
IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 18, NO. 3, JULY 1993 181 

Ocean Acoustic Field Matching;;,Normal 
Mode Filtering and Non-Gaussian Sources 

Melvin J. Hinich and Jack H. Sheehan 

(Invited Paper) 

Abstruct- Location of a submerged object is an important 
problem in ocean acoustics. Classical interest in statistical 
si 

e h i n g  are clear indications of the importance attached to this 
location problem. This paper produces two qualitative results 
concerning this quantifative subject. First, this paper integrates 
normal-mode field predictions with statistical signature analysis 
by constructing a boundary-value problem in the acoustic wave- 
guide. This construction produces this new result: the normal- 
mode filter is the unique acoustic pre-processor which does 
not confound deterministic waveguide correlation structure with 
stochastic source covariance structure. Second, this paper inves- 
tigates the origin of deterministic, Gaussian, and non-Gaussian 
source signatures by associating physical parameters with the 
classical Lindeberg central limit conditions, This construction 
produces this new result: There are important objects that are 
not adequately represented either by infinitesimal points or by 
infinite surfaces. If receiver resolution is inadequate to resolve 
source complexity, these objects will exhibit a non-Gaussian 
acoustic signature via an entirely linear progression from internal 
excitation, to source radiation, through waveguide propagation, 
and finally to reception. 

T Drocessing and contemporary interest in acoustic fie 

I. INTRODUCTION 
OCATION of a submerged object i s p  important problem L- in ocean acoustics [ 11-[8]. Contemporary interest in 

acoustic field matching [7]-[17] is a clear indication of the 
importance attached to this problem. For a more exhaustive 
bibliography, see [ 181. This paper is a qualitative discussion of 
this quantitative subject. Accordingly, this paper makes three 
qualitative points. 

(1.1) Field matching is not the complete solution of the object 
location problem: statistical analysis of a stochastic source is 
required. 

(1.2) The normal-mode solution is the unique waveguide 
basis set which exhibits both quantitative parsimony and qual- 
itative rigor; therefore, the normal-mode jilter is  the unique 
acoustic preprocessor which does not confound deterministic 
waveguide correlation structure with stochastic source covari- 
ance structure. 

(1.3) There are important objects which are not adequately 
represented either by injinitesimal points or by injinite surfaces. 
If receiver resolution is inadequate to resolve source complex- 
ity, these objects will exhibit a non-Gaussian acoustic signature 
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via an entirely linear progression from internal excitation, to 
source radiation, through waveguide propagation, and Jinally 
to reception. 

The first point is well known but often overlooked. The 
last two points are new results. Exposition of these points 
proceeds as follows. Section 11 integrates normal-mode field 
prediction methods with stochastic signature analysis methods 
by constructing a boundary-value problem in the acoustic 
waveguide. Hilbert space techniques, which are implicit in 
both the waveguide physics andYhe signature signal process- 
ing, are the unifying concept. This construction demonstrates 
that matched field processing employs waveguide physics to 
full advantage but leaves stochastic expansion coefficients 
requiring statistical analysis. Section I11 examines the sto- 
chastic character of the normal-mode expansion coefficients 
produced by matched field processing. The physical origins 
of Gaussian and non-Gaussian statistical fluctuations in the 
source signature are considered. In particular, it is shown that 
nonlinear source mechanisms are not required to produce a 
non-Gaussian signature. Section IV closes the paper with a 
brief discussion of statistical signature analysis issues. 

11. WAVE OPERATOR FORMULATION OF THE 
OBJECT LOCATION PROBLEM 

Suppose it is desired to detect, locate, and classify an 
acoustic source residing in an oceanographic waveguide. The 
desired solution involves some combination of source, signal, 
propagation, interference, and measurement factors. Since 
each factor arises from physical entities, the natural approach 
is to construct a waveguide boundary-value problem from 
the well-known conservation equations imposed by physical 
laws. The various conservation equations, initial conditions, 
boundary values, and source functions are combined with a 
thermodynamic equation of state to form a set of governing 
partial differential equations [19], [20]. The coupled partial 
differential equations are collectively termed a waveguide 
operator W [21], [22]. For acoustic pressure p ( 2 ,  t )  in the 
fluid interior, 

Wb(& t ) ]  = 5 ( B ,  t ) ,  (2.1) 
where 

W[.] = v . C(?)V(.) - @ ( . ) p t Z ,  
& = (21, 22, 23) is the spatial coordinate in the fluid 

s(&, t )  is the signature radiated from the object, and 
e(&) is the fluid sound speed. 

interior V, 
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And for acoustic pressure p(Z, t )  on the boundaries, is never really known with the certamty implied by setting 
down the symbol QG, n( . ) .  A fortiori, s(2, t )  is unknown. 
This is, after all, remote sensing. The art of employing a 
priori information and stochastic assumptions at the receiver 
to extract useful, but inevitably partial, information from the 
wave operator solution is the essence of statistical signal 
processing. Mathematical physics defines and elucidates the 
problem; stochastic signal processing confines and completes 
it. Thus we have made point (1.1): Field matching is not the 
complete solution of the object location problem; statistical 

The art here is in the selection of a priori information 
and the choice of stochastic assumptions. In the forward 
waveguide problem, detailed knowledge of the source is part 
of the a priori information employed to determine aCOuS- 
tic pressure at remote field points; hence detailed source 
characterization is the beginning of the forward problem. In 
the object location problem, an inverse waveguide solution 
is employed to obtained detailed howledge of the Source 
associated with each potential object location; hence detailed 
estimates Of Source characteristics represent the COnClUSiOn Of 
the waveguide solution in the object location problem. 

Therefore, the inverse waveguide solution assumes that 
the remote object is a stochastic source s(Zs, t s )  located 
at position 2, and radiating at time t,. The physical origin 
and expected statistical character of s(Ic,, t,) are the subject 
of Section 111. For the present, we seek to obtain partial 
knowledge of s ( i ,  t s )  by relaxing the strictures of W while 
avoiding gross violation of the physical principles. Specifi- 
cally, we relax the precision knowledge of s(.',, t s )  implied 
by (2.3.). In its stead, we require s(ZS, t,) to satisfy a subset of 
the conservation equations used to construct W .  In particular, 
an energy conservation requirement is obvious. Boundary 
smoothness constraints [22] are less obvious. Thus s ( Z S ,  t s )  
is assumed to be a stochastically continuous random field in 
continuous space and time, such that EIIs(Ics, ts)ll; < 00, 
where E[.] denotes the stochastic mean or expected value. 

Notice that the inner product plays a crucial role both 
in defining the stochastic signal processing problem in the 
previous paragraph and in defining the normal-mode solution. 
This is no coincidence. Energy conservation is equivalent to 
the assertion that all possible solutions to the ocean acoustics 
problem reside in an implicitly defined space of square- 
integrable functions. This space of square-integrable functions 

nacular [28], Hilbert space in mathematics parlance [29], or 
simply an inner produce space. Any countable collection of 
orthonormal expansion functions that spans the implicit Hilbert 
space (termed a basis set) is, therefore, a mathematically 
legitimate collection of expansion functions for representing 
the constituent factors in the ocean acoustics problem. A vast 
number of such basis sets exist. The trigonometric Fourier 
series, Bessel functions, and Legendre polynomials are perhaps 
the most familiar (and most commonly employed) examples. 
Of all the basis sets which exist on the inner product space 
defined by conservation of waveguide energy, the set of 
eigenfunctions are the unique basis set that diagonalizes the 
waveguide operator, W ,  in the sense of (2.4.). 

Wb(Zb, t )]  = f(&, t )  (2.2) 

where 

W[.]  = a(.)I€i + Pn'. V(.)IB> 
& = (XI, 2 2 ,  2 3 )  is the spatial coordinate on the boundary 
surface B, 
f ( & ,  t )  is the acoustic constraint on the boundary surface B,unulysis of a stochastic 
6 is a vector normal to the surface B,  and 
a and /3 are physical parameters. 

Is required. 

In underwater acoustics, typical boundary constraints are a 
pressure release condition on an Ocean surface with time- 
varying roughness, and a continuity condition (producing 
either partial or total reflection) on an Ocean bottom with 
time-invariant roughness. 

For the linear wave operator in (2.1) and (2.2), the normal- 
mode method obtains pressure field so~utions via an infinite 
series expansion of wave operator elgenfunctions. That is, 

(2.3) P ( 3 ,  t )  = Cfi, nQf i ,  n ( k ,  n ,  2, W n ,  4 
&, n 

where 

n and f i  = (ml ,  m2, m3) are normal-mode indexes, 
kf i ,  and w, are eigenvalues, and 
qfi, (.) are eigenfunctions defined by 

(W[%L,n], * f i J , n 4  = k , n ( % i i , n ,  Q,,,nJ) 

A*, n 6 ( f i  - fi', TZ - n') (2.4) 

with 
2 

I X & , n l =  (%) = 2 Ika ,n12=k, l ,n+k,a ,n+k,B, ,  2 

(see [23]) and the symbol (., .) is the 
inner product. 

2 

4 x 1  

The expansion coefficients are determined from the SOurce 
signature by 

1 c+,,n = __ ('(', '1, '*, n(kA)  m ,  ic', '1) (2.5) is variously termed signal space in signal processing ver- d&, n 

where 

& i ~ ~  = @A,,, %-i,n) = llQ&,nll;, and IIs(2, t)llz < 00. 
For waveguides exhibiting simple symmetries, standard text- 
book methods [24], [251, commonly separation of variables or 
integration of a Green's function, may be employed to con- 
struct closed form normal-mode solutions [26], [27]. For re- 
alistic oceanography, numerical approximation of these eigen- 
functions and associated eigenvalues is usually required. 

In principle, (2.1)-(2.5) are the complete solution of the 
ocean acoustics problem. In prachce, these equations mark the 
middle, not the end, of the solution. A priori, the waveguide 
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The signal processing problem that completes the acoustics 
problem regards the waveguide as a filter which delays, 
distorts, diminishes, and when fortune smiles, focuses the 
object signature. Detailed oceanographic information, in the 
form of a normal-mode solution, is provided to the signal 
processing problem as apriori information at the receiver. Two 
standard assumptions are worth noting here. First, normal- 
mode spatial dependence is presumed separable from normal- 
mode time dependence in this fashion: 

This represents the assumption that temporal waveguide fluc- 
tuations are quite slow or are stationary relative to other 
object location factors, such as transient source excitation 
(whether active pulses or passive transients), source-receiver 
relative motion, or cylindrical spreading in active reverbera- 
tion. Second, the base factor as(.) is presumed deterministic. 
Stochastic perturbation factors can, of course, be introduced 
but are not considered here. 

The normal-mode solution is intrinsically a linear wave- 
guide approximation. Therefore, the desired inverse waveguide 
solution is a linear filter. Of all such filters, the choice which 
maximizes output signal energy at the reception position 
arising from the object position while minimizing interference 
arising from other locations is the waveguide matched filter. 
This waveguide matched filter is derived by the well-known 
Schwarz inequality manipulation [28], [29] as follows. 

Let p,(Zo, to )  be the sound pressure level observed at 
location Zo and time to arising from a source s(d,, t,) 
radiating at location ZS and time t,. For reasons that will be 
presented in more detail in Section 111, there are important 
circumstances where the source and the receiver are not 
well represented by infinitesimal points; therefore, define their 
respective locations 2, and Zo as: 

where the integrals are taken over distinct waveguide volumes 
for the duration of the signal. Since the critical connection 
between the waveguide problem and the signal processing 
problem is the inner product space imposed by conservation 
of energy, Z, is the energy weighted centroid of the effective 
resolution cell defined in Section I11 and do is the energy 
weighted centroid of the effective phase center of the receiver. 
For our purposes, these quantities are well-defined provided 
the respective fluid volumes are disjoint. t ,  and to are similarly 
defined as the respective centroids of the effective durations of 
the signal transmission and observer reception. s(2,, t,) is a 
statistically fluctuating cell represented in (distinct) transmis- 
sion and/or reception intervals by (distinct) C s ,  ensembles. 
In this representation, s(ZS, t,) is a volume source even if 
the receiver is unable to resolve this source volume from 
neighboring volumes. 

Now we seek a linear wavenumber-frequency transfer 
function between (Zs, t,) and (do, to) that maximizes 
the signal energy at the observation location due to the 
source at the object location. That is, determine H ,  
with llHll$ < a, so that llpsII$ = IIE{S}HII$ is 
maximum. In the preceding equation, S is the wavenumber- 
frequency representation of s(Z,, to) via (2.5) whereby 
S~,~(ka, d,, U,, t,) = C ~ , n @ ~ ( k f t , n ,  d,)eJwnts. By 
the Schwarz inequality, IIHSllg 5 IIHllfllE{s)llf with 
equality if and only if H = AE{S*}, where A is 
an arbitrary constant. Therefore, H s ,  * ( k a ,  d, U,, t )  = 
@ % ( k ~ ,  n ,  d)e-jwnt, where the arbitrary constants are 
A&+ = l/CA,n. If h is the space-time transform of H ,  
then p s ( Z o ,  to )  = (E{s(z, ,  t,)}, h(x,,  to ) ) .  The equivalent 
wavenumber-frequency implementation of the waveguide 
matched filter is then 

p s ( 2 0 ,  to) = e-j(wnts)@%(ka, n ~ , )  
rii, n 

.E{Cji, n}@a(kfi, n, Zo)eJ(wnto) (2.8) 

Thus statistical C S , ~  ensembles represent the signal pro- 
cessing closure of the waveguide physics problem. Detailed 
knowledge of CA, combined with @&(/CA, n, Zs)ej(wntA) 
in (2.8) provide ps(Zo, to) ensemble predictions. However, 
as previously argued, detailed knowledge of Cs ,  represents 
the end of the remote location problem not the middle. That 
is, s(Zs, t,) is unknown, p,(Zo, to) is observed, and C G , ~  
is to be determined. We proceed by modifying (2.1) for the 
stochastic model: 

Taking the inner product, 

(W[E{p(& t ) ) ] ,  @s(ka,n, ,-)eJ(wnt) ) 
= ( ~ { s ( i ~ ,  t ) ) ,  @&(/is, n, Z)eJ(Wnt) ). 

Exchanging the order of integration and applying the definition 
of eigenfunctions, 

E ( w ~ ( z ,  t )] ,  @ s ( k a ,  n ,  Z)e3(wnt)) = l k s ,  n 1 2 ~ { ~ f i , n ) .  

That is, for each observation period, a sample Cs,n is 
obtained via 

(2.10) 

e -3 (writs ) @.*- ,(ka,n, 2s) 
ca,n = & L c e i v e r  

. p ( ~ ,  t ) ~ d ( k & , ~ ,  Z)eJ(Wnt) d ( ~ ,  t ) .  (2.11) 

For comparison, suppose the signal processing + solution em- 
ploys some other basis functions, say (ps, n ( k ,  Z, w, t ) ,  which 
are not eigenfunctions of W .  Then (2.10) becomes 

4 

E(Wb(2, t)l, (Pa, n(k,  2, U ,  t ) )  
= E{g(W[.], CPG, n(.) ,  Ca,n, kfi, n, 2 s ,  20, Un, t s ,  t o ) }  

(2.12) N Ika, n12E{Crii, n }  + confounding terms. 

Note g(.)  is an element of the inner produce space de- 
pending in a complicated fashion on the factors indicated. 
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The corresponding delay-and-sum beamformer amounts to 
ignoring the waveguide operator W altogether and choosing 
p&,%(k,  Z, w ,  t )  = exp [ ~ ' ( k & , ~ . Z + ~ ~ t ) l  as basis functions. 
Then (2.10) becomes the space-time Fourier transform of 
P(Z0 ,  t o ) :  

with quantitative evidence; It is an empirical fact that ambient 
ocean noise is Gaussian and shipping noise is non-Gaussian 
[30], [31]. Alternatively we seek qualitative interpretation; 
this section investigates the physical origin of deterministic, 
Gaussian, and non-Gaussian source behavior in ocean acous- 
tics. 

Gaussian random variables are observed when the averaging 
characteristics by the physical scenario satisfies the 

rg condition and some statistical dependence con- 
strains [32], [33]. In mathematical terms, superposition of 
certain types of local conditions produce a Gaussian central 
limit. The most common textbook treatments develop the 
Lindeberg-Levy central limit theorem to explain th 
nomena. The Lindeberg-Levy theorem employs the st 
possible constraint on dependence (i.e., independenc 

+ 

E(p(2, t ) ,  exp [ j ( k ~ , ~  . 2 + w n t ) ] )  = Po(ka+, wn).  (2.13) 

When considered in reverse order, (2.10), (2.12), and (2.13) 
indicate the successive improvements of first matched-field 
processing and then matched-mode processing over classi- 
cal beam formation. Compared to the space-time Fourier 
transform, the matched field processor in (2.12) improves 
performance by introducing realistic waveguide modeling as 
a priori information at the receiver. Take careful notice; the 
improvement in (2.12) over (2.13) arises from the wave oper- 
ator W ,  not the basis set {yd, %}. In contrast, the subsequent 
improvement of the matched-mode processor in (2.10) over 
the standard matched-field processor in (2.12) is precisely in 
the selection of the eigenfunctions, @%(hi, n) Z)e3(wnt), over 

e employing the weakest poss traint on varian 
the Lindeberg condition). A G entral limit can be 

ined under much milder dependence conditions; relaxation 
of the Lindeberg condition produces either a non-Gaussian 
central limit or no limit at all. A brief summary of standard 

ssian and non-Gaussian central limit theorems is provided 

mathematical formality in the remainder 
favor of physically intuitive exposition. 

the language may appear, the reasoning is 

An engineering paraphrase of the various mathematical con- 
ditions alluded to above is that the superposition of physical 

o a Gaussian central limit when: 

i) An effectively infinite number of individual con 

ii) No finite subset of contributors dom 

also exhibits stochastic character, then th 
(2.12) compared to (2.10) is further compounded. Thus we 
have made point (1.2): The normal-m 
waveguide basis set which exhibits bo 
and qualitative rigor; therefore, the 
unique acoustic preprocessor which 
ministic waveguide correlation structure with stochastic source 

label 
on the numerical wave operator approximation procedure is 
not a fundamental requirement. Suppose one prefers, for exam- 
ple, to trace rays. Then replace the wave operator in (2.1.) and 
(2.2.) with the appropriate eikonal approximation, Trace rays 

field Then o ~ o n o m ~ i z e  he lay fans by 
procedure, say Gram-Schmidt [29]. The resulting rays are now 

rator. Since the 

are superposed. 

energy. 
i) For any specific contributor and any particular reference 

dependence, all but a finite number of contributors 
exhibit less statistical dependence on that specific con- 
tributor than the reference dependence. 

iv) The probability of tail events must not be too large. 
A deterministic signal emerges when one or a few con- 

tributors fix the signature or an infinite number of perfectly 
correlated contributors fix the signature. A sine wave from 

respective examples. Ambient noise from wind driven wave 
action represents a Gaussian 

the number of wave crests and troughs are effectively 

is in'order here. A normal- 

in the usual manner, t&ng care to over-sample the acouStic a projector and specular reflection from a perfect plane are 

ctions of the correspondi 
g theory exploits linear o 
procedures which appro , all preceding nearby crests and troughs e correlated; distant 

infinite; 

provide independent but e conclusions carry forward to the ortho tial contributions; 
* large wave height excursions are quite unlikely; 
The deterministic and Gaussian sources represent opposite 

extremes; respectively, a few tell the whole story or an 
egalitarian all is the only story. 

The random expansion CO in Sec- In the absence of nonlinear phenomena, non-Gaussian 
sources are intermediate to these extremes. Many contributors 

guide. What then is the anti statistical character important. Distinguishing a few more CO rs 

111. STOCHASTIC SOURCE MODEL 

tion 111, represent the source acoustic 

se coefficients? On the one e may be satisfied increasing measurement resolution (alternati S- 

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2010 at 19:16:05 UTC from IEEE Xplore.  Restrictions apply. 



HINICH AND SHEEHAN. OCEANIC ACOUSTIC FIELD MATCHING 185 

tinguishing a few less by reducing resolution) changes 
the observed signature but does not appreciably simplify 
the statistical complexity. Dependence between contributors 
is substantial but imperfect; occasionally a considerable 
number of contributors will align to produce a signature 
spike. 

Consider long range, passive reception of shipping noise 
as an example of a non-Gaussian source. Contributions from 
these four factors: 

+ 
salient geometric dimensions of the object L = 
(L1, LL ,  L3,) (say the length and draft of the ship 
together with the tip-to-tip diameter of the propulsor); 
receiver resolution cell dimensions R = ( R I ,  Rz , RJ, ) 
(following [34], which extends the echo-ranging theory 
in [35] to passive observation, the smallest volume which 
can be distinguished from a nearby volume of the same 

source normal-mode wavenumbers E k = ( k l ,  k ~ ,  kg , )  
(the subset of internally excited source modes which 
satisfy a radiation condition by matching an external 
waveguide normal-mode); and 
source normal-mode density { ( w )  (following [36] the 
number of modes (spatial frequencies) arising from the 
source per unit temporal frequency) 

+ 

geometry); + 

produce the radiated signature. To simplify the discussion, 
define these bounds on L', 2, and c: 

.!,in = min (L ; )  5 max (L;)  = L,,,, 
rmin = min (R;) 5 max (R;) = R,,,, and 
kmin = min ( k ; )  5 max (IC;) = K,,, . 

Now we use these bounds to demonstrate that reasonable 
combinations of i, 2, i, and [ ( U )  violate the paraphrased 
Lindeberg conditions i)-iv) for a Gaussian signature in (3.1). 
Specifically, suppose the following. 

(3.2) 
a) The resolution size of the ship is small but not infinites- 

imal, say 0 < Lmax/r,;, < 1. 
b) The acoustic size of the resolution cell is very large or 

effectively infinite, say kmlnrmln >> 1. 
c) The acoustic size of the ship normal-modes occupy 

a band including unity, say 0 << kminlmin < 1 <! 

KmaxLmax << 00. 

d) And the ship modal density, [ ( w ) ,  in the acoustic band 
between kminZmln and K,,,Lma, is large but not infi- 
nite, is discrete but not sparse. 

For concreteness, one may consider that (3.2) describes 
propulsor induced vibrations radiating from the ribbed expanse 
of the ship's hull from the keel to the water-line. Specifically, 
a) and b) state that the local signature details are all superposed 
in one receiver resolution cell; however, c) asserts that the ship 
is emphatically not a simple source. k,inrmin >> 1, resolution 
cell diffraction is insignificant; Lmax/r,in < 1, the receiver 
sees a point. But i + L' >> 0, the radiating hull is not a point; 
and . L' << 00, the signature is not specular radiation. 

c) and d) state that small changes in local details produce 
significant signatures variations. Sections of the ship where 
the rib spacings differ or the hull changes concavity will 
produce distinct space-time signatures. Small perturbations, 
say hull rocking due to wave action, yield significant signature 
fluctuations at the reception position. i.i >> 0 and ((U) << 00, 
many distinct contributors tell the story; . L' << 00 and 
[ ( w )  >> 1, excluding a few contributors does not simplify 
the plot; 

Finally, there is substantial but imperfect stochastic depen- 
dence in the radiated modes. Strong dependence arises because 
the propulsor-drivetrain combination is the fundamental driver 
for all radiating modes; this coherence is retained in distinct 
modes. However, imperfections in this dependence are in- 
troduced by complex foundations, flexible drive joints, and 
near but not exact structural periodicity. That is, the signature 
components radiating from forward sections, aft sections, and 
the hull bottom itself exhibit significant coherence due to 
common excitation but also exhibit non-negligible distinctions 
due to physical nonunifonnity. 

Thus shipping noise satisfying (3.2) violates each of the 
paraphrased Lindeberg conditions (3.1). The crucial conclusion 
is that a number of important objects exhibit non-Gaussian 
acoustic signatures. The critical requirements are many dis- 
tinct contributors with substantial but imperfect statistical 
dependence where the distinction between Contributors cannot 
be adequately resolved. Thus, we have made point (1.3): 
There are important objects that are not adequately repre- 
sented either by injnitesimal points or by injnite sugaces. r f  
receiver resolution is inadequate to resolve source complexig, 
these objects will exhibit a non-Gaussian acoustic signature 
via an entirely linear progression from internal excitation,., to 
source radiation, through waveguide propagation, and finally 
to reception. 

a L' - 1, there is an occasional thunder clap. 

Iv. STATISTICAL ANALYSIS OF THE 
MATCHED FIELD EXPANSION COEFFICIENTS 

The matched-mode waveguide filter in (2.10) produces 
random expansion coefficients CG, ll. which describe the sto- 
chastic source s(ZS, t s )  located at position ss and radiating 
at time t ,  as measured by p s ( Z o ,  to)  at the observation point. 
Statistical analysis of these ensembles is required to complete 
the object location problem. For real-valued ensembles, the 
multivariate joint probability distribution function, P{ CG, 5 
TG, n ,  CGI, .} for all real r s ,  1E and all discrete 
indexes TZ and n for each location, is in principle the complete 
solution of the statistical signal processing problem. That is, 
for each source parameter of interest, employ P to form the 
associated parametric likelihood function: then choose the 
parameter value which maximizes this likelihood function. 
However, just as in the practice of waveguide problems, 
detailed knowledge of P indicates the end of the signal 
processing solution not the beginning. That is, P { C G , ~  5 
r s ,  ll., C+, nt 1. r ~ j ,  n t ,  . . .} is unknown, sample ensembles 
of CA> are observed, and some statistical estimate of location 
is to be constructed. 

5 rGt, n t ,  
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This is another juncture where stochastic assumptions are 
introduced at the receiver in order to confine and complete the 
solution. An appropriate statistical source model is selected 
by choosing the sort of object to be located. That is, a priori 
information is employed to select a source model, whether it be 
deterministic, Gaussian, or non-Gaussian, based perhaps on the 
reasoning presented in Section 111. An associated interference 
model is also selected. 

Having selected models for source and interference, suitable 
attributes of the joint probability distribution function, which 
can be estimated directly from the observations, are chosen. 
Estimating statistical cumulants [37], [38] is a natural choice. 
For the special case of a real-valued random process X ( t ,  R) 
where observations are available in the form of scalar-valued 
ensembles and the associated probability distribution function 
is P { X ( t ,  R) 5 r } ,  the statistical cumulants /G are defined by: 

I ~ E [ ~ J ( ~ x ) I  = In/ 
r=cc 

e J ( s x )  d ~ { ~ ( t ,  Q )  I r }  
r=--00 

tQs2 K.393 K. ,P  
= n1s + - +-+.. . -  + 0(Isn+l/) .  2! 3! n! 

(4.1) 

That is, the nth-order cumulant, n,, is the nth coefficient 
in the Maclaurin series expansion of the left side of (4.1). 
For X ( t ,  R), cumulants 1 and 2 are the familiar statistical 
parameters mean and variance. If X ( t ,  R) is normalized to 
unit variance, then 6 3  is the skew and 1c4 is the kurtosis. 
For the random field C ( 6 ,  n, R), where observations are 
available in the form of vector-valued ensembles of normal- 
mode coefficients, Cd, R, the definition and interpretation of 
K. is conceptually similar although the analytical details are 
decidedly more complex. 

If deterministic or Gaussian models are reasonable source 
approximations and the additive interference is Gaussian, then 
maximum likelihood estimation of the second-order cumu- 
lants is the complete statistical story. If the normal-mode 
coefficients, C s ,  ,, are stationary, this amounts to classical 
stationary power spectral analysis [39], [40]. For instance, 
the Hinich-Sullivan procedure [7] employs matched-mode 
filtering by a vertical array in a range-invariant but vertically 
inhomogeneous waveguide followed by maximum likelihood 
location estimation of a deterministic source in Gaussian 
interference. For a stationary Gaussian source, the approach 
proposed here would be an extension of the second-order 
maximum likelihood procedure in [51 to matched-mode pro- 
cessing. If the received signal is periodic or almost periodic, 
then analysis of the mode coefficient ensembles would require 
a nonstationary cumulant method, say spectral correlation [41], 

It should be pointed out that for the Gaussian composite sig- 
nal, the canonical maximum likelihood method may be readily 
employed in the form of a linear least squares error procedure 
[l], [2]. However, for this Gaussian case there are a number 
of other estimation procedures in contemporary vogue, albeit 
with reduced resolution and accuracy. For instance, the Capon 
estimate of power emanating from a particular location is 
employed in the Baggeroer-Kuperman-Schmidt matched field 
procedure [12] in lieu of the maximum likelihood estimate 

[44 .  

of location. See Brillinger [6] for a detailed comparison of 
the Capon procedure with the canonical maximum likelihood 
estimator. 

For a non-Gaussian source, third (and perhaps higher order) 
cumulant estimation should be considered. For non-Gaussian 
sources in an acoustic waveguide, the present approach rep- 
resents a combination and extension of the Hinich-Sullivan 
normal-mode procedure with the Hinich-Wilson polyspectral 
estimation methods [43], [44]. This extension represents the 
real possibility of distinguishing between multipath signals 
from a single source and single path arrivals from multiple 
sources. 

For higher-order cumulants the question of the prefened 
estimator remains open. The maximum likelihood estimator 
in this case is a nonlinear function of the observations, 
a decidedly unpleasant circumstance. Linear approximations 
of the nonlinear maximum likelihood estimator are at most 
locally optimal. However, as pointed out in [45], even a 
suboptimal estimate of higher order cumulants is a significant 
improvement over second-order cumulant analysis when a 
non-Gaussian source is present. 

V. APPENDIX 
This appendix summarizes well-known central limit the- 

orems. Detailed development and proof may be found in 
standard references. In this discussion, the notation is taken 
from [32] and the examples from [33]. 

Consider a sequence of random variables { X ,  , k 2 l} with 
E [ X k ]  = 0, E [ X z ]  = U:, s: = a:, and probability 
distributions {Ph, k 2 l}. 

Definition A-1: Lindeberg Condition: The sequence of ran- 
dom variables { X k ,  k > 1) is said to satisfy the Lindeberg 
condition if gi < 00 for al1.k 2 1, s: > 0 for some n 2 1, 
and J , X b , > t s k  X i  dPk = 0 for all E > 0. 

X k ,  
the normalized sequence of partial sums { S, / s n  , n 2 1) with 
the associated sequence of probability distributions {F',, n 2 
1) is said to converge to a Gaussian central limit if the 
limn-m P, = N(O, 1). 

Provided the Lindeberg condition is satisfied, an interesting 
range of statistical dependence constraints support a Gaussian 
central limit: 

complete independence (most theoretically tractable), 
finite or M-dependence (easiest practical dependence 
model to implement in real systems), 
a-mixing or asymptotic independence (arises naturally in 
certain Markov chains). 
Martingale differences (mildest dependence constraint in 
this list). 

If the Lindeberg condition is explicitly violated, the authors 
are not aware of an alternate constraint whereby a Gaussian 
central limit can be recovered. In these cases, the normalized 
sequence of partial sums, {Sn/sn, n 2 l}, either converges 
to a non-Gaussian central limit or simply fails to converge to 
any limit. Non-Gaussian central limits are more common than 
one might expect. 

(l/si) 
Dejinition A-2: Gaussian Central Limit: For S, = 
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For example, sequences of partial sums of independent 
Cauchy, exponential, or gamma distributed random variables 
converge to Cauchy, exponential, and gamma central limits, 
respectively. These are examples of the class of so called 
stable distributions. The class of stable distributions is, in fact, 
quite large. For 0 < a 5 2, the probability distribution Pa 
associated with the characteristic function cpa(t) = e-ltlP is 
a stable distribution. 

A more general class of distributions which support cen- 
tral limits is the class of infinitely divisible distributions. 
Stable distributions are a special case of infinitely divisible 
distributions. The well-known convergence of certain sums of 
binomial random variables to a Poisson central limit is an 
example of an infinitely divisible distribution which is not a 
stable distribution. 
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