute value and uniformly distributed complex
argument. This form of modulation is known as ‘Swerling’s case I’ in radar detection [16],
[12].

3Tt may then be that X(r) is computed via frame averaging, and is thus really an
average, but since it is not necessary for the detection theory to make the distinction we
shall not do so.



In other words, we shall assume that the (mean) frequency and (mean) phase
of the single sinusoid comprising the periodic component s(t) is known. The
null hypothesis Hy is that the data observed consists only of stationary zero
mean Gaussian noise and the alternative H; is that in addition to the noise
there is a single-frequency RMP present in the observations. More pre-
cisely, in terms of Z(r), the two-dimensional vector formed of the real and
imaginary parts of the DFT of data at frequency r, the two hypotheses are

Hy: Z(r) = N(r)~N(0,Xx(r)) (6)
Hy: Z(r) = X(r)+N(r)~N(S(r),Su(r) + En(r)),

where S(r) and Xy (r) are, respectively, the mean vector and (nonsingular)
covariance matrix of the random variable X(r) under H;, and Xx(r) is
similarly the (nonsingular) covariance matrix of N(r) under Hy, H;. As a
test statistic which is sufficient for the likelihood ratio we may thus consider
L(Z(r)) given by

e(z(r)) = tog (220, ¢

where po(z), p1(z) are Gaussian probability densities with mean 0 and S(r),
respectively, and covariances X (r) and Xy (r) 4+ X N (), respectively. Writ-
ten out, the expression for £(Z(r)) takes the well-known form

UZ(r)) = —%(Z(T) — S (Zu(r) + En(r)"H(Z(r) - S(r))
+ %ZT(r)z;(r)zm — det (Zu(r) + Sa (1) Y2 + det(S (1)
=v(r)"Z(r) + %ZT(T)M(T)Z(T)‘FC(?"), (8)

where the vector v(r) and matrix M(r) are given by

v(r) = ST(r) (o (r) + Sh () ', M) = B3 0) - (Spe + En)

and C(r) is the constant

O(r) = —5870) (Sp(r) + Sx () 7'S()

— det (Sy(r) + Sn(r) " + det (Sn () /.

An optimal test, or detector, in the Neyman-Pearson (N-P), Bayes or mini-
max sense is thus

Hy

vI(r)Z(r) + %ZT(T)M(T)Z(T) s q(r), (9)
H,



where «(r) is a suitable threshold.

Hence, the optimal likelihood ratio detector for the basic problem (6) is
linear—quadratic and it is worthwhile to make some observations pertaining
to this fact. First, in the case of a vanishing modulation component U (r) (for
fixed nonzero mean S(r)) the detector in (9) degenerates into a linear form,
the same basic structure as in the so called matched filter, or correlator
detector, for detection of a known deterministic signal in Gaussian noise
(“coherent” detection [18]). Indeed, by writing out the defining relations for
the matched filter detector for detection of a sinusoid with known parameters
in Gaussian noise based on 7' samples of the time series with the ‘in-phase’
and ‘quadrature’ components separated one easily sees that the detector
(9) really represents the matched filter detector for the underlying time
series. Another, much more interesting, observation about the vanishing
modulation component case is that the test then becomes a simple mean test.
This is interesting because it indicates that we by Fourier transformation
have moved the problem of detecting a (perfect) sinusoid into the ‘right’
domain since a test for a change in means is essentially the simplest one
possible. Second, when S(r) approaches zero (for a given nonzero X (r))
we obtain instead a purely quadratic test, a weighted variant of the energy
detector, which is a structure that is optimal for discriminating between two
Gaussian distributions with the same mean. Given this fact it is more or less
immediate to realize that a quadratic test of this type in general must be far
from optimal for detecting a pure sinusoid in noise in the Fourier domain,
especially when the noise level is not very high. Still, as mentioned in the
introduction, this is often what is done in ad hoc approaches to the detection
problem based on searching for peaks in the periodogram. Taken together
these observations make it intuitively clear why an optimal likelihood ratio
test for the present signal and noise model in general must be of the mixed
(location—dispersion) form in (9): The linear part detects the offset in mean
at a single frequency in the DFT due to the periodic component and the
quadratic part detects the difference in covariance at the frequency incurred
by the Gaussian random modulation component.

3.2 Locally Most Powerful Test

The hypothesis testing situation considered above, with two simple hypothe-
ses, is the most basic situation of hypotheses testing. It is, however, for
many real world applications unrealistic. A natural question is therefore
if any of the structural and qualitative properties of the detection problem
above remain for other settings of the problem, such as variants with a com-
posite alternative. For detection of weak, partially known, deterministic
signals in noise the perhaps most useful formulation in the Neyman-Pearson
framework is that of a locally most powerful (LMP) test [18]. A reasonable
composite alternative hypothesis H; for detection of a weak partially known



single-frequency RMP in noise is one where the amplitude of the periodic
component and the covariance of the modulation component both have a
linear parameter dependence. This amounts to replacing S(r) and Xy (r) in
(6) by 61S(r) and 02X (), respectively, for some 61,60 > 0, which renders

an alternative hypothesis H; of the form
Hy: Z(r)=Xeo(r) + N(r) ~ N(6:8(r), 025y (r) + Sn(r)), (10)

where Xg(r) is the parametrized RMP and © = (61,602) is the parameter
vector. The probability distribution of Z(r) under H; is denoted Pg, with
density pe(z), and, since we have H; = Hy for © = 0, the distribution
of Z(r) under Hj is accordingly denoted Py, with density po(z). The LPM
detector for an alternative hypothesis of this type is obtained by the following
variant of the standard technique.

Given a value © # 0 and a test statistic f(Z(r)) of data Z(r) (with
prescribed threshold 7y), denote the resulting false alarm (type I error) by
Pr and the probability of detection (power of the test) by Pp. We then
have Pr = Py(A) and Pp = Pg(A), where A = {z € R? : f(z) > 7} is the
acceptance region, and Pp can be expanded in a Taylor series near © = 0,
see appendix A, as

Pp = Pe(A)
0 0
= Po(A) + 01 55-Po(A) oo + 02 55-Po(A) o_o + O(O]*)
0 0
= Pp +0155-Po(A)o_o + 0255-Po(Alo_o + OO (11)

For a given significance level @ and (small magnitude) parameter O, a locally
optimal test statistic can be defined as one that maximizes the sum of the
two middle terms on the right in (11) subject to Pr < «, for some class
of deviations from © = 0. If we consider only local deviations of the form
0y = 16, where 7 is some positive constant, the expansion in (11) can be
written as (appendix A)

Pp = Pg
+ 0, / (S"0)Sy )+ 1aT S () BBy (r)a + 1) pols) de
A
+o(e)*), (12

where ¢; is a constant (not depending on A). Therefore, we define here a
locally optimal detector as a test that maximizes the integral on the right
in (12) subject to Pr < a. Now, the integrand in the integral in (12) can
be renormalized to yield a probability density and this enables us to invoke
the Neyman-Pearson lemma for the optimization problem. If we do this, a



maximizing test statistic f emerges as
f(2) = 8" (23 (2 + 32" B (NBu (NZR Mz + e, (19)

where the corresponding threshold 4 is choosen such that Pr = a. By
adjusting 4 the constant * ¢; may be dropped in (13) and sufficient statistic
for a locally most powerful test for Hy versus (any fixed member of the
family) H, is therefore

ST(r) =y (NZ(r) + gZT(T)EE1 (r)Su(r) By (r)Z(r), (14)

with performance given by (12) with f = f,v = 7.

The test statistic in (14) is of the same linear—-quadratic form as the
one on the left of (9). Consequently, all the qualitative remarks made in the
previous section carry over also to this case. In particular, the mixed linear—
quadratic structure is a result of the more realistic assumption of uncertainty
in both location and size of the deviation from the null, or nominal. This
holds for any ratio n between the deviation in f2 and 6y near (0,0), and any
value of Xy (r). In the important special case where X/ (r) is of the form
0?1, which amounts to a total lack of (statistical) syncronization between
the modulation component U(r) and the periodic component S(r) (with all
its spectral support at r), the quadratic part in (14) becomes

o 1 2
1 ISt 2P (15)
A subsequent change of coordinates £(r) = £ (r)Z(r) shows that the de-
tector obtained from (14) then becomes a weighted sum of a correlation
detector and an energy detector. Moreover, in the equally important spe-
cial case where the noise lacks the same kind of syncronization, so that also
Y n(r) is a multiple of the identity, the detector collapses into correlator-
energy detector form even without a change of coordinates. In practice one
can interpret the value of o2 as a prior expressing how much deviation in
size relative to the deviation in location is anticipated in the signal part of
Z(r) under H; and therefore 7 can be absorbed into o. This remark also
generalizes to the case in (14) if we replace o2 by Zy(r).

3.3 Random Parameters

So far we have assumed that S(r) (or equivalently its vector form S(r)) is
completely known, or known apart from a scaling factor as expressed by the
parameter #;. In other words, we have assumed that the complex argument
of S(r) is known, i.e. that the phase of the periodic component is known.

“For future reference we note also that ¢; does not depend on S(r).



This is another assumption which in many applications may be questionable
and thus is desirable to remove. A standard way to deal with this is to take
a Bayesian view in which the phase of the periodic component is considered
to be random. Then S(r) becomes a random vector with a probability
distribution dG and the alternative hypothesis, denoted H lQ , can be written

H?: Z(r) =Xe(r) + N(r) ~ Qo (16)

where the distribution @ of Z(r) under I:IIQ has a density

o(z) = /R po(2[S(r) = 8) dG(s). (17)

Here po(z|S(r) = s) is the conditional probability density of Z(r) given
S(r) = s, which is of the form (10). The probability of detection @p for a
test statistic f (with threshold «y) and acceptance region A now becomes

Qp = Q(A)

_ /A g(z) dz
_ / /R po(z|S(r) = s) dG(s)dz
/R 2 / po([S(r) = s) dzdG(s)

- [ P ac0). (18)
R?

where the interchange in order of integration in the third equality can be
justified with Fubini’s theorem and

PO (A) = /,4 Po(zIS(r) = s) dz.

This last quantity we recognize as the conditional probability of detection
given S(r) = s and it follows that @p is a continuous convex combination
(average) of detection probabilities P( )(.A) of a type encountered in the
previous section. Also for the present setting a locally most powerful test
can be defined as one that maximizes Q)p near ® = 0 for deviations of the
form 6, = 16, n > 0, subject to a false alarm constraint. In order to find
such a test we can exploit the close connection between Qp and Pp and
mimic the procedure used to find the statistic (13).

If we Taylor expand Pés) (A) in © near 0 like in (11) and insert in (18)
we obtain

Qp = Po(A)

+9/ (5 P (Ao + 71 P (A o) dG(8) +R1(®), (19

10



where we have assumed that the rest term in the expansion of P(E)S) is in-
tegrable dG so that R1(©) is well defined. > In this case R{(©) will be
of order O(||©||?). Now, the probability of false alarm Q is here given by
Qr = Qo(A) = Po(A) so the steps in the previous section (and appendix
A) can be traversed once more to obtain an expresssion for the integrand in
(19), which upon insertion gives

Qp=Qr
+ 0, /A (Ea(S" ()3 ()5 + 12" S5 (r) B0 (1) B3 ()5 + 1) po(z) da
+ Rl(g)a (20)

where Eg(ST(r)) is the mean of ST (r) under dG and we have used Fubini’s
theorem once. The expression (20) is of exactly the same form as (12) and
we can again invoke the Neyman-Pearson lemma to obtain a maximizing
test statistic fQ as

fa(z) = Bo(8" (M) S5 (M2 + 52" S/ () Sy (N (a+ e, (21)

where the corresponding threshold 7g is chosen such that Qr = a. Also
here we can drop the constant ¢; in (21) by adjusting the threshold 4¢g and
it follows that an optimal test statistic of data Z(r) exists in the present
setting which is identical with the one in (14) if S(r) replaced by E¢(S(r))
and has performance given by (20) for f = fQ,'y = q¢g. Moreover, the
qualitative remarks made in connection with (15) regarding the quadratic
part carry over also to this case. If Eg(S(r)) = 0 the first term in (21)
vanishes and this happens for instance if the distribution of S(r) is radially
symmetric, i.e. a uniformly distributed phase. In this case a locally optimal
test statistic fQ thus exists which is purely quadratic. Uniform phase is
often a realistic modeling assumption since it corresponds to a total lack of
(statistical) synchronization beteen the periodic component of the RMP and
the clock governing the sampling. ¢ Finally, since one can model uncertainty
in the magnitude of S(r) by variations in §; we can without much loss of
generality assume that the distribution dG has support in a bounded region
in R?. In particular, in the uniform phase case we can assume that it is
concentrated on the unit circle in R?. The rest term R (©) in (20) will then
be of order O(||©||?) as assumed.

3.4 Deflection Index

The classical formulations of hypothesis testing (N-P, Bayes, minimax) re-
quire that the probability distributions of data under the various hyptheses

SThis is a mild assumption and is for instance true if the the measure dG has bounded
support in R?, which is both reasonable and natural to assume as we shall see shortly.
5In Bayesian terms this corresponds to no prior information about the phase.
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are completely known. In many practical applications this is a severe obsta-
cle in the design and evaluation of detectors/tests and therefore a number
of alternative criteria of optimality with corresponding detection strategies
have been developed. Among the easiest to apply in practice are (second-
order) moment based criteria, of which the deflection is central [19]. The
deflection D(g) of a (sufficiently integrable) test statistic g of data is defined
as

(Ei(9) - Eolg))?
Vo(g)

where Ey(g), E1(g) are, respectively, the mean of g under the null and alter-
native hypothesis, and V5(g) is the variance under the null hypothesis. It is
easy to see that D(ug+v) = D(g) for any constants u, v such that u # 0 and
we shall therefore henceforth assume that all test statistics g have shifted
means so that Ey(g) = 0. The deflection criterion represents an alternative
performance index of a detector which is not based on probabilities but on a
signal-to-noise ratio, or mean square error [20]. However, optimal detectors
based on deflection are closely related to those obtained by the classical the-
ory. Indeed, it is well-known [19] that unconstrained maximization of D(g)
yields the likelihood ratio as the optimal solution. Since the linear—quadratic
statistic in (9) is sufficient for (8) it follows that the test in (9) is equivalent
to a test which is optimal for deflection for the RMP detection problem in
(6).

As mentioned before however, it is often more realistic to consider com-
posite alternative hypotheses and in particular it is desirable to find detec-
tors that are are locally optimal for alternatives in a neighboorhood of the
null hypothesis. Such detectors can be developed also under the deflection
criterion of optimality but one must proceed somewhat differently than in
the N-P setting. The fact that the likelihood ratio is an optimal test statistic
also for deflection and the intuitive idea that a smooth map (like the log-
arithm) should not affect the structure of a locally optimal detector much
leads one to suspect that there might be a close connection between the LMP
test statistic in (14) and a statistic which is locally optimal with respect to
deflection. As we shall see next, when the two problems are formulated
properly such a close connection does indeed exist.

The two hypotheses we shall consider first are the same as before in
the composite N-P setting, namely the null Hj in (6) and the composite
alternative H, in (10) (wihout any prior on ©). The expectation under H, of
a test statistic g(Z(r)) of data Z(r) is denoted Eg(g) and the corresponding

deflection is )
(Eo(9))
Vo(g)

Then, under some (weak) regularity assumptions on g, see appendix B, the

D(g) =

De(g) =

12



deflection Dg(g) can be expanded in a Taylor series near © = 0 as

0

De(g) = Dolg) + 01 (D D6 (0) o0

Do(g)) ‘@:0 + 05 (

96,
82
+9192(697802D®(9))‘@_0
07 , 0 03, &
5 (gPe@)lo=o + 5 (3gPe () lo—o + OUOI).  (22)

Evaluation of the terms on the right hand side (appendix B) leads to
De(g) =
1

Volg) @ (3%1}-’7@(9)) lo—o + 92(8%%(9)) Iezo)2 + 0|0
1

— i (L, 906155 p0(a) + 625 po@) g g d2)” + OUIOI). (23

Also here we shall consider only deviations from © = 0 of the form 6y = 76,
for some positive 7, and we see then that maximizing Dg(g) near © = 0
is the same as maximizing the first term on the right in (23). This is a
straightforward L2-optimization problem and a maximizer § in the class of
slowly increasing functions with zero mean under Hj is easily found using
the Cauchy-Schwarz inequality as (appendix B)

§(2) = ST(EN (M2 + 32" T (Do () By (a+ o, (24)

for some constant c. In other words, a test statistic of data Z(r) which
maximizes deflection locally is
_ 7 _ _
ST (NZ(r) + 527 (2R (1) e ()T (Z(r), (25)

which is the same statistic as in (14).

The close connection between the locally optimal detector with respect
to deflection and the LMP detector persists if we consider the type of al-
ternative hypotheses H @ as in (16). What is changed basically, is that the

probability density of the observations under H1 is instead given by ge(z)
defined in (17). This means in particular that the expectation of a statistic
g under the alternative H lQ reads

Eo(g) = /R2 9(z) go(z) dz

- / / 9(2) po (2/S(r) = ) dG(s)dz
R? RZ

/RQ /R z) po(2|S(r) = s) dzdG(s)

ES)(g) dG(s),
R2
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where the interchange in the orders of integration can be justified as before
and

Eg)(g) = /R29(Z)pe(z\s(r) =8) dz.

The last quantity is the conditional expectation of g under H; in (10) for
a vector S(r) with the value s. Hence, also here the performance is deter-
mined by a convex combination of the performances in the family of cases
corresponding to the composite alternative hypothesis H; and we can again
hope to obtain an optimal solution by mimicking previous developments. In-
deed, using totally analogous arguments as in appendix B it is easy to show
that the deflection also in the present case can be expanded near ©® = 0
in a Taylor series of the form (22) and that Dg(g) now locally is given by
an expression as in (23) but with pg(z) replaced by gg(z). The procedure
outlined in appendix B can then be carried out once more and it is straight-
forward to see that one will obtain the same result as before but with S(r)
now replaced by Eg(S(r)). Consequently, a statistic g(Z(r)) of data Z(r)
that is locally optimal with respect to deflection in the present setting is
given by

§(2) = Ba(ST ()T Nz + 22" S5 (2o (1) B3 ()2,

which is the statistic obtained from (21) when applied to data.

4 Discussion

Despite its widespread use, the optimality of the periodogram as a test
statistic is seldom questioned. Indeed, most analyses of periodogram based
detection schemes focus on the asymtotic distribution of the periodogram,
and properties of detectors based on the periodogram, and do not address
the more fundamental question of determining an optimal test statistic in
the Fourier domain. A key issue therefore is to determine, under realistic
modeling conditions, if there is a fundamental reason to use an inherently
quadratic statistic and, if this is the case, to explain it. It is known [5, Thm.
4.6.3] that Fisher’s test is the uniformly most powerful symmetric invariant
test for detecting a single sinusoid signal in white Gaussian noise of unknown
variance, if the frequency of the signal is at one of the DFT frequency bins.
However, in practice the parameters of the noise background are often slowly
varying and can be estimated ‘online’ so that the biggest uncertainty is
in the parameters of the narrow-band signal (amplitude, phase etc) to be
detected. Moreover, there is in general no reason to impose a symmetry
restriction on the test statistic. Guided by these considerations we have here
developed various optimal tests based on the strong intutitive appeal of a
Fourier domain setting and the power of a model-based approach utilizing
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the structure of the RMPs. It has turned out that for several realistic
formulations the resulting optimal test statistics in this framework are not
quadratic but linear-quadratic and a few (additional) remarks about this
fact are in order.

First, we note that for detection of an RMP with one frequency com-
ponent of unknown (mean) amplitude S(r) and dispersion U(r) the locally
optimal statistic in (14) is virtually never purely quadratic. A look at the
Taylor expansion (11) shows that it becomes quadratic only in the degen-
erate case where one only considers (co-) parameter variations of the form
6, = 62 locally near (0,0). Likewise, it becomes linear only when 6, = 62
near (0,0). In the corresponding case of locally optimal detection with
random S(7) it becomes quadratic precisely when Eg(S(r)) = 0, which in
practice occurs essentially only if s(¢) has uniformly distributed phase, i.e.
no a priori knowledge of the phase. In many applications there can how-
ever indeed be a priori knowledge of the mean phase, such as efter the first
frame in multi-frame detection where S(r) is constant between frames (but
random). It may then be that there is no a priori knowledge about the
phase of s(t), that is, the components of S(r), at the beginning of the first
frame but after the first frame the a posteriori distribution of S(r) does
no longer correspond to a uniformly distributed phase. ” The optimal de-
tector must then change structure accordingly; from purely quadratic to
linear—quadratic (a case of semi-coherent detection). In the limit of an in-
finite number of frames the detector becomes linear; it degenerates into a
matched filter. One could also concieve cases where not only the real and
imaginary parts of S(r) are random but where (S(r), U(r) are random with
a joint distribution. However, our formulation offers reasonable power in
modeling while retaining simplicity since the only ‘tuning’ parameter in the
optimal test statistic (14) is the ratio 7.

5 Conclusions

We have devised a descision theoretic framework for detection of narrow-
band signals in noise that preserves the intuitive appeal of Fisher’s original
idea of using a Fourier-domain based statistic with a natural and more re-
alistic model for the narrow-band signal. The resulting optimal tests have
been shown to be linear—quadratic rather than quadratic for several impor-
tant formulations of the detection problem, including locally most poweful
formaulations as well as formulation based on second order statistics such as
deflection. The two parts of the detector, the linear and the quadratic, can
be interpreted as serving two different purposes; the linear part makes the
detector responsive to the sinusoidal structure of the signal and the quadratic

TAlso, note than when the phase has a distribution other than uniform it is only its
mean that enters into the detector, a quantity that is easy to estimate/assign values to.
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part ‘robustifies’ the detector to be better adapted to the inevitable varia-
tions of the signal around the ideal sinusoidal shape. (This section needs to
be laid out somewhat better.)

Appendix
A LMP Test

We shall here provide some details that were omitted in the development of
the LMP test above. To begin with we show that the probability of detection
Pg(f) can indeed be Taylor expanded to any degree around © = 0.

Lemma A.1. Let A,B be two square matrices and dy a real number such
that (6oA +B)~! exists. Then —(JoA +B) " tA(6A +B)~! is the (Frechét)
differential of (§A + B) ! with respect to § at § = d.

Proof. First we note that ((dp +¢)A + B) ! is clearly continuous in e near
¢ = 0 and by direct multiplication it is easy to verify that

(o +€)A+B) ' — (oA +B)~' = —¢((do +£)A +B) 'A(6A +B)7!,
from which we obtain the growth estimate

I((d +€)A +B) ™" — (5oA +B)~'|| < O(le]).
Thus,
1((6o +€)A +B) ™" — (oA +B) ' +£(5A +B) 'A(6A +B) !
= lelll (60 + €)A +B) 'A(6A +B)~" — (5A + B) 'A(6A +B)7!|
< el (%0 + €)A +B) ™ — (oA +B) L[| Al (50A +B) L
= o([e]).

If we put
£(0,z) =exp ( — %(z — 918(7"))T(922U(7‘) + EN(T))_I(Z — 01S(r)))

then straightforward calculation gives

0
8—018(®,z) = (ST(r)(0Zu(r) + TN (r)) H(z — 0:S(r)))E(O,2)  (26)
and by using the lemma above likewise
0

6—025(@, z) = %(z —0:8(r)) (622 (r) + En(r)) 'Sy (r) -
02y (r) + Sy () "Lz — iS(r)EO,2). (27)
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This means that
0

——£&(0,z) = hj(0,2)(0,2), j=1,2,

00;
where h;(0,z) is a polynomial in z with C*°-coefficients in ©. Similarly, by
induction it is easy to see that any higher order partial derivative 0g'£ (0, z)
of £(0,z) with respect to components of ©, where m is a multi-index [21,
p. 266], is of the form

05€(0,2) = h,(0,2)E(0,2),

where hp,(©,z) is a polynomial in z with C*-coefficients in ©. Therefore,
any higher order order derivative 0g'pe(z) of the density

po(z) = c(01)€(0, 2),

where
1

e(b2) = 5, det (63 (r) + Su(r))1 /2’

is of the form

aénpe (Z) = Bm(ga Z)S(Ga z)

where hp,(0,2) is a polynomial in z with C®-coefficients in ©. By the
exponential decay of £(0,z) as ||z|| — oo it follows that for any sufficiently
small neighborhood N of 0 and fixed positive integer k the majorant

sup |98 pe(z)|
|m|<k,0eN

is an integrable function. Using this fact together with a standard result
from integration theory ([21, p. 54]) we can justify differentiation directly
on the integrand in the representation

%szmmm

where A = {z € R? : f(z) > v} is the decision region as before, and obtain
the terms in the Taylor expansion (11) as well as the representation

0 0 0 0
8—01P@(A)‘@:0 + 773—92P@(A)|®:0 = /A (8—01p@(z) + 776—92P®(Z)) oo 42

(28)
The integrand on the right in (28) can be expressed as
0 0
(8—91p®(z) + 778—02p6(z)) |@:0 =
0 0 0
6(02)) |@:0 5(0, Z) + C(O) (—5(61 Z) + 778—925(& Z)) ‘@:07 (29)

(’78_92 90,

where we note that po(z) = ¢(0)£(0,z). This taken together with (26),(27)
and (28) yields the expansion in (12).
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B Locally Optimal Deflection

The class of admissible test statistics we consider consist of functions g(z)
that are locally (Lebesgue) integrable and of ‘slow’, i.e. at most polynomial,
growth as ||z|| — oo. For such functions it is easy, using arguments from
appendix A, to justify the interchange in differentation and integration in
the definition

Folo) = [ | atalpos)da (30)

Hence, the Taylor series in (22) is well-defined for test statistics in this class.
Further, by the assumptions Fg(g) = 0 and if we use this fact together with
the definition (30) and its differentiability properties it is easy to see that
the first three terms on the right hand side of (22) are zero. The middle
three terms can be written

o2 2016y, 0 0
9192(89 80 De(9))|g—o = Vo( )(891E®(9)8—02E®(9))‘@:0,
E(G—H%DG(Q)”@:O VO( )(aelE )) |@:0,
62 , 02 A

2
E(a—egD@(g) lo—o = Volg) (392E 9)) " o=o>

and it follows that the Taylor series of Dg(g) near © = 0 can be expressed as

n (23). If we only consider local deviations of the form 6y = nf1, n > 0, we

see that maximizing Dg(g) locally is the same as maximizing the first term

on the right hand side of (23) with respect to slowly increasing functions g

such that Fy(g) = 0, i.e. maximizing the quantity

1 0 0 2
77 (90 (ggpola) +n55-re(a) o g dz) =
1
Vo(9)

2

([, 6" 0= 02+ Ja" 25 (1) B0 () =R ()a)g(ap(a) da)
(31)

where we have used (26),(27) and (29) together with the definition (30) and
its properties. The assumption Fy(g) = 0 moreover implies that

2

(/R2 (ST(T)Z];Vl (r)z + ngﬁfvl(r)EU(r)Ejvl(r)z)g(z)po(z) dz) =
(/R2 (ST(’I‘)EXTI(’I‘)Z + ngER,I(r)EU(r)EIVI(T)z — c2)g(z)p0(z) dz)2

for any constant c,, in particular for the choice

e = /R (ST()2y' ()2 + T2 Ty ()0 (r) By (2)po(z) dz. (32)
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Now, by the Cauchy-Schwarz inequality the quantity in (31) is bounded by

/R2 (ST(r)=y' (r)z + ngEJ*VI(7")2[](1”)2]*\,1 (r)z — c2)2p0(z) dz
with equality if
§(2) = ST (TR (r)z + 22" B (N Zo (1) By 1)z — .

However, this choice of g is clearly admissible since by (32) we have Fy(g) =
0. This renders the statistic (25) as a locally optimal statistic on data Z(r).
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