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Consider the problem of estimating the positions of a set of targets in a
multidimensional Euclidean space from distances reported by a number of observers
when the observers do not know their own positions in the space. Each observer
reports the distance from the observer to each target plus a random error.
This statistical problem is the basic model for the various forms of what is
called multidimensional unfolding in the psychometric literature. Multidimensional
unfolding methodology as developed in the field of cognitive psychology is basically
a statistical estimation problem where the data structure is a set of measures that
are monotonic functions of Euclidean distances between a number of observers and
targets in a multidimensional space. The new method presented in this article deals
with estimating the target locations and the observer positions when the observations
are functions of the squared distances between observers and targets observed with
an additive random error in a two-dimensional space. The method provides robust
estimates of the target locations in a multidimensional space for the parametric
structure of the data generating model presented in the article. The method also
yields estimates of the orientation of the coordinate system and the mean and
variances of the observer locations. The mean and the variances are not estimated by
standard unfolding methods which yield targets maps that are invariant to a rotation
of the coordinate system. The data is transformed so that the nonlinearity due to the
squared observer locations is removed. The sampling properties of the estimates are
derived from the asymptotic variances of the additive errors of a maximum likelihood
factor analysis of the sample covariance matrix of the transformed data augmented
with bootstrapping. The robustness of the new method is tested using artificial data.
The method is applied to a 2001 survey data set from Turkey to provide a real data
example.
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1. Introduction

Consider the problem of estimating the positions of a set of targets in a
multidimensional Euclidean space from distances reported by a number of observers
when the observers do not know their own positions in the space. Each observer
reports the distance from the observer to each target plus a random error.
This statistical problem is the basic model for the various forms of what is
called multidimensional unfolding in the psychometric literature. Multidimensional
unfolding methodologies are based on a geometric preference model that assumes
that an individual will choose the object in a multidimensional choice set that is
closest to that person’s ideal point in the space (Borg and Groenen, 1997, Ch. 14).
The unfolding methods require that different individuals similarly perceive the
objects in the choice set but they differ in their ideal points. Metric multidimensional
unfolding is a statistical estimation problem where the data structure is a set of
measures that are monotonic functions of Euclidean distances between a number of
observers located at positions xi and targets at locations �m. The first approach to
locating the targets and the observers when the reported distances are error free is
given by Schonemann (1970). A survey of the mathematics behind Schonemann’s
method is given by Sibson (1978).

Multidimensional unfolding is related to multidimensional scaling methods
but the scaling methods developed from the approach originated by Torgerson
(1952, 1958) is based on distances between the targets as reported by the observers
rather than the distances to the targets. Multidimensional scaling and unfolding has
been applied in marketing, anthropology, psychology, and sociology (Weller and
Romney, 1990), political science (Poole, 2000; Poole and Rosenthal, 1984, 1991,
1997), and in engineering signal processing (Cahoon and Hinich, 1976).

The critical issues of the sampling properties of parameter estimates for this
statistical problem have been obscured by the dominance of this literature by
the work of cognitive psychologists and psychophysicists. Even in the Borg and
Groenen (1997) book, which is in the Spring Series in Statistics, there is no reference
to “estimation” and “parameter” in their subject index. Borg and Groenen very
clearly state that the unfolding methodology was driven by the scientific imperatives
of cognitive psychology.

The new method presented in this article deals with estimating the target
locations and the observer positions from data that are functions of the squared
distances between observers and targets observed with an additive random error in a
two-dimensional space. The method builds on the work of Cahoon (1975), Cahoon
et al. (1978), and Hinich (1978). The original Cahoon–Hinich (C–H) method has
even been referenced in a study of strategic hospital planning by Drain and Godkin
(1996).

The orientation of the coordinate system for the target map is estimable in
contrast to the scaling and unfolding methods where the map is invariant to a
rotation of the coordinate system. The use of scaling and unfolding in psychological
applications do not use a utility based theory as does the author’s method.
The utility based choice theory is presented by Enelow and Hinich (1984).

The method presented in this article is a significant modification of the
C–H method that yields the most accurate estimates of the target locations in a
multidimensional space as well as sampling properties that could not be obtained
from the original C–H approach. The C–H method could only work for a one- or
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two-dimensional spatial model. The new method also yields more accurate estimates
of the mean and variance of the observer locations xi than the original method.

The statistical problem will be presented in terms of squared distances between
a set of observers and targets. The method can switch between a straight distance
model and squared distance model. For ease of exposition, consider the squared
distance model when the Euclidean space is two-dimensional. The method is easily
extended to Euclidean spaces whose dimension is larger than two but in applications
to determine the nature of political spaces a variety of methods show that the spaces
are almost always either one- or two-dimensional.

2. A Statistical Quadratic Distance Model

Suppose that there are N observers and M + 1 targets. Each observer at position
xi = �xi1� xi2�

′ on a two-dimensional surface reports the squared Euclidean distances
S��m� xi� to the targets m = 0� 1� � � � �M at locations �m = ��m1� �m2�

′. Each reported
distance has an additive stochastic error eim with mean �vm and variance �2

m.
Assume that the errors em are independently and identically distributed and that
they are independent of the observer positions xi.

The vm are assumed to be known but the scale parameter � has to be estimated.
Thus

S��m� xi� = ��m − xi�
′��m − xi�+ eim = �′

m�m − 2�′
mxi + x′

ixi + eim� (2.1)

Assuming that there are no missing distance reports, there are �M + 1�N
observations to estimate 2�M + 1+ N� observer and target positions. There are
enough observations and structure in the model to estimate all its parameters.

The ability to incorporate the bias terms �vm in the unfolding problem is a
unique feature of this method. This is important for mapping political spaces since
the voting choice is usually dependent on perceived candidate quality characteristics
as well as the distances of the candidates from a voter’s ideal point. In this case,
vm is the mth candidate’s quality score (the larger the better) and � is a negative
parameter. This flexibility to incorporate bias terms into the model may prove useful
in other social science applications as well as possible applications in astronomy.

The parameter estimates will be derived from the S��m� xi� using a procedure
that will be presented in the next section. The estimation method is different from
any of the unfolding methods discussed in Borg and Groenen (1997). Also the only
assumption about the distribution of the errors eim is that it has finite moments.

The C–H method reduces the dimensionality of the problem by separating the
estimation of the target positions from the estimation of the observer positions. The
quadratic terms x′

ixi are removed by subtracting the distances to one target, say
target m = 0, from the distances to the other targets and then computing the sample
M ×M covariance matrix of the differences D��m� xi� = S��m� xi�− S��0� xi�. The
target whose distances are subtracted from the others is called the reference target.
The importance of removing the quadratic terms will become clarified as the method
is presented.

Since the origin of the space is not identified from the distance data and thus is
arbitrary, the algebra is simplified by setting �0 = 0. Then

D��m� xi� = �′
m�m − 2�′

mxi + eim − ei0� (2.2)
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The positions of the targets and the other parameters of the model are estimated
from the sample covariance matrix of the M differences D��m� xi�’s.

Assume that xi1 and xi2 are uncorrelated random variables whose variances are
denoted �2

x1 and �2
x2. Then the M ×M covariance matrix of the D��m� xi�’s is

�D = 4��x�
′ +�+ �2

01 (2.3)

where �′ = ��1� � � � � �M� is a 2×M matrix of target positions, � is an M ×M
diagonal matrix whose diagonal elements are the variances �2

m = E�e2im� of the
errors, �2

0 is the variance of the error ei0, 1 is an M ×M matrix of ones, and �x =(
�2x1 0

0 �2x2

)
is the 2× 2 diagonal covariance matrix of the xi = �xi1� xi2�

′.

If the sample covariance matrix of the data was used to estimate the model
then there would be third- and fourth-order moments of the unknown xi in the
expected value of the covariances. The joint density of the xi’s is unknown and for
most applications the joint density will not be symmetric. Trying to estimate the
third and fourth moments of the observer locations is next to impossible whereas
the factorization of the sample covariance of the differences yields good results.

It is impossible to explain the method without reviewing the notation of
maximum likelihood factor analysis. A maximum likelihood factor analysis based
on Eq. (2.3) is presented in the next section.

3. Estimating the Target Locations

To illustrate how maximum likelihood factor analysis can be applied to (2.3),
assume for a while that �0 is known. Then �D − �2

01
′1 = 4��x�

′ +� is the M ×
M covariance matrix of the �′

m�m − 2�′
mxi + eim. This is a standard factor analysis

model where the factor loading matrix is the M × 2 matrix � = 2��1/2
x and � is the

M ×M diagonal matrix of additive error variances (Lawley and Maxwell, 1971).
The unbiased sample covariance matrix of the observation vectors Di =

�D��1� xi�� � � � � D��M� xi��
′ is

S = 1
N

N∑
i=1

�Di − �D��Di − �D�′ (3.1)

where �D = ��D��1�� � � � ��D��M��
′ and �D��k� = 1

N

∑N
i=1 D��k� xi� is the sample mean of

observations of the target k. Let 	̂��0� denote the maximum likelihood estimate
of � = 2��1/2

x . If the observations are bounded then the asymptotic results of
Anderson and Amemiya (1988) apply to the matrix S− �2

011
′ and thus

√
N
�̂��0�−

���0�� is asymptotically normal with mean zero as N → �. Since the orientation
of the two-dimensional coordinate system is not identified from the model, the
estimated M × 2 factor loading matrix obtained from a maximum likelihood factor
analysis of S− �2

011
′ is �̂��0� = 2��1/2

x R+ � where the matrix R = � cos � − sin �
sin � sin � � is a

� angle orthogonal rotation of the coordinate system and 
 is the error matrix of
the estimate.

Joreskog (1967) shows that maximizing the likelihood is equivalent to
minimizing the function f��� = ∑M

k=3��k − log �k − 1� where �1 > · · · > �M are the
ordered eigenvalues of the matrix A��� = �−1/2S�−1/2. This minimum is obtained
by finding the �kk that makes the M − 2 smallest eigenvalues �k as close as possible
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to one using the least squares metric. Cahoon (1975) programmed the maximum
likelihood algorithm of Clarke (1970) and the present author modified the algorithm
to obtain the maximum likelihood estimates �̂ of � = 2��1/2

x R, and the error
variances �2

0� �
2
1� � � � � �

2
M .

This extended maximum likelihood factor analysis in the new approach to
target estimation problem is implemented in a FORTRAN 95 program that we call
MAP. The complicated errors-in-variables least squares estimate of �2

0 based on a
three-dimensional rotation used in the C–H method is now eliminated. This reduces
some of the bias and variance in the parameter estimates.

The rotation angle �, the elements of the mean ideal point �x = E�xi�, and
the variances �2

x1
and �2

x2
are not identified from the structure in expression (2.3).

These parameters are not estimable using any method that is only a function of the
sample covariance. They are estimable using the vector of the sample means �D =
��D��1�� � � � ��D��M��

′, as is shown next. Once these parameters are estimated then the

estimate of the target location matrix is �̂ = 1
2 R̂

′	̂�̂
−1/2

x where �̂x =
(

�̂2x1 0

0 �̂2x2

)
is the

estimated covariance matrix and R̂ is the estimated rotation.

4. Estimating the Remaining Parameters

If the covariance matrix �x of the observer locations xi is diagonal with elements
�2
x1 �= �2

x2, then the north-south orientation of the axes is identified up to 180�

rotations since the covariance matrix �x is no longer diagonal if the axes are
rotated. To formalize this assertion note that from expression (2.2) it follows that
the expected value of each difference is E
D��m� xi�� = �′

m�m − 2�′
m�x + �vm where

�x = E�xi� and vm is the bias of the stochastic error.
Let um = �0� 0� � � � � 1� 0 · · · 0�′ where the one is at the mth position in the

M dimensional vector. Since � = 1
2�

−1/2
x R′ because R−1 = R′, then 4�′

m�m =
u′m�R

′�−1/2
x R	um. Thus

�′
m�m = 1

4

2∑
i=1

�−1
xi

( 2∑
k=1

�mkrik

)2

(4.1)

where �mk and rmk are the mkth elements of the matrices � and R. Similarly,

�′
m�x =

1
2

2∑
i=1

�−1
xi �xi

( 2∑
k=1

�mkrik

)2

(4.2)

and thus it follows that

E
D��m� xi�� = −�1�
2
m1 − �2�

2
m2 − �3�m1�m2 + �4�m1 + �5�m2 + �vm (4.3)

where

�1 =
cos2 �

�2
x1

+ sin2 �

�2
x2

�2 =
sin2 �

�2
x1

+ cos2 �

�2
x2

�3 =
(

1

�2
x2

− 1

�2
x1

)
sin�2��

(4.4)

�4 = 2
(
�x1 cos �

�x1

+ �x2 sin �
�x2

)
�5 = 2

(
−�x1 sin �

�x1

+ �x2 cos �
�x2

)
�
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The rotation angle �, the population mean ideal point �x, the variances �2
x1 and

�2
x2, and the bias scale parameter � are estimated from an errors-in-variables least

squares fit of the �D��m� to the estimates �̂mk of the M × 2 elements �mk of the matrix
� and the vm using the plug-in model

�D��m� xi� = −�1�̂
2
m1 − �2�̂

2
m2 − �3�̂m1�̂m2 + �4�̂m1 + �5�̂m2 + �vm� (4.5)

The parameter estimates are

�̂ = 1
2
tan−1

(
�̂3

�̂2 − �̂1

)
�̂2
x1 =

1
2

(
�̂1 + �̂2 −

�̂3

sin�2�̂�

)

�̂2
x2 =

1
2

(
�̂1 + �̂2 +

�̂3

sin�2�̂�

)
�̂x1 =

�̂1

2
��̂4 cos �̂− �̂5 sin �̂� (4.6)

�̂x2 =
�̂2

2
��̂4 sin �̂+ �̂5 cos �̂��

Note that that these estimates are nonlinear functions of the least squares
estimates ��̂1� �̂2� �̂3� �̂4� �̂5� obtained from the errors-in-variables regression (4.5).
These estimates are biased and the biases propagate through the nonlinear
transformations.

The �̂mk are maximum likelihood estimates of the �mk, but the estimates in
expression (4.5) are subtly biased for both finite N and asymptotically due to the
errors-in-variables. The errors go to zero as N goes to infinity but the covariance
matrix of the estimates is not diagonal and thus the errors on the right-hand side
of (4.4) propagate in a complicated manner to the ��̂1� �̂2� �̂3� �̂4� �̂5�, which then
propagate to the estimates of the remaining parameters.

The parameter estimates are bootstrapped by resampling the data with
replacement 100 times. The mean and standard error of each parameter estimate are
computed from the 100 resampled estimates.

The simulation results presented next show that there is a bias in the target map
even for large samples due to the errors-in-variables in the least square fit of (4.5).
This method takes as much advantage of the statistical squared distance model as
can be achieved without assuming a parametric probability model for the errors and
employing a high-dimensional maximum likelihood fit.

The means and the standard errors of this method will be demonstrated next
using simulations.

5. Sampling Statistics from Simulations

The present author wrote a FORTRAN 95 program to produce artificial data to
feed the MAP program that implements the estimates that were just described. The
results that are presented next are for a configuration of 25 targets are displayed in
Fig. 1. The additive errors are a set of scaled pseudorandom independent normal
variates and the observer positions are another set of pseudorandom independent
normal variates. The standard deviations of the observer positions are �x1 = 5 and
�x2 = 2. The error variances were set equal.

To keep the experiment manageable only two values of the sample size are used:
N = 200 and N = 200�000 and the errors standard deviations were set equal to each
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Figure 1. 25 test targets.

other. Two values of the error standard deviation � = �0 = · · · = �M were used:
� = 0�1 and � = 1� The measures of goodness of fit used in this simulation are the
root-mean square error (RMSE) and the maximum absolute error (MAE) of the
estimated target locations with respect to the true positions in Fig. 1. The best results
are obtained by using the target at the origin as the reference target.

Consider the case when the scale parameter � is zero. The results are presented
in Table 1 below when the reference target is at the origin.

Since the bootstrapped standard errors of the rotation are 1.68 and 1.23 for
� = 0�1 and � = 1, respectively, the differences between the RMSE values are not
statistically significant at the 5% level. The error in the rotation is about 4.1 for
both error variances and this error is the main source for the error in the estimation
of the target positions. The estimated configuration is very close to the true target
configuration.

The estimate of the mean observer position is the least robust of the errors-in-
variables fits. The bootstrapped means of �̂x1 and �̂x2 are very similar to the true
estimates. The bootstrapped standard errors are 0.07 for �̂x1 and 0.06 for �̂x2 for

Table 1
Reference target at the origin

N � RMSE MAE �̂x1 − �x1 �̂x2 − �x2 �̂x1 − �x1 �̂x2 − �x2

2.e2 0.1 2.85 14.27 −0.26 0.25 0.05 −0.15
2.e2 1.0 2.74 13.72 −0.25 0.24 0.05 −0.15
2.e5 0.1 2.70 13.48 −0.08 0.05 0.01 0.00
2.e5 1.0 2.70 13.48 −0.08 0.05 0.01 0.00
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both error variances. Thus, the errors of �̂x1 and �̂x2 are not statistically significant
for both error variances at the 0.1% level.

For N = 200�000 and both error variances the bootstrapped standard errors are
0.008 for �̂x1 and 0.003 for �̂x2. Thus the errors are statistically significant at the
0.1% level. The larger sample size improved the accuracy of the estimate of the mean
ideal point but the bias is more statistically significant using the bootstrap standard
errors.

For N = 200 the bootstrapped standard errors of the ideal point standard
deviations �̂x1 and �̂x2 are 0.27 and 0.09 for both error variances. Thus the errors
are not statistically significant at the 5% level and similarly for the N = 200�000
run. The bootstrapped standard errors are 0.008 and 0.003 for both error variances
for the larger sample size. Thus the biases in the standard deviation estimates are
insignificant for this simulation.

Now consider the results when � = 1 and the vm values of the errors have a
pseudorandom normal distribution with a zero mean and unit variance. For N =
200, the RMSE is 2.91 for � = 0�1 and 2.85 for � = 1. The maximum absolute
errors are 14.56 and 14.24, respectively. These results are statistically the same as
when � = 0. The same holds for the other parameter estimates for all the cases,
which is not surprising since the addition of one independent variable that is almost
uncorrelated with the other five variables will not significantly change the other five
estimates.

The error for the estimate of the scale parameter for N = 200 is �̂ − � = 0�18
for � = 0�1 and �̂ − � = 0�06 for � = 1. The bootstrapped standard errors are 0.01
and 0.12, respectively. The error in �̂ for � = 1 is not statistically significant at the
5% level but it is statistically significant at the 0.1% for � = 0�1.

The errors become much larger if the reference target is not near the origin.
To obtain good results the user has to know which target is closest to the origin or
the user has to try different references and determine which is best in terms of the
user’s prior beliefs about the target configuration. In the Turkish politics example
given in the final section we believed that the party ANAP was closest to the origin
since it was the pivot party in the ruling coalition for many years.

If the reference target is the point, Ta = �11�55�−4�01� in Fig. 1 and � = 0. Then
the RMSE is 34.8 for N = 200 and � = 0�1 rather than 2.85 for the origin reference
target. The maximum absolute error is 174.0. The errors of the estimates of the
coordinates of the mean observer positions are �̂x1 − �x1 = 4�5 and �̂x2 − �x2 = 5�72
for � = 0�1, which are more than ten times the errors when the origin is the reference
target. The reason for the larger differences between the true positions of the targets
and their estimates is the increased error in the least squares estimates of �4 and
�5. The estimates for the zero reference are �̂4 = 0�88 and �̂5 = 0�71, whereas the
estimates for the Ta reference are �̂4 = 4�57 and �̂5 = 5�65. The first three estimates
are the same for both reference targets.

When the reference target is Tb = �−0�19� 8�77�, the errors of the estimates of
the coordinates of the mean observer positions are �̂x1 − �x1 = 1�79 and �̂x2 − �x2 =
8�85 for � = 0�1. The RMSE is 27.77 and the maximum absolute error is 138.86. The
estimates for fourth and fifth least squares estimates are �̂4 = −0�33 and �̂5 = 11�2.
The fourth estimate has the wrong sign and the fifth is much larger than the estimate
when the origin is the reference. There is no way to eliminate the errors since these
parameters are identified using the equations in (4.5) and both the independent
and dependent variables have stochastic error components. Yet keep in mind that
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standard unfolding methods do not estimate the rotation of the configuration nor
the mean and standard deviations of the observer positions.

6. Estimating the Observer Locations

The ith observer location is estimated by a least squares fit of the linear system

�D��m� = �̂′
m�̂m − 2�̂′

mxi (6.1)

which is a sample version of expression (2.2). This fit is also an errors-in-variables
least squares and so the estimates are biased. To test the accuracy of the estimation,
the simulation program calculated the percent of the true observer locations xi that
are closest to the true position of target �m for each m. The percent of the estimated
observer locations x̂i, that are closest to each target is also computed. For N = 200
and � = 0�1, the 28% of the true xi’s were closer to the true location of target 22.
This was the largest percentage for the run. For the estimated configuration, 20%
of the estimated observer positions were closest to target 22 yielding an 8% error.
The second largest true percentage was 16.5% for target 21 and the percentage for
the estimates was 9% yielding a 7.5% error. The target at the origin, the reference
target, had a true percentage of 15% and so did the estimates. The errors for the
other percentages were smaller than 7.5%. The results for � = 1 were surprisingly
slightly better than for the smaller error variance.

The differences for N = 200�000 were smaller. For � = 1 the percentage for
the target with the largest true percentage was 22.5% yielding a 5.5% error. The
percentage for the reference target was 19.7% yielding an error of 4.2%. For � = 0�1
the maximum error was 3.5% and the rest were about 1%.

7. A Turkish Politics Example

The MAP method is used to estimate the positions of the respondents (observers)
and the candidates or parties (targets) in a latent political space depending on the
political system of a democracy using a set of survey questions.

The application of the method to the spatial theory of politics requires a set
of assumptions relating the data to a spatial model. First, the scores given to each
party is assumed to be a monotonically decreasing function of the Euclidian distance
between the position of the party in the space and the most preferred ideological
position of the respondent. This position is called the ideal point. The respondent is
not required to articulate that position but rather it is an unobserved position in the
latent space. Second, the constellation of the party positions in the latent space is
assumed to be the same across all respondents. Only the personal ideal points differ
across respondents. The method is then applied to these scores that we get from the
respondents.

The method was applied to a data set from a public opinion survey taken in
2001. For a complete description of the survey and the analysis see Çarkoǧlu and
Hinich (2003). The data comes from a nation-wide representative survey of urban
population conducted during the chaotic weeks of the second economic crisis of
February 2001. A total of 1201 face-to-face interviews were conducted in 12 of
the 81 provinces. The questionnaires were administered between February 20 and
March 16 2001 using a “random sampling” method with an objective to represent
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the nation-wide voting age urban population living within municipality borders, in
which the urban population figures of 1997 census data were taken as the basis.

Each respondent was asked to grade the seven major parties in terms of how
well that party would impact on the respondent’s family if the party were to
receive a majority of the seats in the parliament. These parties obtained 94.8%
of the urban vote in 1999 elections. However, as of February–March 2001 these
parties comprised only the preferences of 42.3% of this sample. Similar to opinion
poll results reported in the media, our findings also indicate that while 6% of the
respondents report that they will not cast their vote and about 5% were undecided
as to which party to vote for. More significantly, nearly 33% of the respondents
indicated that they will not cast their vote for any one of the existing parties. Given
the continual crisis atmosphere in the country, the erosion of electoral support
for the coalition partners this is not surprising. Among the opposition only the
left leaning CHP party and pro-Kurdish HADEP party maintained their urban
constituencies. The rest of the opposition parties had lost their supporters.

The results of a two-dimensional latent ideological spatial map of these parties
together with the estimated respondents’ ideal points are presented in the Fig. 2.
The horizontal axis appears to posit the pro-Islamist FP in one extreme as opposed
to the secularist left leaning CHP. The relative positions of the rest of the parties
fit our expectations about the religious cleavage in Turkish politics. The nationalist
MHP turns out to be the closest one to the position of the pro-Islamist FP on this
axis. Among the centrist parties DYP is slightly closer to the pro-Islamist end. DSP
and CHP are clustered together on the opposing end of this dimension placed to

Figure 2. Estimated ideal points and party positions, full sample.
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the left of ANAP’s centrist position. It is noticeable that HADEP’s position on this
dimension is closer in the perceptions of our respondents to the secularist left of
DSP and CHP.

The vertical axis has the Kurdish HADEP on one extreme and the nationalist
MHP and DSP on the other. While ANAP, CHP, and FP’s positions come close
to the center on this dimension, DYP is placed closer to the nationalist MHP and
DSP’s opposing end. It has been suggested that FP’s strong showing in the East
and Southeastern provinces where the bulk of Kurdish population lives is evidence
of FP’s appeal to the Kurdish electorate. Similarly, the religiously conservative
Kurdish constituency was seen by many Turkish politics scholars as a cause for
ideological closeness of HADEP and FP. The spatial map shows that in the
perceptions of the urban population, HADEP is nowhere close to the position of
FP on the two-dimensional political space estimated from the data using MAP.
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