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On the Principal Domain of the Discrete
Bispectrum of a Stationary Signal

Melvin J. Hinich and Hagit Messer, Senior Member, IEEE

Abstract- This paper presents a simplifyiag, yet gmenI ap-
proach to detennbling the symmetry structure of a bispec:tnun.
The prindpaJ domain (PD) of the bispednun lIDd its rePm
of positive support are derived in a way that illuminates the
cootroveny surrouncIinI the t:rianaIe in the PD, which is called
the outer triangle (OT) by Hinich IlDd WoIinlIIr.y,wheft the
blspectnun is zero for. stationary random sampled pl"OCeSSthat
is DOt aIlasecL The basic statistlcal issues of testing for DODZe1'O

bispectnII structure are reviewed.

1. INTRODUCTION

HIGHER order spectral analysis is considerably more
complicated than spectral analysis. Going from one to

two or more frequencies introduces many complicating tech-
nical issues. The symmetriesof the bispectrum are not obvious,
and those of the trispectrum are even more complicated. This
paper introduces a fresh approach to bispectral analysis.
The statistical properties of higher order spectral estimates

are more complex than spectral estimates. For example, the
variances of the bispectrum depend on the trispectrum and
the sixth-order cumulant spectrum, whereas the variances of
spectral estimates depend on the power spectrum and the
trispectrum. These variance parameters play a crucial role
in computing the asymptotic properties (both bispectrum and
trispectrum) based on the tests for nonlinear and nonGaussian
structure that have received considerable interest and appli-
cation in a number of fields, including engineering signal
processing [10], [11].
This paper presents a window to the technical issues inher-

ent in the successful application of higher order spectra for
signal analysis.
One of the major benefits in using a higher than second-

order cumulant is the possibility to discriminate between
Gaussian and nonGaussian random signals. Since the bis-
pectrum of a Gaussian sequence is zero over the entire
principal domain, a test for Gaussianity based on the estimated
bispectrum has been suggested [4], [14]. This test is well
accepted by the signal processing community and has been
used for signal detection problems (e.g., [6], [9]).
Hinich and Wolinsky [5J have studied the discrete bispec-

trum of a sequence created by sampling a stationary, random
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process. They have shown that the principal domain can be
divided into two triangles: the inner triangle (IT) and the outer
triangle (OT). H the sampling rate agrees with the Nyquist
rule, the discrete bispectrum over the OT is identically zero.
Based on this observation, they suggested a test for aliasing
[5J. Sharfer and Messer [13] used it for testing for jitter in
the sampling clock. This test, as well as a bispectral-based
test for a transient coherent signal in stationary noise [7] and
other advanced tests based on zero bispectrum over subregions
of the principal domain, has been criticized lately on several
occasions (e.g., [3J, [12], [15]). In this paper, we prove, in
a way different from [5J, that the bispectrum of a discrete
sequence is zero over the OT under certain conditions, We
study these conditions, and we explain how each of them can
be related to properties of the tested signai. Thus, its violation
can be tested using estimates of the discrete bispectrum over
the OT.

II. THEoRETICAL BACKGROUND

Assume first that x(t) is a real, zero-meanl, continuous AI)
random process. Define C(tl,t2,t3) = E{X(tl)X(t2)X(t3)},
and assume it is finite. The 3-D Fourier transform of
C(tl, t2, t3) (which is the third-order simple cumulant of x(t)
is the third-order cumulant spectrum of x(t)

CS(Wl,W2,W3) = L:L:L: C(tl,t2,t3)

x e-jw,t'e-jw.t'e-jw3t3 dtl dt2 dt3'
(I)

H x(t) is at least third-order A2) stationary, its third-order
cumulant spectrum is only a function of two variables
C(tI,t2,t3) = e(tl - t2, t2 - t3) = e(TllT2). A 2-D
Fourier transform of this bicovariance function e( TI, T2) =
E{x(t)x(t - TI)X(t - T2)}' can then be applied. The resultant
2-D function of WI and W2 is the blspectrum of the stationary,
random signal x(t)

B(WI,W2) = L: L: C(TI, T2)e-jw,T, e-jw21) dTldT2' (2)

For a stationary x(t), the third-order cumulant spectrum must
satisfy

IThe assumptions of zero mean and real signal can be relaxed. We use
them only for simplicity.

I.
I
I
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Fig. 2. PD of the discrele bispeclJllm.
Fig. I. PD of the continuous bispeclJllm of a bandJimiled signal.

where 6(w) is the Dirac delta function. Notice that the third-
order cumulant spectrum is well defined for any signal. If
x(t) happens to be a stationary, random signal, it becomes
identically zero anywhere in (WI,W2,W3) but over the plane
(WI + W2 + W3)' Using the Cramer representation

Then, the third-order cumulant spectrum of (1) is given by

CS(WI,W2,W3) dw1dw2dw3 = E{dX(Wl)dX(W2)dX(W3)}'
(5)

Assume that x(t) is A3) bandlimited to B = 21l'W; then,
dX(w) = 0 for Iwl > B and, from (5), CS(WI, W2, W3) = 0
outside the cube {IWki :::; B; k ;::;1,2, 3}. We now derive
the principal domain of the third-order cumulant spectrum for
bandlimited signals. From (I), we see that CS(WI, W2, W3) is
invariant to permutation of the frequencies. Therefore, the cube
can be divided into six equal volume regions defined by

We further assume that x(t) is a real signal. As such,
CS(WI, W2, W3) = CS. (-WI> -W2, -W3). For each triplet
(WI,W2,W3) in the cube Iwd < B,Iw21 < B,lw31 < B,
there exist II images detennined by the composition of the
permutation and the sign change resulting from the conjugate
operation. To establish the boundaries of a nonredundant
region, we take the intersection of a double pyramid of (5)
and the orthants (+ + +), (+ + -), (+ - +), ... , (- - -).
The symbol (+ + +) stands for all positive frequencies, the
symbol (+ + -) stands for WI and W2 positive, whereas W3
is negative, etc. Because of the sign invariant, each of the
plus signs can be replaced by a minus sign, and vice versa.
Composing it with the permutation of the frequencies, only
two orthants, say (+ + +) and (+ + -). are sufficient for all
eight of them. Using one of the pyramids of (5), say. the last

00L c(nI,n2,n3)e-;O,n,
00

L
00

= L

This is actually the PO of the continuous bispectrum for a
bandlimited signal.
Each of the 12 possible principal domains of the third-

order cumulant spectrum in the cube {IWkl :::; Hj k =
1, 2, 3} intersects the plane W3 + W2 + WI = 0 in a different
manner. While some intersections result in a triangle (as in our
example), others result in two disjoint triangles in the plane
(Wl,W2)'
The next step is to assume that the bandlimited, continuous

signal is sampled by a sampling rate that satisfies the Nyquist
condition 27rI. ~ 2B(J. ~ 2W). The discrete third-order
cumulant spectrum of the sampled signal x(n) = x(n/ I.)
then satisfies

{W3 < W2 < wr} U { - B < W3 < B}. (7)

"1=-00 n2=-00 "3=-00

e-;Q,n2e-;OJnJ

f: f: f: CSC;,. + nl, 2;~.+ n2,
nl =-00 "2=-00 "3=-00

2;~.+ n3) (9)

From (3), we have that for a stationary signal, the third-order
cumulant spectrum is zero in most of the volume of a principal
domain (see Fig. 2). The frequencies of nonzero values are on
the intersection of a volume that is a principal domain with
the plane WI + W2 + W3 = O. The result is the support of the
bispectrum. By substituting -W3 = W2+WI in (7), we see that
this plane does not intersect the pyramid 0 < W3 < W2 < WI'
Its intersection with W3 < 0 < W2 < WI < B results in the
triangle (see Fig. 1)

one, its intersection with (+ + +) is simply W3 < W2 < WI' Its
intersection with (+ + -) is W3 < 0 < W2 < WI. A principal
domain of the third-order cumulant spectrum of a bandlimited
signal is then given by

(6)

(4)

WI < W2 < W3

WI < W3 < W2

W2 < WI < W3
W2 < W3 < WI

W3 < WI < W2

W3 < W2 < WI'

1 100

x(t) = - ejwt dX(w).
21l' -<>0
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ml=-OO m,=-ex>

Fig. 3. Plane WI + W2 + W3 :: O.

00L c(mt,m2)e-iO,m'e-i{l,m.
00

f f B(2~~.+m1, 2~i.+m2)'
ml=-oo m,=-oo

(12)

A PD of it is given by (II) and is depicted in Fig. 3.
Applying the discrete Fourier transform on the sampled sig-

nal x(n) = x(t)lt=nt> one gets X(n) = E:'=_oox(n)e-inO,
which is a periodic function of n with a period on 27r. In
addition, since x(t) is band1irnited,X(n) = 0 for WT <
Inl < 11". Define G(nlt n2) = X(nt)X(n2)X*(nt + n2);
then, the PD of G(nlt n2) is given by (11); therefore, it

the (n}, n2) plane that is bounded by the axis and by the
line 2n1 + n2 = 2WT, which defines the OT in Fig. 3. We
therefore reproved the result of [5], saying that a principal
domain of the discrete bispectrum of a time series that results
from nonaliased sampling of a bandlimited, stationary random
process is divided into two regions: the IT, which is the support
of the continuous bispectrum (S)fornl = wtT and{l2 = W2T,
and theOT over which the discrete bispectrum is inherently
zero.
The discrete bispectrum is related to the continuous bispec-

trum via

CSd(n},n2, n3)

= f f f CS(2~~.+ nl, 2~i.+ n2,
nl=-OO n2=-OO n3-=-OO

2~j.+n3)

00 00 00

L L L 8(n1 + nl + n2 + n2 + n3 + n3)

By comparing it with the principal domain of the continuous,
bandlimited bispectrum (8), we see that an extra trapezoid
is added to the principal domain due to the sampling of the
continuous, bandlirnited process. The trapezoid becomes a
triangle if f. = 2W. We now show that this extra triangle,
which is denoted as the OT [5], is the intersection of the plane
n1 + n2 + n3 = 1 with the nominal cube of the discrete third-
order cumulant spectrum. Thus, the discrete cumulant spectra
is zero over this triangle, provided that the sampled process
is stationary and that the sampling interval T = 1/ f. satisfies
T ~ 2fv so that there is no aliasing.
Part of a PD of the discrete third-order cumulant spectrum

is the composition of the volume region - WT < n2 < nl <
na < WT with the orthant (+ + +), which leaves us with
the pyramid 0 < n2 < n1 < na < WT. Its intersection
with the plane n1 + n2 + na = 2WT creates a triangle in
2If I. < 2W. Ihen the cubic mosaic consists of overlapping cubes of

dimension 2B/I. > 211'. Therefore. each subcube of dimension 211' is
intcrsectW by pIaDcs of other cubes over which the cumulant spcc:trum is
1lOI1UfO.

where ni = t!:t:. For a stationary signal, it follows from (3)
that

The discrete third-order cumulant spectrum consists of a
mosaic of cubes of dimension 27r. Each one of the cubes in
this infinite mosaic is made of the 12volume regions that are a
periodic extension of the principal domains of the continuous
third-order cumulant spectrum.
For a stationary, bandIimited random signal where band-

width B :$ 7rf., f. is the sampling rate, the discrete cumulant
spectrum is nonzero only over one plane in each of the
cubes. For the nominal cube (about the origin), this plane is
n1 + n2 + n3 = 0 (Fig. 2). For other cubes, the plane over
which the cumulant spectrum is nonzero is n1+ n2+ n3 = n,
where n is any nonzero integer. This follows from the last
equation since the delta function is nonzero for any triplet
(nl, n2, n3) that sums up to an integer. Notice, however,
that only the intersection of the plane n1+n2+n3 = n, n i- 0
with the origin of a cube about n1 = -n}, n2 = -n2, n3 =
-n3, nl + n2 + n3 = n is an image of the support of the
bispectrum. On the intersection of such a plane with the
other cubes, the cumulant spectrum is zero. For example, the
nominal cube may be intersected by planes n1 + n2 + na =
n, n i- 0, which are parallel to the plane n1 + n2 + na = 0 on
which, and only on which, the cumulant spectrum is nonzero2•
A PD of the discrete bispectrum is given by [2] (see Fig. 3)

(nl, n2) E {2n1+ n2 < 2WT} U {O < n2 < nil. (11)
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Otherwise, Bd(kl, k2) is the discrete bispectrum of (12) at
ni = ~ki.

III. TEsTING FORZERO BISPECfRUMOVERTHEOT

The discrete bispectrum over the OT has been proven to be
zero if the signal satisfies the following three conditions:
I) It is a random signal.
2) It is a stationary signal.
3) It has been sampled without aliasing.

We present a statistical test to decide if the true bispectrum of
a sampled signal is zero for all bifrequencies in the OT. If the
test statistic is significant, we can infer that at least one of the
assumptions does not hold.
Given a sample of size N from a continuous process, one

can estimate the discrete bispectrum of the process. Based on
(13), a nonparametric estimate is related to the biperiodigram
of the data. If the spectrum of the continuous process S(w)
is known to be smooth over a frequency band not smaller
than ~ N, then the variance of the estimate of the discrete
bispectrum of a stationary, random signal is

is the same as the PD of the discrete bispectrum. Notice,
however, that while G(n1,n2) is defined for any sequence
x(n), the bispectrum is only defined for stationary, random
signals. We make no claim that G(nl, (2) is zero over the
OT, which is part of its PD. Our claim is valid only for the
discrete bispectrum, which is not G(nl, (2). Notice that the
"counter examples" given in [3J, [12], and [15] to show that
the claim that the bispectrum over the OT is zero actually
derive G (nI, (2) for deterministic signals and show that over
OT, it is nonzero and, therefore, are irrelevant to the claim.
In the next section, we show that estimation of the discrete

bispectrum of a stationary, random signal is based on calcu-
lation of G(nl, (2) at discrete frequencies for a finite sample
of a continuous, bandlimited, stationary random signal.
Consider now a finite sample of the process {x(O),x(l)

, ... , x( N - I)}. The discrete Fourier transform of this se-
quence is X(k) = L:':ol x(n)e-i27rkn/N. If the signal x(t)
is stationary, then [I], [8] for (kJ, k2, k3) in the nominal cube

(16)

(18)

where 2k1 + k2 < N and 0 < k2 < kl < N, and P == !f: ==
NI-c. The bispectrum estimates are asymptotically complex
normal and, at different bifrequencies, are asymptotically
uncorrelated. Define

Y(k k) == (Bd(kl,k2) - Bd(kl,k2»6.N'/Jii. (17)
1> 2 JS(ktlS(k2)S(k3)

Then, asymptotically, Y(kJ, k2) for (kl, k2) E PO are Li.d
standard complex-normal random variables for a finite set of
bifrequencies that are the limit points of {k, }J'I), k,}JI)} (see
[I] for details). This motivates the use of the statistic

L(k"k,)EOT (IY(kll k2W - 2)
z== 2mV "48

to test for zero bispectrum over the OT, where Y is derived
from (17) with Bd(kl, k2) == O. L2/48 is the number of the
estimated bifrequencies in the OT. The hypothesis is rejected
if z is larger than a prespecified threshold. For determination
of the power of the test and to evaluate its performance, z
is assumed to be a standard, normal random variable. This
is true if {Y(kl,k2)}(k.,k,)EPD are U.d standard complex-
normal random variables. The limiting distribution of the
Y(kl, k2) as well as the sum of squared Y. involves a precise
and complicated technical analysis. It can be shown that if
L == NC

, where 0 < c < 0.5, the test statistic is asymptotically
N(O, I), but that in itself is insufficient to justify the use of the
large sample approximation. The rate of convergence depends
on the trispectrum of the process [8]. If the process is not too
kurtotic, the test statistic is well approximated by the standard
normal distribution N(O,I).

L samples. As such, 6.N = t is the resolution bandwidth.
For consistency, we take L == NC, where 0 < c < 0.5.
Define

Gp(kl, k2) = Xp(kl)Xp(k2)X;(kl + k2) (15)

where X (k) = ""pL x(n)c-i2""n/N which is ap Lm=(p-I)L+I '
consistent estimator of the discrete bispectrum of the random,
stationary, bandlimited signal of finite memory that is properly
sampled, is then given by

. I P
Bd(k1> k2) = pLGp(kl, k2)

1'=1

V kl + k2 + k3 = 0
(13)

~{X(kl)X(k2)X(k3)}
= NBd(kl, k2) + 0(1)
=0(1).

V: {B' (k k)} _ S(21rf.~)S(21rf.~)S(21rf.~)
ar d I, 2 - 6.2 N

N (14)

where Ikd ~ N, Ik21 ~ N, and the sampled signal is assumed
to satisfy a A4) mixing condition [l]. Finite memory of
the random process is. sufficient for it to satisfy the mixing
conditions. Consistency of the estimate is, therefore, guaran-
teed if ~~N goes to infinity while ~N goes to zero. For
consistency, it is therefore sufficient to choose 6.N = N-c,
where a < c < 0.5.
There are several ways to construct bispectrum consistent

estimates from the biperiodigram by limiting the resolution
bandwidth. We divide the data record into P frames, each of

IV. CONCLUSION

In this paper, we present a method for evaluating the
principal domain of the discrete bispectrum of a stationary,
bandlimited random signal from its third-order cumulant spec-
trum. The method presented here can be generalized for the
evaluation of polyspectrum of any order K using the cumulant
spectrum of order K +1. The analysis shows that the principal
domain of a discrete ployspectrum of order higher than one
consists of a subregion over which the discrete ployspectrum
of a stationary, bandlimited random signal is inherently zero,
provided it was properly sampled. This region is referred to
as the OT.
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We then present a test of the (null) hypothesis that the
discrete bispectrum is zero over the OT. We first split the data
into P frames of L samples such that L < .,[N, where N is
the total number of samples. Over each frame, we apply the
fast Fourier transform (FFf) of the data, and we apply (15).
The discrete bispectrum estimates are then given by (16) from
which (17) is derived for Bd(k1,kz) = 0, (k1,kz) E OT. The
test statistic z is then computed from (18) and is compared
with a threshold. If z is larger than the threshold, the null
hypothesis is rejected; therefore, we infer that the bispectrum
over the OT is not zero. This indicates that at least one of
the assumptions A1)--A4) is not satisfied, namely, we havwe
the following:
1) The signal is not random.
2) The signal is random but nonstationary.
3) The signal is random and stationary but was not properly
sampled (so the sampled signal is aliased).

4) The signal is random, stationary, bandlimited, and prop-
erly sampled but does not satisfy the mixing condition.

Under (1)--(3), the bispectrum over the OT is indeed not
necessarily zero. Under (4), the variances of the sample
estimates are unknown and may be infinite. Thus, the sample
bispectrum may appear to be nonzero when the true bispectrum
is zero for all bifrequencies. The test can be used to provide
inferences about the joint density of the signal if relevant
prior knowledge about it is available. For example, if the
signal is known to be a random bandlimited stationary process
with finite memory, rejection of the test infers the presence
of aliasing [5]. If it is known to be random, bandlimited,
of finite memory, and properly sampled, the assumption of
nonstationarity is rejected.
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