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In a well-known paper, Plott (1967) establishes sufficient conditions for 
equilibrium in multidimensional choice spaces under majority-rule voting. 
The most important and best known of these conditions is pairwise symmetry, 
which states that all nonzero utility gradients at the equilibrium must be 
divisible into pairs that point in opposite directions. If there is an odd number 
of voters and exactly one voter's ideal point (zero gradient) at the equilibrium 
or an even number of voters and no ideal point at the equilibrium, pairwise 
symmetry is also necessary. If the number of voters is even and one or more 
ideal points are at the equilibrium, or if the number of voters is odd and two or 
more ideal points are at the equilibrium, then Plott's conditions are sufficient 
for the existence of majority rule equilibrium but they are not necessary. 

This last result is commonly misunderstood. Many references to Plott 
characterize his conditions as either necessary or necessary and sufficient 
(Simpson, 1969; McKelvey and Ordeshook, 1976; Shepsle, 1979; Cohen 1979; 
and Denzau, Mackay and Weaver, 1980) with no mention of the additional 
assumption required for this statement to be correct. Thus, many public 
choice theorists appear to believe as Shepsle (1979: 28) states, that 'for 
equilibrium to obtain, preferences must exhibit an extremely precise 
symmetry . . . .  ' Or, as McKelvey and Ordeshook (1976:1172) state, 'unless the 
assumption of unidimensional or symmetrically distributed preference is 
satisfied, the solution to the election game posited by spatial theory does not 
generally exist.' Scholars familiar with McKelvey's (1976, 1979) results con- 
cerning global cycling in the absence of equilibrium remain with the im- 
pression that in the multidimensional spatial model, only two cases exist 
under unrestricted majority rule. In the first case, voter utility gradients 
exhibit pairwise symmetry around a single point, and, consequently, equilib- 
rium exists. In the second case, voter utility gradients do not exhibit pairwise 
symmetry, no equilibrium exists, and the entire space is engulfed in a majority 
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rule cycle. Besides pointing out this confusion, we wish to pursue a matter 
raised by Slutsky (1979). 

Defining N(0) as the number of voters with zero utility gradients at the 
equilibrium, N(0) = 1 is a minimum bound for an odd number of voters, and 
N(0) = 0 is a minimum bound for an even number of voters. Given this result, 
Slutsky (1979: 1123) observes: 'For sufficiently large N(0), no symmetry 
requirements are imposed while for N(0) at the minimum necessary, extreme 
symmetry must occur. For N(0) between these bounds, some less extreme 
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symmetry on the nonzero gradients is needed.' Here, we construct an example 
of a majori ty rule equilibrium with N(0) = 1 and an even number of voters, to 

shed light on the question of how much asymmetry of nonzero gradients can 
exist when N(0) is one more than the minimum number necessary. 

Figure i depicts such an example. The choice space is E z, there are n = 4 
persons, and each person's preference is based on simple Euclidean distance, 
representable by circular indifference contours. Figure 1 shows the four ideal 
points. Equilibrium is defined as in Plott  (1967) and in Slutsky (1979), as a 
point that is at least as good for a majority as any other. This is equivalent to 
the definition of a dominant point in Davis, DeGroot  and Hinich (1972). For  
n = 4, at least three voters constitute a majority. Thus, x 4 is a majority rule 
equilibrium. 

We can use Slutsky's necessary and sufficient condition to check that x4 is 
an equilibrium. For any convex pointed cone D ÷ with x~ as the origin and D -  
the negative of D +, the condition is that IN(D +) - N(D -)1 ~< N(0) = 1, where 
N(D ÷) is the number of nonzero gradients contained in D ÷ and N ( D - )  the 
number  in D - .  This method requires checking an infinite number of such 
cones, as Slutsky points out. 

Davis, DeGroot  and Hinich (1972) provide an easier way to check for 
equilibria. They show that a point such as x 4 is an equilibrium (dominant 
point) if and only if any hyperplane containing x 4 divides the voter ideal points 
such that at least one-half lie on either closed side of the hyperplane. Clearly, 
any line passing through x~ has this property. 

The ideal points in Figure 1 plainly do not satisfy Plott 's pairwise symmetry 
condition. Indeed, no two nonzero gradients point in opposite directions. But 
what can we say about the degree of symmetry required in this case? Slutsky's 
condition on cones is now useful. Fixing x 4 and any two of the three ideal 
points not at equilibrium, what restrictions exist on the location of the 
remaining ideal point if x 4 is to remain in equilibrium? If xz, x3, and x,~ are 
fixed, x 1 can lie anywhere in D1, the convex cone with origin x~ bounded by 
the negative gradients at x~ of voters 2 and 3. Similarly, if the remaining ideal 

points are fixed, x 2 can lie anywhere in D2; and x 3 anywhere in D 3. However, 
suppose that xx lies in the interior of D z. Then it is possible to construct a 
smaller convex cone Dz * c D2 such that IN(D~- *) - N(D~- *)1 = 2 > N(0) = 1. 

From a Nash equilibrium standpoint, x 4 is a fairly robust equilibrium, since 
there is a large area within which each ideal point not at equilibrium can lie 
without upsetting the equilibrium. Consequently, Shepsle's (1979: 28) con- 
cern, voiced by others, that majority rule equilibrium 'is extremely sensitive to 
slight perturbations '  is not entirely justified. 

An interesting question remains for N(0) = 1 and an even number of voters. 
How does the necessary degree of nonzero gradient symmetry respond to an 
increase in the number of voters? Figure 2 for eight voters with circular 
indifference contours suggests an answer. As the number of voters increases 
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(for N(0) = 1 and an even number of voters), the necessary degree of nonzero 
gradient symmetry approaches a variant of Plott's pairwise symmetry con- 
dition. For N(0) = 1, every pair of ideal points not at equilibrium requires at 
least one ideal point contained in the convex cone defined by the negative 
gradients at the equilibrium of these two ideal points. As the addition of ideal 
points in the choice space decreases the distance between each adjacent pair of 
ideal points, the region shrinks within which the necessary ideal point in the 
negative gradient cone must lie. For each pair of ideal points, in the limit, there 
must be at least one ideal point in an opposite direction from the equilibrium. 
For N(0) > 1 the necessary degree of symmetry will increase more slowly as 
the number of voters increases. If N(0) is at least one-half the number of ~oters, 
then no degree of symmetry on the nonzero gradients is required. Thus for 
fixed N(0), the size of the voting body is directly related to the necessary degree 
of nonzero-gradient symmetry. 

We thus reach three conclusions. First, many readers have misread Plott's 
equilibrium conditions, leading to a widespread misunderstanding that in 
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multidimensional spatial models of unrestricted majority rule voting, pair- 
wise symmetry of nonzero utility gradients at the equilibrium is necessary to 
avoid global cycling. Second, if even one more ideal point than necessary is 
located at the equilibrium, then no two nonzero gradients have to point in 
opposite directions. Finally, the smaller the number of voters, the less sensitive 
is equilibrium to perturbations of individual ideal points. The delicate balance 
among ideal points not at equilibrium that is commonly thought to be 
necessary to preserve equilibrium is not as delicate as widely believed. This is 
not to say that equilibrium is a likely occurrence. Rather, the precise relation- 
ship between majority-rule equilibrium and the necessary distribution of 
individual ideal points (or the arrangement of nonzero utility gradients at 
equilibrium) is not as simple or as neat as many believe it to be. 
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