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Abstract. We model correlated voter-candidate issue data within the framework of the Enelow- 
Hinich spatial model of predictive dimensions. The empirical consequences of this model of the 
issue data are surprising and allow for an indirect test of the Enelow-Hinich spatial model. The 
central prediction of the correlated data model we construct, which depends critically on the under- 

lying spatial model, is tested with issue data from the 1980 NES pre-election interview. The test 
results are highly supportive of the model's predictions. We conclude both that the spatial model 
of predictive dimensions is empirically supported and that candidate spatial locations estimated 

by the model are not an artifact of correlated voter-candidate issue data. 

1. Introduction 

It has long been noted that significant correlations exist between voter self- 

placements on public policy issues and voter perceptions of where politicians 
stand on those same issues (Brody and Page, 1972; Page and Brody, 1972; Page 
and Jones, 1979). The precise consequences of these correlations for issue vot- 

ing models are not obvious, nor is it clear how to incorporate this phenomenon 
into the spatial model of elections. There exist a variety of scaling techniques 
that use issue data from voter surveys to recover the spatial locations of voters 
and candidates in some type of reduced policy space. What are the conse- 
quences of correlated voter-candidate issue data for the estimated spatial loca- 
tions that these techniques provide? 

In this article, we devise a test which provides strong support for the Enelow- 

* The authors wish to thank Ben Page, Eric Devereux, and an anonymous referee for their helpful 
comments. An earlier draft of the paper was delivered at the 1989 Public Choice Society Meetings, 
Orlando, Florida. This work was partially supported by the National Science Foundation under 
Grant # SES 8310591. 
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Hinich spatial model of predictive dimensions and which at the same time 
demonstrates that the candidate spatial locations estimated by the Enelow- 
Hinich model are independent of any correlation between the issue preferences 
of the voters and the perceived issue positions of the candidates. We thus con- 
clude that estimated candidate spatial locations need not be an artifact of such 
correlations. 

The spatial model developed by Enelow and Hinich (1984) postulates that 
the voter's perception of a candidate's issue position is a linear function of a 
fixed set of positions on a small set of underlying predictive dimensions with 
coefficients that vary by voter. Building on this model, we construct a sub- 
model of these coefficients that allows them to depend on voter issue pre- 
ferences. 

The empirical consequences of this model of the issue data are surprising and 
allow for an indirect test of the Enelow-Hinich spatial model. The central 
prediction of the correlated data model we construct is that a factor analysis 
of the covariance matrix of voter and candidate issue variables yields the same 
estimated candidate factor loadings as a factor analysis of the candidate varia- 
bles alone. This prediction depends critically on our model of the data, based 
on the Enelow-Hinich spatial model. The correlated data model also predicts 
that the variable representing voter issue positions lies in the same underlying 
space as the candidate variables. Again, this prediction depends critically on 
our model of the data and the Enelow-Hinich spatial model. 

These predictions can be easily tested. Using the 1980 NES pre-election issue 
data, we factor analyze the candidate and voter variables together and then the 
candidate issue variables separately to see whether the inclusion of the extra 
variable representing the issue positions of the voter affects the candidate load- 
ings in the underlying policy space recovered by factor analysis and, in addi- 
tion, whether this extra variable lies in the same space as the candidate varia- 
bles, instead of creating an extra dimension. 

Our tests confirm these theoretical predictions. We conclude that the Ene- 
low-Hinich specification of voter issue perceptions is supported empirically, 
that correlations between voter self-placements and perceived candidate issue 
positions are correctly measured by the linear coefficients of the model and that 
valid estimates of candidate positions in a reduced policy space can be obtained 
from voter survey data, regardless of any correlations between voter prefer- 
ences and perceived candidate issue positions. 

2. The model 

For the reader unfamiliar with the Enelow-Hinich spatial model of underlying 
predictive dimensions (Enelow and Hinich, 1984), we begin by setting out the 
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model's basic elements as simply as possible for the case of two underlying poli- 
cy dimensions. We then construct a model of correlated voter and candidate 
issue positions within the framework of the Enelow-Hinich model and develop 
the consequences of this model of the issue data for estimates of candidate and 
voter locations in the underlying policy space recovered by factor analysis. 

The Enelow-Hinich model assumes that electoral competition can be ana- 
lyzed in either of two spaces: the candidate space, on which we have data, and 
an unobservable, underlying predictive or factor space, which is a condensa- 
tion of the candidate variables. The data consist of perceived issue positions 
of the candidates, where perceptions vary over voters and issues. For simplici- 
ty, we will develop the model for a single issue scale, which means that if there 
are n voters who can locate j candidates on this issue scale, there are n cases 
for each of j variables. Issues and voters are sampling units; the variables are 
the candidates. If observations are given over m issues for n voters, we would 
have mn cases for each of these same j candidate variables. 

For a single voter, i, let Ci = (ci, ..., cij)T be a j x 1 vector, denoting where 
voter i perceives candidates 1, ..., j to be located on a single policy issue. Also 
let Vi = (vil, vi2)T be a 2 x 1 vector measuring the slope coefficients in a linear 
model that expresses the connection that voter i makes between candidate posi- 
tions on two underlying predictive dimensions and candidate positions on the 
given policy issue. Finally, let P = (P1, P2) be a j x 2 matrix of positions for 
the j candidates on the two underlying dimensions, where P1 = (pl1, ..., Pji)T 
and P2 = (p12, ..., pj2)T. Then, the Enelow-Hinich model (with an error term 
representing lack of fit of the model) postulates that candidate positions on a 
given policy issue are related to candidate positions on the predictive dimen- 
sions of the campaign by the identity 

Ci = P Vi + ei (1) 

where ei is a j x 1 vector of random errors that are distributed independently 
of Vi and voter i's ideal point xi on the given policy issue. Assume that the 
covariance matrix of ei is diagonal and denote it by D. As equation (1) shows, 
the model assumes that differences in voter perceptions of candidate issue posi- 
tions occur only through the coefficients Vi. 

To allow for perceptual variation across voters of the issue position of some 
candidate r (if one exists) for whom Prl = Pr2 = 0, we may have written equa- 
tion (1) as Ci = bi + P Vi + ei, where bi is a j x 1 vector of idiosyncratic inter- 
cept terms and bir + eir is i's perception of r's issue position. For simplicity of 
exposition, we omit bi from the model, but it is easily included if we define Zi 
= Ci - bi, in which case Zi can be substituted for Ci in the following analysis. 

Intuitively speaking, the Enelow-Hinich model assumes that the voter uses 
the candidate's predictive label as a shorthand device to estimate the candi- 
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date's positions on the issue of the campaign. The reasons for assuming that 
voters take this shortcut are straightforward. As Downs (1957) states, it is 
rational for many voters not to invest in acquiring information about the issue 
positions of the candidates. The theory of predictive dimensions provides a 
means by which voters can acquire such information at a low cost. Given a can- 
didate label, such as "Reagan Republican", the voter can make inferences 
about the candidate's issue stands without expending the resources to observe 
them directly. The connections the voter makes between candidate labels and 
candidate issue positions come from his own understanding of politics. The 
predictive dimensions model formalizes the nature of this connection by as- 
suming that the voter, as statistican, uses "least-squares" assumptions to 
structure his knowledge of politics. 

Substantively speaking, Vik represents i's perception of the issue difference 
between two candidates who are one unit apart on the kth predictive dimen- 
sion. The size of Vik depends on the issue-significance of differences in candi- 
date predictive labels. A voter who believes that there isn't a "dime's worth of 
difference" between Republicans and Democrats will have a vik much closer 
to zero than a voter who sees major issue differences between the two parties. 

To give the reader some idea of how the model of equation (1) is estimated, 
the vector of observations Ci is given by the issue data (in this paper obtained 
from the 1980 NES pre-election seven-point survey questions), P is the matrix 
of estimated loadings obtained from a factor analysis of the sample covariance 
or correlation matrix constructed from the Ci of all the voters with nonmissing 
data, and Vi are the factor scores derived from P, the sample covariance or 
correlation matrix, and Ci. Further details will be provided in the data analysis 
section. 

We now build an explicit model of correlated voter-candidate issue data 
within the Enelow-Hinich model outlined above by assuming that 

Vi = V' + Wi(xi) (2) 

where V' = (v1, v2)T is the mean voter linkage between candidate positions on 
the two predictive dimensions and candidate positions on the policy issue in 
question. Wi(xi) = (wil(xi), wi2(xi))T is a 2 x 1 vector of idiosyncratic dif- 
ferences that depend on xi and whose functional form varies over voters. Wi 
measures the degree of dependence between vik and xi for k = 1, 2. Since E(Vi) 
= V', Wi(xi) measures the variation of voter linkages around the mean 
linkage between dimensions and issues. This mean linkage may or may not be 
"true" in some objective sense. 

The model of equation (2) is deliberately general so as not to tie our results 
to a specific functional form between voter and perceived candidate issue posi- 
tions. A linear specification of this relationship is Vik = Vk + WikXi. In this 
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case, wik is the slope coefficient measuring the strength and sign of the rela- 
tionship between xi and vik (k = 1, 2). In Enelow (1986), it was found that the 
average Vik varied systematically across electoral subgroups for most of the is- 
sues included in the 1980 NES survey. For a fixed dimensional difference be- 
tween Carter and Reagan, Democrats felt, on average, that Reagan would in- 
crease defense spending by a smaller amount relative to Carter than 
Republicans believed would occur. On average, Republicans desired more 
defense spending than Democrats. Thus, a reasonable hypothesis for these 
data is that Vik (k = 1, 2) is linear in xi and that the averge Wik is significantly 
different between Democrats and Republicans. 

An alternative hypothesis is that wik(Xi) is nonlinear in xi. Suppose, for ex- 
ample, that vik = Vk + wikXi2, where Wik is the coefficient of the quadratic 
term. If this coefficient is positive, then vik increases at an increasing rate as 

xi increases. Individuals whose perceptions fit this model attribute a greater 
and greater issue difference to the same pair of candidates as their own most 
preferred policy becomes more extreme. To give an example, the policy differ- 
ence attributed to Ted Kennedy and Ronald Reagan on the issue of abortion 
may be nonlinear in the voter's own most preferred abortion policy, with this 
policy difference being exponentially magnified by voters with increasingly ex- 
treme views on the subject. In such an event, a significant linear correlation be- 
tween xi and vik may exist even though the relationship between wik and xi is 
nonlinear. 

From equation (1), cij = Pjlvil + Pj2Vi2 + eij; so, substituting for vil and 

vi2 from equation (2), we have that 

cij 
= 

aj + PjlWil(xi)P + Pj2Wi2(Xi) + eij (3) 

where aj = pjlvi + pj2v2. Equation (3) re-expresses our model of the data to 
make it clear that the variation in perceptions of candidate j's issue stands are 
a direct function of the wik's of the voters. 

Substituting for Vi, equation (1) can now be expressed as 

Ci = P V' + P Wi(xi) + ei. (4) 

In order to compute the covariance matrix of Ci, we need to assume some 
structure on the vi's, keeping in mind that for simplicity we are developing the 
model for the case of a single issue. From equation (2), we have that Vik = Vk 
+ wik(Xi), where k = 1, 2 indexes the underlying dimensions and i the voters. 
Then, we make the following two identification assumptions: 

(1) wil(xi) and Wi2(Xi) are uncorrelated, i.e. E[wil(xi)wi2(xi)] = 0. 
(2) E [wik(Xi)]2) over i is constant for all k. Since units are 
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arbitrary, set the variance of wik(Xi) equal to one. 
We do not have a substantive theory about the structure of the wik's, and 

so we cannot make an a priori specification of the covariance matrix of these 
terms. The correlation between wil(xi) and Wi2(Xi) is unknown and can either 
be negative or positive. Standard practice in factor analysis (Morrison, 1976: 
262; Anderson, 1989: 553) is to identify the model by assuming that the correla- 
tion is zero. Such an approach is consistent with confirmatory analysis (Long, 
1983: 40-41) given that we do not have a causal model of the wik'S. 

The covariance matrix of Vik is the same as for Vik - Vk. Thus, the covari- 
ance matrix of vik is the same as for Wik(Xi). Given assumptions (1) and (2) and 
recalling from equation (2) that E[wik(Xi)] = 0; the covariance matrix of the 

vik's is the 2 x 2 identity matrix. Given this result and the independence of eik 
and wik(x), we can then express the covariance matrix of Ci as 

E[(PWi(xi) + ei) (PWi(xi) + ei)T] = PE[Wi(xi)Wi(xi)T]PT + D = ppT + 

D, (5) 

where D = E(eieiT) is a diagonal matrix of specific variances. The covariance 
of (xiCiT) is 

E[(xi - xm)(PWi(xi) + ei)T] = HPT, (6) 

where xm = E(xi) and H is a 1 x 2 vector of covariances 

H = E[(xi - xm) (Wi(xi))T] = [cov(xi, wil(Xi), cov(xi, wi2(Xi)] (7) 

Thus, the covariance matrix of (Ci, xi) = 

P PT P HT 
H PT H HT 

+ R + D' = 

(PT, HT)T(pT, HT) + R + D', (8) 

where D' is a (j + 1) x (j + 1) matrix whose j x j submatrix is D and whose 
(j + 1)st row and (j + 1)st column are vectors of O's. 

The matrix R is (j + 1) x (j + 1) with only O's except the element in the (j + l)st 
row and (j + l)st column which is var(xi) - H HT. This Cj + 1)st term, which 
is the specific variance of xi, is var(xi) - [cov2(xi, Wil(Xi)) + COV2(xi, wi2(Xi))]. 
This identity provides an internal validity check on our model, since we have 
two estimates of the specific variance of xi: one directly from the factor analy- 
sis of (Ci, xi) and the other from this identity. The sample variance of xi esti- 
mates var(xi). From (2), cov(xi, wik(Xi)) = COV(Xi, Vik), so the sample co- 
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variance of xi and the computed scores on each factor estimate this quantity. 
If we used scores from the factor analysis of (Ci, xi), the identity between the 
estimated specific variance of xi and the theoretical predictor of this specific 
variance would necessarily hold. By using factor scores from a factor analysis 
of the candidate variables alone, the xi's do not directly affect the computa- 
tion of the scores. With these "pure" scores, the difference between the esti- 
mated specific variance of xi and var(xi) - H HT measures the degree of fit be- 
tween our data set and our model of the issue data. 

The first term in (8) is the factorization of the (j + 1) x (j + 1) covariance 
matrix of (Ci, xi), yielding a (j + 1) x 2 loading matrix which is a consistent esti- 
mator of (pT, HT)T up to an orthogonal rotation. The first j rows of this 
matrix estimate P, the loadings of the j candidates on the two predictive dimen- 
sions. The (j + 1)st row estimates H, the loadings of the voter ideal point varia- 
ble on these same two dimensions. In general, thej x 2 submatrix of candidate 
loadings will not be the same as the candidate loadings derived from afactori- 
zation of Ci. The structure of the covariance matrix of (Ci, xi) will not be the 
same as for Ci. The model given by equation (2) provides the simple relation- 
ship between the factorization of Ci and that of (Ci, xi) that we derive, a rela- 
tionship not expected by chance. The R and D' matrices are diagonal and get 
estimated by the specific variance matrix. The loadings matrix is not rotated. 

Let us put in words the basic result of equation (8). If our model of the data 
specified by equations (1) and (2) is correct, we will obtain the same candidate 
loadings when we factor analyze the j candidate variables as when we factor 
analyze the j + 1 candidates plus voter variables. If, on the other hand, the 
voter ideal points were correlated with the model errors ei, then these two fac- 
tor analyses would not yield the same estimated candidate loadings. We will 
also obtain different candidate loadings if P were a random variable correlated 
with xi. 

Another result is worth noting. Since the factor space for the j + 1 variables 

(Ci, xi) has the same number of dimensions as that for the j variables Ci, the 
extra variable xi lies in the same space as Ci. The addition of the voter ideal 
point variable does not create a new dimension in the underlying space. 

To reiterate, we have constructed a model of functionally related candidate 
and voter issue positions that leads to several verifiable results. Given data on 
voter perceptions of the issue positions of a set of candidates and voter self- 
placements on these same issue scales, a factor analysis of j candidate variables 
and a factor analysis of j + 1 candidate plus voter variables should yield the 
same candidate loadings on the underlying factors. The extra voter variable 
should lie in the same factor space as the j candidate variables. We now proceed 
to test these propositions. 



162 

3. Data analysis 

The data we use to test our theoretical propositions are survey responses to the 
five issue scale questions contained in the pre-election wave of the 1980 NES 
Pre-Post interview. These scales concern the issues of defense spending, 
government services, inflation/unemployment, abortion, and a tax cut. The 
first three scales are seven points in length, the abortion scale has four points, 
and the tax cut scale five points. To increase comparability across scales, the 
abortion and tax cut scales were lengthened to make the end points 1 and 7 with 
equal spacing in between. 

Issue data exist on seven candidates: Carter, Reagan, Anderson, Kennedy, 
the Republican party, the Democratic party, and the Federal government. To 
create an idiosyncratic intercept term for the linear function expressed by equa- 
tion (1), the Federal government variable is subtracted from each of the other 
variables, leaving us with six candidate variables. An observation on a single 
variable is a respondent's perception of where a candidate (or the respondent) 
is located on a given issue relative to what the respondent perceives as the posi- 
tion of the Federal government. There are 1614 respondents in the pre-election 
wave of the 1980 Study. If observations range over respondents and over issues 
(five), a maximum of 8070 cases exist on each variable. If observations range 
only over respondents, the maximum number of cases is reduced to 1614. 

To establish the empirical plausibility of equation (2), we began our data 
analysis by computing sample correlations between respondent self-placements 
on a single issue scale and factor scores on the same issue. As explained in 
Enelow (1986), the factor scores calculated for each case estiamte the vi's in 
the Enelow-Hinich model. More specifically, if cases consist of respondents' 
perceptions of candidate positions on a single issue, then vil and Vi2 are esti- 
mated by the factor scores computed for case i on factors 1 and 2. Note that 
the respondents themselves are not part of this factor analysis, so that the vi's 
are not partially computed from the xi's. For a full discussion of the estima- 
tion of factor scores for both fixed and random factor models, see Anderson 
(1984). 

Table 1 reports ten bivariate correlations between the respondent's self- 
placement on one of the five pre-election issue scales and each of the two factor 
scores computed for the respondent on the same issue. In theoretical terms, we 
are examining the correlations between xi and vil and xi and Vi2 for a single is- 
sue. The wik's of equation (2) determine the strength of this correlation. As 
shown in Table 1, the sample correlations are all significantly positive between 
self-placement and first factor scores. The sample correlations with the second 
factor scores are weaker. 

An explanation for this result is suggested by the relative loadings of the can- 
didates on the two derived factors. On factor 1, Carter and Reagan load posi- 
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Table 1. Sample correlations between respondent self-placement and factor score on five issues 

All respondents Carter supporters Reagan supporters 

F1D .67 .57 .81 
(N = 526) (N = 196) (N = 227) 
(p = .00) (p = .00) (p = .00) 

F2D .14 .46 - .08 

(N = 526) (N = 196) (N = 227) 
(p. =00) (p= .00) (p= .12) 

FIG .60 .39 .82 
(N= 545) (N = 198) (N = 221) 
(p = .00) (p = .00) (p = .00) 

F2G .17 .60 - .27 
N= 545) (N = 198) (N = 221) 
(p = .00) (p = .00) (p = .00) 

FlI .67 .40 .87 
(N= 387) (N= 153) (N= 152) 
(p = .00) (p = .00) (p = .00) 

F2I .04 .45 - .20 

(N= 387) (N= 153) (N= 152) 
(p= .22) (p = .00) (p= .01) 

F1A .35 .43 .30 
(N= 306) (N= 113) (N= 122) 
(p = .00) (p = .00) (p = .00) 

F2A .08 .32 - .33 

(N= 306) (N = 133) (N = 122) 
(p = .08) (p = .00) (p = .00) 

FIT .48 .17 .69 
(N= 242) (N = 86) (N = 109) 
(p = .00) (p = .06) (p = .00) 

F2T .00 .32 - .10 

(N = 242) (N = 86) (N= 109) 
(p = .48) (p = .00) (p = .14) 

Note: 

F1D = score on first factor for respondent-defense cases. 
F2D = score on second factor for respondent-defense cases. 

F1G, F2G, FlI, F2I, FIA, F2A, FIT, F2T defined identically for govt. services (G), inflation/un- 
emp. (I), abortion (A), and tax cut (T). 

tively with Reagan more positive than Carter. On factor 2, Reagan loads nega- 
tively and Carter positively. For a Reagan supporter to positively correlate his 
issue position with Reagan's, the second factor score must be negative. Thus, 
we expect a negative correlation between second factor scores and self- 
placement for Reagan supporters and a positive correlation between second 
factor scores and self-placement for Carter supporters. Table 1 also reports 
these correlations, and our prediction is largely confirmed. 

So far, then, we find empirical support for the model of the data postulated 
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Table 2. Sample correlation matrix and principal results of factor analysis of candidate variables 
and of voter plus candidate variables based on 1980 pre-election issue data 

Sample correlation matrix 

C R A K RE DE V 

Carter 1.00 .35 .45 .52 .36 .70 .35 
Reagan 1.00 .58 .31 .90 .35 .63 
Anderson 1.00 .49 .59 .50 .53 
Kennedy 1.00 .32 .62 .34 
Rep Party 1.00 .34 .62 
Dem Party 1.00 .39 
Voter 1.00 

Unrotated Unrotated 
loadings from candidate loadings from candidate and 
factor analysis voter factor analysis 

Variable Factor 1 Factor 2 Factor 1 Factor 2 

Carter .50 .59 .50 .58 
Reagan .93 - .18 .93 - .19 
Anderson .67 .22 .68 .22 
Kennedy .45 .53 .45 .53 
Rep Party .93 -.19 .93 -.19 
Dem Party .52 .73 .52 .73 
Voter - - .68 .05 

Eigenvalues of initial factor matrix 

Factor Candidate variables Cand plus voter variables 

1 3.46 3.94 
2 1.23 1.30 
3 .51 .51 
4 .41 .46 
5 .28 .41 
6 .10 .28 
7 - .10 

in equation (2). We now turn to a direct test of our major theoretical proposi- 
tion, namely that a factor analysis of candidate variables yields the same factor 
loadings for the candidates as a factor analysis of candidate variables with a 
variable for the voters' ideal points also included. In addition, we expect the 
voter ideal point variable to lie in the same factor space as the candidate 
variables. 

Table 2 reports the results of two factor analyses, one of the candidate varia- 
bles and one of the candidate plus voter variables. Observations range across 
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Table 3. Eigenvalues and factor loadings from factor analysis of six and six plus one variables 
based on a scrambled matrix of 1980 pre-election issue data 

Eigenvalues of initial factor matrix 

Factor Six variables Six plus one variables 

1 1.71 1.71 
2 1.23 1.57 
3 .99 .99 
4 .83 .95 
5 .70 .71 
6 .53 .56 
7 - .50 

Unrotated Unrotated 
loadings from six var loadings from six plus one 
factor analysis var factor analysis 

Variable Factor 1 Factor 2 Factor 1 Factor 2 

one - .26 .31 .37 - .25 

two .16 .33 .18 .13 
three .49 .34 .08 .42 
four .78 - .03 - .01 .88 
five - .41 .31 .08 - .37 

six .15 .10 .28 .15 

seven - - .94 .01 

respondents and issues. After listwise deletion of missing data, we are left with 
2006 cases. Table 2 also reports the sample correlation matrix of the candidate 
and voter variables. The method of factoring used is Rao's (1955) canonical 
method which is asymptotically equivalent to maximum likelihood factor 
analysis. 

The robustness of maximum likelihood factor analysis has been demonstrat- 
ed under a variety of conditions. Anderson (Sec. 14.3.3, 1984) shows that if 
the observed data are (multivariate) normally distributed, the maximum likeli- 
hood estimator yields a consistent estimator of the loading matrix whose large 
sample standard errors are proportional to N-1/2. Anderson and Amemiya 
(1988) extend this result to show that the asymptotic properties of maximum 
likelihood factor analysis are maintained when the normality assumption is 
violated, as long as the distributions of the factor vector and the error vector 
have finite second moments. 

The similarity between the two sets of loadings is striking. As predicted by 
the model, the candidate loadings exhibit nonsignificant differences in the two 
factor analyses. In our case, the proportionality constant for the standard 
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Table 4. Results of factor analysis of candidate variables and of voter plus candidate variables 
based on 1980 pre-election issue data factor analyzed one issue at a time 

Unrotated loadings Unrotated loadings 
from candidate from candidate and 
factor analysis voter factor analysis 

Variable Issue Factor 1 Factor 2 Factor 1 Factor 2 

Carter Defense .36 .66 .38 .65 
Reagan Defense .89 - .17 .89 - .21 
Anderson Defense .70 .19 .71 .17 
Kennedy Defense .43 .49 .45 .48 
Rep Party Defense .92 -.24 .90 -.26 
Dem Party Defense .39 .82 .41 .80 
Voter Defense - - .70 .14 
Carter Govt serv .43 .55 .45 .54 
Reagan Govt serv .89 - .17 .89 - .20 
Anderson Govt serv .64 .28 .64 .26 
Kennedy Govt serv .38 .63 .39 .61 
Rep Party Govt serv .91 -.17 .90 -.19 
Dem Party Govt serv .41 .67 .44 .66 
Voter Govt serv - - .63 .19 
Carter Inf/unemp .53 .49 .53 .48 
Reagan Inf/unemp .90 - .22 .90 - .24 
Anderson Inf/unemp .79 .20 .78 .19 
Kennedy Inf/unemp .48 .56 .48 .55 
Rep Party Inf/unemp .90 -.24 .90 -.24 
Dem Party Inf/unemp .50 .72 .51 .72 
Voter Inf/unemp - - .70 .05 
Carter Abortion .72 .22 .71 .24 
Reagan Abortion .70 - .50 .72 - .50 
Anderson Abortion .62 .25 .63 .27 
Kennedy Abortion .62 .20 .61 .22 
Rep Party Abortion .71 -.50 .72 -.47 
Dem Party Abortion .82 .40 .81 .41 
Voter Abortion - - .37 .07 
Carter Tax cut .54 .61 .54 .62 
Reagan Tax cut .88 -.25 .88 -.24 
Anderson Tax cut .57 .09 .57 .09 
Kennedy Tax cut .44 .35 .44 .36 
Rep Party Tax cut .87 -.28 .87 -.28 
Dem Party Tax cut .54 .67 .54 .66 
Voter Tax cut - - .50 .01 

Note: The variable-issue pair Carter-Defense specifies that cases consist of respondent perceptions 
of Carter's position on that issue. Other variable-issue pairs are defined similarly. There is one fac- 
tor analysis per variable set for a given issue, yielding five factor analyses for the candidate varia- 
bles and five factor analyses for the voter plus candidate variables. 
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errors is of the order of one. For the results of Table 2, N = 2006, so the large 
sample standard deviation is approximately .022. Inspection of Table 2 shows 
that the two sets of loadings differ by no more than .01. Since our data are 

quantized between 1 and 7, the Anderson and Amemiya large sample results 
apply. 

Also as predicted, the voter variable does not create an extra dimension in 
the factor solution. This point is established more precisely by comparing the 
two sets of eigenvalues of the two initial factor matrices. 

At this point, it is useful to demonstrate empirically that it is unexpected to 
find the estimated loadings of the candidate variables unchanged by the inclu- 
sion of an additional variable. To establish this point, we employed a partial 
resampling method, randomly permuting the rows and columns of the data 
matrix (1614 x 1 values at a time) on which the results of Table 2 are based. 
We then ran two factor analyses, one on the first six variables (columns) and 
one on all seven variables in this scrambled matrix. Table 3 reports the results. 
The loadings of the first six variables are significantly different in the two fac- 
tor analyses. 

To test the robustness of the results in Table 2, we ran separate factor ana- 
lyses on each of the five issues taken separately. The maximum number of cases 
is now reduced from 8070 to 1614. With listwise deletion of missing data, the 
sum of the cases across the five issues (N(Defense) = 526; N(Govt. Services) 
= 545; N(Infla./Unemp.) = 387; N(Abortion) = 306; N(Tax Cut) = 242) 
equals 2006. Table 4 reports the results of five factor analyses of (Ci, xi) and 
five factor analyses of Ci. 

Examining thirty pairwise comparisons of 1 x 2 candidate loading vectors, 
we conclude that the results in Table 2, based on averaging across issues and 
voters, are not due to chance variation. Adding a voter ideal point variable to 
the factorization has no significant effect on the loadings of the candidate 
variables. Furthermore, the voter variable does not add an extra factor to any 
of the solutions. 

Finally, Table 5 reports the predicted vs. the actual estimates of the specific 
variance of the voter ideal point variable for the five issue-at-a-time factor ana- 
lyses. As explained in the previous section, var(xi) - H HT = var(xi) - 
[cov2(xi, wil(xi)) + cov2(i, wi2(xi))] = var(xi) - [cov2(xi, vil) + cov2(xi, vi2)] 
is a theoretical predictor of the specific variance of xi, where vil and Vi2 are 
factor scores computed from a factor analysis of the candidate variables alone. 
As Table 5 shows, this theoretical predictor provides a close fit with the specific 
variance estimated from a factor analysis of the voter and candidate variables. 
These results provide further evidence of the empirical validity of our model 
of correlated voter-candidate issue data. 
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Table 5. Theoretical vs. actual estimates of specific variance of voter ideal point variable (as 
proportion of total variance) 

Issue Est specific variance Var (xi) - H HT 

Defense .50 .56 
Govt serv .57 .65 
Inf/unemp .51 .57 
Abortion .86 .88 
Tax cut .75 .79 

Note: The issue specifies that cases consist of individual perceptions of candidate and own position 
on the given issue. For example, Defense denotes a factor analysis of seven variables, six candidate 
variables and the variable "voter", where each variable consists of perceptions of where a candi- 
date or oneself stands on the issue of defense spending. H is estimated from factor scores that der- 
ive from an analysis of only the candidate variables. For a fuller explanation, see text. 

4. Conclusions 

We have found that the Enelow-Hinich spatial model is supported by an un- 
usual empirical test. Postulating that voter-candidate issue correlations are 
measured by the translation coefficients of a linear spatial model leads to a 
strong and unexpected empirical prediction; that the estimated candidate load- 
ings obtained from a factor analysis of the candidate variables are unchanged 
when a voter ideal point variable is added to the analysis. This result does not 
hold if the voter ideal points are correlated with the model errors or with any 
other systematic variation in the data not captured by the vik's in the model. 

Futhermore, the independence of the candidate loadings from voter policy 
preferences means that the estimated candidate map is not an artifact of voter 
preferences. This is a reassuring result, since it implies that the Enelow-Hinich 
conception of a stable set of candidate positions on an underlying set of dimen- 
sions is consistent with the issue data. 

Voters are frequently confused about a candidate's issue stands. This is not 
surprising since the average voter does not find it rational to spend scarce 
resources learning a great deal about the candidates competing for his vote. 
Given the disincentives to gather issue information about the candidates, we 
should not be surprised to find correlated voter-candidate issue data. What we 
have shown is that these correlations are completely consistent with a spatial 
model in which candidates have fixed, stable locations on a set of underlying 
predictive dimensions. 



169 

References 

Anderson, T.W. (1984). An introduction to multivariate statistical analysis. Second Edition. New 
York: Wiley. 

Anderson, T.W. and Amemiya, Y. (1988). The asymptotic normal distributions of estimators in 
factor analysis under general conditions. The Annals of Statistics 16(2): 759-771. 

Brody, R. and Page, B. (1972). Comment: The assessment of policy voting. American Political 
Science Review 66: 450-458. 

Downs, A. (1957). An economic theory of democracy. New York: Harper & Row. 
Enelow, J. (1986). Measuring the linkage between predictive dimensions and candidate issue posi- 

tions: An examination of group differences. Political Behavior 8(3): 245-261. 
Enelow, J. and Hinich, M. (1984). The spatial theory of voting: An introduction. New York: Cam- 

bridge University Press. 
Long, J.S. (1983). Confirmatoryfactor analysis. Sage University Paper series on Quantitative Ap- 

plications in the Social Sciences, series no. 07-033. Beverly Hills and London: Sage Publications. 
Morrison, D. (1976). Multivariate statistical methods. Second Edition. New York: McGraw-Hill. 
Page, B. and Brody, R. (1972). Policy voting and the electoral process: The Vietnam War issue, 

American Political Science Review 66: 389-400. 
Page, B. and Jones, C. (1979). Reciprocal effects of policy preferences, party loyalties and the 

vote. American Political Science Review 73: 1071-1089. 
Rao, C.R. (1955). Estimation and tests of significance in factor analysis. Psychometrika 20: 

93-111. 
Tukey, J. (1977). Exploratory data analysis. Reading MA: Addison-Wesley. 


	Article Contents
	p. [155]
	p. 156
	p. 157
	p. 158
	p. 159
	p. 160
	p. 161
	p. 162
	p. 163
	p. 164
	p. 165
	p. 166
	p. 167
	p. 168
	p. 169

	Issue Table of Contents
	Public Choice, Vol. 78, No. 2 (Feb., 1994), pp. 125-204
	Front Matter
	William H. Riker (1921-1993) [pp. iii-iv]
	Editor's Note: Peacock and Wiseman on the Growth of Public Expenditure [pp. 125-128]
	New Hampshire's Tax-Base Limits: An Example of the Leviathan Model [pp. 129-144]
	A Comparison of Incumbent Security in the House and Senate [pp. 145-154]
	A Test of the Predictive Dimensions Model in Spatial Voting Theory [pp. 155-169]
	Rent Seeking and Hidden In-Kind Resource Distortion: Some Empirical Evidence [pp. 171-185]
	More on Measuring Budget-Related Rent-Seeking: A Comment [pp. 187-191]
	Rent-Seeking: A Trivial or Serious Problem? A Reply [pp. 193-196]
	Book Reviews
	Review: untitled [pp. 197-199]
	Review: untitled [pp. 199-201]
	Review: untitled [pp. 202-204]

	Back Matter



