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3. CITIZEN.  We have been called so o f  many, not  that our heads are some brown, some 

black, some auburn, some bald, but  that our wits are so diversely colored. A n d  truly I think 

i f  all our wits were to issue out  o f  one skill, they wouM f l y  east, west, north, south, and their 

consent o f  one direct way should be at once to all points  o" the compass. (Shakespeare, Corio- 

lanus II.iii. 19-26) 

Abstract. In this paper, we construct a general probabilistic spatial theory of elections and examine 
sufficient conditions for equilibrium in two-candidate contests with expected vote-maximizing 
candidates. Given strict concavity of the candidate objective function, a unique equilibrium exists 
and the candidates adopt the same set of policy positions. Prospective uncertainty, reduced policy 
salience, degree of concavity of voter utility functions, some degree of centrality in the feasible set 

of policy locations, and restrictions on the dimensionality of the policy space are all stabilizing fac- 
tors in two-candidate elections. 

1. Introduction 

The spatial theory of elections is based on the premise that the policy positions 
of voters and candidates can be represented by points in  an issue space and 
that a voter's evaluation of  a candidate's policy positions is measured by the 
distance between voter and candidate in this space. If candidates have spatial 
mobility, the purpose of  the theory is to predict where each candidate will lo- 
cate in the issue space if he wishes to win the election. 

Whether or not it is possible to assess the policy positions of voters and can- 
didates, there are always unobservable variables that affect voter choice. Fur- 
thermore, policy positions are always measured with error. These considera- 
tions suggest the need for a behaviorally reasonable theory of  voting which 
incorporates the essential uncertainty that candidates have about voter choice 
and that voters have about candidate positions. 

* Presented at the Advanced Study Institute on Incomplete Information and Bounded Rationality 
Decision Models, Anacapri, Italy, 8-18 June 1987. 
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The voter's uncertainty about the candidates may arise from several sources. 
Candidate policy positions may be imperfectly perceived or may be perceived 
as a random variable. Uncertainty about new issues and future events may also 
complicate the voter 's decision problem. A voter who is future-oriented must 
face this inescapable uncertainty, even if he is confident that he knows the can- 

didates' positions on current policy issues. 
A candidate, on the other hand, faces the uncertainty of never knowing all 

the factors that affect citizens' vote decisions. Even when voters are rational, 
informed, and have clearly defined views on policy issues, the candidate still 
cannot be certain about how the votes will be cast. In addition, the data he pos- 
sesses are likely to contain a large amount of error. 

In this paper, we will construct a behaviorally reasonable theory of  two- 
candidate competition designed to reflect electoral uncertainty by both voters 
and candidates. Each candidate seeks to maximize his expected vote, which is 
a function of the measurable difference in policy utilities between the candi- 
dates as well as the distribution of  an unobserved variable. This variable may 
represent the difference in nonpolicy attributes between two candidates, or 
any type of  uncertainty which varies across voters as a function of the meas- 
urable policy difference between the candidates and which is distributed in- 
dependently of this difference. Our underlying assumption about voter be- 

havior is a generalization of  classical deterministic theory, which assumes that 
this random variable is discrete with probability mass equal to one at the point 
where the policy utility difference between the candidates is zero. 

In contrast with earlier work (e.g., Hinich, Ledyard and Ordeshook, 1973), 
we deliberately choose to analyze the problem at the level of the entire elec- 
torate, rather than build an explicit citizen-level theory of  probabilistic choice. 
Our reason for proceeding this way is to avoid tying our results to any specific 
rationalization of  the candidate objective function. In Enelow and Hinich 
(1982, 1984b) we model the random element in the voter's calculus as the dif- 
ference in candidate abilities that are independent of candidate policy posi- 
tions. This is one, but only one, avenue that may be used to justify the theory 

we present. 
After constructing our theory of candidate competition, we analyze a suffi- 

cient condition for a pure strategy equilibrium in a multidimensional policy 
space in order to understand the conditions under which it will be satisfied. To 
aid in this understanding, we focus on the case of a single policy dimension 
with quadratic policy preferences and a normally distributed random element. 
We conclude by discussing the informational requirements of  the probabilistic 
theory in comparison with those of  deterministic spatial theory. 

We see our results as relevant to the question raised by Tullock (1981), who 
asked: Why so much stability? The goal of  positive analysis should be to ex- 
plain stability and instability with the same theory. Accordingly, the question 
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we aks is: Which factors are linked with stability, and which with instability? 
We show that (1) the magnitude of the variance of the random term in our the- 
ory provides part of the answer to this question. Given sufficient dispersion of 
this random element in the voting population, stability in candidate competi- 
tion is ensured; given insufficient dispersion, instability may result. (2) Reduc- 
ing the salience of policies to voters and (3) limiting the feasible set of candi- 
date policy locations also help produce stability in two-candidate elections. 
The opposite of these conditions makes instability more likely. (4) The degree 
of concavity in voter utility functions is also linked to stability in two- 
candidate competition. Linear utility functions make candidate stability less 
likely. (5) The dimensionality of the policy space is also important. As the 
number of policy dimensions increase, the sufficient condition for equilibrium 
becomes harder to satisfy. 

In a well-known article, Riker (1980: 443-444) states that 'disequilibrium, 
. . . .  is the characteristic feature of politics.' Riker's opinion is that of the in- 
stitutionalist school, which sees stability in collective choice as an artifact of 
the way in which institutions narrow down the feasible set of policies. Stabil- 
ity, from this standpoint, is spurious, since it will be upset as soon as the in- 
stitution which creates it is changed. 

Narrowing the feasible set of policies can induce equilibrium, but our expla- 
nation of electoral stability stresses the inclusion of unobservable but rational 
factors in human decision making, not  the deliberate exclusion of feasible al- 
ternatives. Elections take place between individuals who seek the trust of elec- 
tors. These electors are not choosing between ballot propositions, but, instead, 
must seek to determine which candidate will most effectively lead them. Uncer- 
tainty about what these candidates represent and how they will perform if elect- 
ed, clouds the choice process and leads to a certain degree of unpredictability 
in the minds of voters and candidates. It is this unpredictability, much less 
present in pure policy voting, which our theory captures and which we see as 
important to understanding the conditions conducive to stability in electoral 
competition. 

2. A general probabilistic theory of two-candidate elections 

The theory we construct is standard in several respects. Two candidates, R and 
T, compete for votes in a multidimensional policy space. Each candidate wishes 
to maximize his expected vote. As shown in Aranson, Hinich and Ordeshook 
(1974), for two-candidate elections with constant turnout, this objective func- 
tion is equivalent to either maximizing expected plurality or maximizing the 
candidate's proportion of the expected vote. In addition, as the number of 
voters approaches infinity, maximizing the expected vote is equivalent to max- 
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imizing the probabi l i ty  of  winning the election. 

Let  u(r,i) represent  voter  i 's policy utility for  candidate  R and u(t,i) voter  i 's 

policy utility for  candidate  T, where r = (r 1 . . . . .  rm) and t = (t I . . . . .  tin) are 
m-dimens iona l  vectors  of  policy posit ions in a compact ,1 convex subset X of  

m-dimens iona l  Eucl idean space, and i is a m e m b e r  o f  a popula t ion  of  voters.  
For  nota t ional  simplicity, the voter  index will hencefor th  be d ropped  and the 

utility funct ion writ ten u(r) or u(t). The utility funct ion u is assumed to be con- 

t inuous and twice differentiable.  

Define F as a distr ibution funct ion with density f for  the difference in R and 

T ' s  at tr ibutes that  are independent  o f  r and  t. The expected vote share for  R 
is, then,  

V(r) = E[F(u(r) - u(t))], (1) 

where E denotes expecta t ion with respect  to some probabi l i ty  measure  on the 
index set i ( for  voter  i in the popula t ion)  and F(u(r) - u(t)) is the condi t ional  
probabi l i ty  that  all voters  with the same policy utility difference between R 

and T vote for  candidate  R. 2. F is assumed to be cont inuous  and twice differ-  
entiable.  Candida te  T ' s  object ive funct ion is V(t) = 1 - V(r). 

It  is easier to view F as a unidimensional  distr ibution funct ion,  but  our  

results also hold if F is a joint  distr ibution funct ion o f  independent  r a n d o m  
variables.  For  simplicity, however ,  we will assume tha t  F is unidimensional .  

The  fol lowing addi t ional  assumpt ion  is sufficient for  the existence o f  equi- 

l ibr ium in this two-candidate  zero-sum game.  Before  stating it, however ,  we 

need to define more  terms.  Define uj as the first part ial  derivative of  u with 

respect to rj and Ujk as the second cross part ial  derivat ive of  u with respect to 

rj and r k. Let u r be the m-dimens iona l  co lumn vec tor  of  first part ial  deriva- 

tives of  u, u r = (u 1 . . . . .  urn). The m x m matr ix ,  denoted H u, o f  the Ujk ele- 
ments  is called the Hessian o f  u with respect  to r. Finally,  if  x is a co lumn vec- 
tor ,  let x y denote  the t ranspose  o f  x. 

Condition 1. I f  x is any nonzero m-dimens iona l  co lumn vector ,  then 

- E  [f(d)xTHux] _ E [f'(d)[XTUr] 2] for  all r , t  in X (2) 

where d = u(r) - u(t), and the expecta t ion is t aken  with respect  to the prob-  
abili ty measure  def ined on the vot ing popula t ion .  

To  better  unders tand Condi t ion  1, which is necessary and sufficient for  con- 
cavity o f  V(r), assume that  f(d) = c exp ( -g (d ) )  where g is a convex funct ion 
for  all d such that  f(d) > 0, and c > 0 is a scale factor .  Such densities are 
known as P F  2 densities, and include the normal ,  exponential ,  g a m m a ,  beta,  
logit, noncentra l  t-densities and nearly every class o f  cont inuous  density used 
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in statistics or the modelling literature. For example, the standard normal den- 

sity is f(x) = c exp( -x2 /2) ,  where c is the normalizing constant, so g = x2/2,  
which is a convex function of x. 

Condition 1 is satisfied if -f(d)xTHu x _> f'(d)[xTur ]2 for each voter i. If 
f(d) --- exp(-g(d)) ,  then f '  (d) = - g '  (d)f(d) and, if XTUr ¢ 0, we can rewrite 
this condition as 

--XTHuX/[XTUr]2 2 - g ' ( d )  for all r,t in X and for all i (3) 

If u is jointly concave in all its variables, H u is negative semi-definite and the 

left-hand side of  (3) is nonnegative. We can see, therefore, that concavity of 
the voter utility functions (also known as risk aversion) makes it easier to satis- 
fy Condition 1. 

Because X is compact and convex, there will always exist an upper bound 
to - g ' ( d )  = f ' ( d ) / f (d ) .  Let b denote the least upper bound of  - g ' ( d ) .  One 
way to keep b close to zero is for f '  (d) to be gradual. As F(d) flattens out (i.e., 

the variance of the random variable increases), b approaches zero. For the 
normal density with zero mean, - g '  (d) = - d / a  2, so as a increases, - g '  (d) 
approaches zero. We conclude that if u is concave, increasing the variance of 
the random variable makes it easier to satisfy the sufficient condition for can- 
didate equilibrium. 

If f is a uniform density then - g '  (d) = 0. If, in addition, u is concave, Con- 
dition 1 will always be satisfied, as long as f(d) > 0, for all d. In this case, the 
probability of  voting for either candidate is linear in the utility difference be- 
tween the candidates. 

Another way of  keeping - g '  (d) near zero holds for symmetric f even when 
the variance of the distribution is small. This approach uses the fact that f '  will 
be zero at the mean of d (recall that F is twice differentiable). Thus, as long 
as d is contained in a small interval around its mean, - g '  (d) will be small, 
regardless of the variance of F. We conclude that if u is concave, limiting the 

feasible set of candidate policy locations makes it easier to satisfy the suffi- 
cient condition for candidate equilibrium. 

If the policy space X is one-dimensional, 

_XTHu X / [XTUr ] 2 -- _ U"  (r) / [U' (r)] 2 (4) 

For concave u, the right-hand side of  (4) is similar to the Pratt-Arrow measure 
of  absolute risk aversion (Arrow, 1970), Rg(x ) = - u "  (x ) /u ' (x ) ,  but has the 
square of  the denominator. Lindbeck and Weibull (1987) refer to lu"(x)  l /  
[u' (x)] 2 as the concavity index of  the utility function. We refer to the size of 
(4) as the degree of concavity of the voter's utility function. 

If the policy space is multidimensional, we can better understand when (3) 
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will be fulfilled by establishing a lower bound on the left-hand side of the 
inequality. Since H u is symmetric, -xXHux _> kxTx, where k is the mini- 
mum eigenvalue of - H  u. In addition, by the Schwarz inequality, [XTUr ]2 
xTXUrTUr . Thus, 

--XTHux/[XTUr ]2 >_ ~k/UrTUr (5) 

If u is concave, then - H  u is positive semidefinite and all its eigenvalues are 
nonnegative. 

If the voter's utility is measured by the negative of squared, simple Euclid- 
ean distance, we can express the right-hand side of  (5) in even simpler form. 
Specifically, suppose that u(r) = - ( a / 2 ) ( r l - X l )  2 - . . .  - (a /2)( rm-Xm) 2, 
where (x 1 . . . . .  Xm) is the voter's ideal point in m-dimensional Euclidean 
space, and a / 2  > 0 is the common salience of the dimensions to the voter. In 
this case, - H  u is diagonal, Ujk = 0 for j ;e k and ujj = - a  for j -- 1 . . . .  , m. 
In addition, uj = - a ( r j - x j )  for j = 1 . . . . .  m. Since -uj j  is the minimum 
(and maximum) eigenvalue of - H u ,  it follows that the right-hand side of (5) 

equals a / ( u l  2 + . . .  +Um 2) = 1 /a[ ( r l -Xl)  2 + . . .  + (rm-Xm)2]. As m (the 
dimensionality of the policy space) increases, the lower bound on - x T H u x /  

[XTUr] 2 decreases, making it harder to satisfy inequality (3). We conclude that 
increasing the dimensionality of the policy space makes disequilibrium more 

likely. This finding mirrors Greenberg's (1979) result for deterministic spatial 
theory. 

Another implication of  (5), which is most clearly seen for negative quadratic 
utility, is that Condition 1 is easier to satisfy as (1) the salience of any dimen- 
sion decreases, and (2) the distance from voter to candidate declines. 

It follows from the candidate objective function (1) that if V(r) is concave 
in r for fixed t, then V(r) is convex in t for fixed r. Given also that X is compact 
and convex, and that F and u are continuous, we know from Owen (1982: Th. 
IV.6.2) that an equilibrium exists in pure strategies. Strict concavity of  V im- 
plies the existence of a unique pure strategy equilibrium. The proof  of  the fol- 
lowing theorem is given in the appendix. 

Theorem. V(r) is concave in r if and only if Condition 1 holds. 

To better understand how this result is obtained, assume a finite population 
N of  voters, each of  whom sees a different policy difference between the two 
candidates. Then, 

V(r) = E[F(d)] = [F(dl) + . . .  + F(dN)]/N (6) 

As the variance of  the random variable increases, F flattens out until it be- 
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comes a linear function of d. When this happens, F(d) = c + ad, where c,a 

are constants and a > 0. Substituting in (6), we then have 

V(r) = c + (d 1 + . . .  + dN) a / N  (7) 

Since d = u(r) - u(t), if u is concave, then for fixed t the right-hand side of  
(7) is the sum of N concave functions, which is itself a concave function. The 

more strictly concave each utility funtion is, the less F has to approach linear- 
ity in d for this sum to be concave. In other words, a t rade-off  exists between 
the flatness of  F and the roundness of  the individual utility functions. 

The first-order condition for an expected vote maximizing set of  policy posi- 

tions, which can be found in the Appendix, is E[f(d)ur] = 0. I f  V(r) is strictly 

concave, a unique pair of  equilibrium strategies exists for the two candidates. 

To prove that these strategies must be the same, let r* and t* be these two strat- 

egies and assume that r* ~ t*. Then, because V(r) is strictly concave, R can 

only do better if T adopts r* and R sticks with r*, so R 's  expected vote in equi- 
librium is less than F(0). Similarly, R can only do worse if he adopts t* and T 

sticks with t*, so R 's  expected vote in equilibrium is greater than F(0). Thus, 
R's  expected vote in equilibrium is both greater than and less than F(0), contra- 

dicting the assumption that r* ¢ t*. This argument does not depend on the 
shape of  f or u. 

I f  V(r) is linear, there may be multiple equilibria. However,  if f is symmetric 
about  d = 0, T 's  objective function is V(t) = E[1-F(d)]  = E[F(-d) ] ,  which 

is the same as R's objective function with u(t) in place of  u(r). Thus, both can- 

didates will adopt the same position and receive one-half the total vote. 

I f  f is symmetric about  d = 0 and u is concave, then there is always some 
location which is a local equilibrium for both candidates. Substituting d = 0 

in Condition 1, f '  (0) = 0, so the right-hand side of  (2) equals 0 and, since H u 

is negative semidefinite, the condition always holds. 

3. Applications 

We will now construct an extended example to provide a better understanding 
of  what we have shown. For the sake of simplicity, we will assume the quadratic 
utility function given in the preceding section, i.e., u(r) = - ( a / 2 ) ( r - x )  2, 

where x is the voter 's  ideal point, both x and r are measured on a one dimen- 
sional scale, and a > 0. We will also assume that the density of  the unobserved 
random variable is normal with zero mean, i.e., f(x) = c e x p ( - x 2 / 2  a2), where 

c is the normalizing constant. Finally, we will assume that the voting popula- 
tion is divided into two groups, one with x = 0 and the other with x = 1. Let 
N O be the fraction of the population with x = 0 and N 1 be the remaining frac- 
tion w i t h x  = 1, s o t h a t N  O + N 1 = 1. 
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For  V(r) to be concave,  we have stated in the preceding section that  a suffi- 

cient condi t ion is 

- u  " (r) / [u ' (r)] 2 _> - g '  [u(r) - u(t)] for  all r , t  in X; x = 0,1 (8) 

For  our  example, (8) reduces to 

1 / [a ( r_x) ]2  ___ [(r_x)2 _ ( t_x)21/2  0-2 for all r,t in X; x = 0,1 (9) 

Let D represent the max imum difference between ( r - x )  2 and ( t - x )  2. It makes 

no sense for either candidate to locate outside [0,1], since he can be defeated 

by a candidate locating slightly closer to [0,1], so D _< 1. For  simplicity, assume 

that  a = a 0 for  all voters with x = 0 and a = a 1 for  all voters with x = 1. 

Given, in addition, our  assumption concerning the distr ibution o f  voter ideal 

points,  we can reduce (9) further  to 

1/ao2r 2 _> 1 / 2  0-2 for  all x = 0 and 

1 /a12( r -1 )  2 _> 1 / 2  0-2 for all x = 1 (10) 

so that  a sufficient condi t ion for concavi ty  o f  V(r) becomes 

0-2 > a02r2/2 for all x = 0 and 0-2 ~ a12( r_ l )2 /2  for  all x = 1 (11) 

Since r 2 will never exceed 1, and neither will ( r - 1 )  2, we can replace (11) with 

the joint  condit ion 

o 2 _> a02/2 for all x = 0 and 0 -2 ~ a12/2 for  all x = 1 (12) 

In general, reducing the salience o f  policy dimensions and increasing the var- 

iance o f  the unmeasured difference between R and T are bo th  ways o f  making 

this condi t ion easier to satisfy. 
To complete our  example, the first-order condi t ion for V(r) to be max- 

imized is E[f (d)u '  (r)] = 0, where d = u(r) - u(t). Since, for  our  example, u '  (r) 

= - a ( r - x )  and f is symmetric about  0, the first-order condit ion will be satis- 
fied when E [ - a ( r - x ) ]  = 0. Assuming a is independent  o f  x, for  our  two-group 

example this condi t ion solves to  yield the expected vote maximizing solution, 
r -- E(x) = N 1 / ( N  0 + N1) = N1, the mean ideal point  in the voting popula-  
tion. The objective funct ion for candidate T yields the same first-order con- 

dition, so the mean ideal point  is an equilibrium for bo th  candidates. I f  the 
a weights differ across voters, our  mean  result will be weighted by these para- 
meters. In a mult idimensional  policy space, we obtain a similar result. 

In  simple terms, nonpol icy considerations or  other  disturbances indepen- 
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dent of the measurable policies of the candidates can cause the candidates to 

adopt the same policies. The kind of disharmony of views that destabilizes elec- 
tions when these views concern policies can stabilize elections when these views 
concern the nonpolicy attributes of the candidates. Sufficient subjectivism 
among voters is conducive to electoral stability. 

A second application of our model is the linear case, u(r) -- ar where the 
salience weight a is the slope of  i's utility function. For this case, the necessary 
and sufficient condition for concavity of V(r) reduces to 

E[f ' (d)a  2] < 0 for all r,t in X (13) 

where, as before, d = u(r) - u(t). This inequality will hold if a is independently 
distributed in the voting population and 

E[f '(d)] < 0 for all r,t in X (14) 

This condition is quite restrictive. To guarantee that (14) holds for all possible 
r and t, f must have nonpositive slope throughout its domain. Otherwise, V(r) 
will not be concave for all r (and fixed t) in X. As explained before, the round- 
ness of  the voter utility functions helps compensate for a certain amount of  
convexity in F. If utility functions are all linear (i.e., flat), then any convexity 

in F leads to convexity in V(r). For example, suppose f(d) is normal with mean 
zero. Choose r,t in X such that d < 0 for many voters. Then, V(r) will be con- 
vex for r in this region of X. We conclude that linear utility functions are likely 
to cause disequilibrium in two-candidate elections. This finding is consistent 
with the results of Feldman and Lee (1987). 

4 .  D i s c u s s i o n  

In deterministic spatial theory (e.g., Davis and Hinich, 1966; Plott,  1967; 
McKelvey, 1976; Schofield, 1978) strong assumptions are required concerning 
the information that candidates possess about voters. The knife-edge assump- 
tion that a voter votes with certainty for the candidate closest to him requires 
a set of candidates who can measure voter opinion without error. By contrast, 
we assume that candidates see voter opinion as imperfectly measured, and the 
causation of  voting behavior as imperfectly understood, thus including a ran- 
dom term in their vote calculations. 

How much must the candidates know about this random term? Technically, 
candidate R must be able to calculate his expected vote share V(r) -- E[F(u(r) 
- u(t))], given the distribution function F characterizing his beliefs about how 
this random term is distributed in the population. Although E and F cannot 
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be reversed on the right-hand side of the expected vote equation, the candi- 
date's informational requirement comes quite close to assuming that the can- 
didate must know only the average policy utility difference between himself 
and his opponent for each pair of policy positions. This requirement appears 
at least as reasonable as the assumption that the candidates know voter opin- 
ion without error. The scarcity of equilibrium in the deterministic theory im- 
plies that the candidates must know far more than the location of some type 
of median or mean voter. 

The results that have flowed from deterministic and probabilistic spatial 
theories are quite different. Work on the deterministic theory stresses the in- 
stability of the electoral process, while work on the probabilistic theory 
(Hinich, Ledyard and Ordeshook, 1973; Coughlin and Nitzan, 1981; Enelow 
and Hinich, 1982, 1984a, 1984b; Coughlin, 1986a, 1986b) has arrived at quite 
opposite conclusions. Given certain conditions on the random element in the 
voter's calculus, electoral equilibrium exists regardless of the dimensionality 
of the policy space. Further, the characteristics of this equilibrium are gener- 
ally attractive, whether from the standpoint of a social welfare function 
(Coughlin, 1986b; Lindbeck and Weibull, 1987) or in terms of representing a 
'golden mean' (Enelow and Hinich, 1984a, 1984b). 

It has been pointed out, however, that strong assumptions are usually in- 
voked to reach these optimistic findings for probabilistic voting theory. 
Coughlin (1986a), for example, relies on a binomial logit model, or a concave, 
binary strict utility model (Coughlin and Nitzan, 1981; Coughlin, 1986b); 
while Enelow and Hinich (1982) depend for their results on a quadratic utility 
function and a normally distributed random variable representing the nonpoli- 
cy differences between the candidates. Coughlin (1986a, 1986b) and Lindbeck 
and Weibull (1987) assume that each voter cares only about his own income 
or consumption, making his utility function one dimensional. Consequently, 
questions arise about the generality of the results associated with the 
probabilistic theory of elections. 

In this paper, we have not tried to argue either for the general existence or 
nonexistence of equilibrium in probabilistic election theory, but, instead, have 
tried to look at the question more generally. We have shown that the existence 
of equilibrium depends on the magnitude of the variance of the random ele- 
ment that represents factors which are probabilistically modelled, the size of 
the feasible set of candidate policy locations, the salience of policies among 
voters, the dimensionality of the policy space, and the degree of concavity in 
voter utility functions. 

In deterministic spatial theory, sufficient conditions for equilibrium in two- 
candidate plurality elections are extremely fragile. Small violations of the con- 
ditions destroy equilibrium. By contrast, sufficient conditions for equilibrium 
in the theory we have discussed exhibit a type of continuity. Several factors are 
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tied to electoral stability, but the existence of  stability is a continuous function 
of  their fulfillment. 

5. Conclusions 

The purpose of this paper is to construct a more general probabilistic theory 
of  elections to show what causes equilibrium and disequilibrium in two- 
candidate elections. Viewing the candidates as statisticians who can only im- 
perfectly measure the factors that influence voting behavior, we see that rea- 

sonable conditions exist for equilibrium and convergence in two-candidate ex- 
pected vote maximizing contests. We also see what causes these sufficient con- 
ditions to break down. The informational conditions that the candidates must 

satisfy are at least as reasonable as those for deterministic spatial theory. 
Prospective uncertainty among voters, reduced policy salience, risk averse 

voters, and restrictions on the size of  the feasible set of policy locations or the 
dimensionality of  the policy space are all stabilizing factors in two-candidate 
elections. The degree to which voters are 'all over the map'  about such factors 
as the nonpolicy attributes of candidates is important in bringing stability to 
the policy positions of  the candidates. Instead of bemoaning the inability of  
voters to agree about differences in candidate characteristics, perhaps we 
should be glad for such disagreements. 

The shifting mood of the crowd is a dominant theme in Shakespeare's Corio- 
lanus. Coriolanus, standing for Consul of Rome, recognizes that it is pointless 
to change his stands in response to shifts in popular opinion and so adopts an 
attitude of  'noble carelessness' toward the voters. The crowd later turns 
against Coriolanus, but not until after he wins the election. 

Notes 

1. Closed and bounded, e.g., an interval [a,b] on the real line. 
2. We may also define u as the logarithm of policy utility. 
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Appendix 

As defined in the text, Uj is the first partial derivative of u with respect to rj and Ujk is the second 

cross partial derivative of u with respect to r i and r k. Also u r is the m-dimensional column vector 

of first partial derivatives of u, u r = (ul, . . . ,  Urn), and the m x m matrix, denoted Hu, of the 

Ujk elements is the Hessian of u with respect to r. 

We now define additional notation. If F = F(d), where d = u(r) - u(t), define Fr(d ) as the m- 

dimensional column vector of first partial derivatives of F(d) with respect to r = (r I . . . . .  rm), 

Fr(d ) = f(d)u r. Fj(d) is the first partial derivative ofF(d)  with respect to rj and Fjk(d ) is the second 

cross partial derivative of F(d) with respect to rj and r k. The m x m matrix, denoted HF, of the 

Fjk(d ) elements is the Hessian of F with respect to r. Besides being twice differentiable, both F 

and u are continuous. 

Proof that condition 1 is necessary and sufficient for concavity of  V(r). V(r) = E[F(d)], where 

d = u(r) - u(t). By direct differentiation, Fr(d) = f(d)u r is an m x 1 column vector of partial 

derivatives with respect to r. In addition, 

Fjk(d ) = f '(d)uju k + f(d)Ujk (A1) 

It follows, then, that the Hessian of F(d), H F can be expressed as the m x m symmetric matrix 

H F = f'(d)urUr T + f(d)H u (A2) 

For any nonzero m x 1 column vector x, we can write the quadratic form 

xTHF x = f'(d)[xTur]2 + f(d)xTHux (A3) 

From Condition 1, the expectation of the right-hand side of (A3) is nonpositive. It follows that 

Hv, the Hessian matrix of V(r), is negative semi-definite, and so V(r) is concave in r. Thus, Con- 

dition 1 is a sufficient condition for concavity of V(r). 

If  E(xTHFx ) = XTHv x --< 0 then Condition 1 holds. Given that F and u are continuous and 

twice differentiable, if V(r) is concave then H v is negative semi-definite. Thus, Condition l is a 

necessary condition for concavity of V(r). Q.E.D. 


