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Abstract

Consider a simple change-point model with a binary regressor. We examine the consistency
of the change-point estimator when the regressor is subject to misclassification. It is found
that the time of change can always be identified. Further, special cases where the structural
parameters can also be identified are discussed. Simulation evidence is provided.
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1 Introduction
Measurement error is common in empirical data and can lead to serious es-
timation and inference problems. One of the earliest studies on this issue is
Madansky (1959), who considers the problem of fitting a straight line when
both variables are subject to errors. Levi (1973) shows that in a simple linear
regression model without an intercept, if the explanatory variable is subject to
errors, the regression estimates will be biased toward zero. Nelson (1995) ob-
tains a similar attenuation bias in the multiple regression model. Chong and
Lui (1998) show that the attenuation bias is nonlinear for fractionally integrated
models.
The past couple of decades have witnessed a considerable effort to correct

regression estimates for measurement error in the regressors. One of the com-
monly used methods to recover the true parameters is the instrumental-variable
technique (Mahajan, 2006; Stefanski and Buzas, 1995; Fuller, 1987). Carroll et
al. (2006) provide a comprehensive survey on the literature in nonlinear mea-
surement error models. A special case of measurement error is misclassification,
which occurs if the variable of interest is binary. Previous studies in misclassi-
fication include Küchenhoff et al. (2006) and Mahajan (2006), Dustmann and
van-Soest (2001) and Poterba and Summers (1995, 1986).
In this paper, a structural-change model with a binary regressor measured

with errors is examined. This model is different from conventional misclas-
sification models in that it combines the problem of structural change1 and
misclassification, whereas conventional misclassification models do not consider
changes in parameters. For example, an individual might develop an antibody at
some point in time which causes him stop responding to a medicine2. Suppose
for some reason that the respondent mis-report the information about treat-
ment, or if there exist some systematic errors, then some observations will be
contaminated. The point at issue is whether the time of shift in the response
function can still be consistently estimated3. It will be shown in this paper that
the change point can still be identified regardless of the existence of misclassi-
fication. Further, if the nature of the misclassification is known, then all the
parameters can be recovered.
The remainder of this paper is organized as follows: Section 2 presents the

model. Section 3 investigates the asymptotic properties of the least squares
estimators for the change point and the pre- and post-shift parameters. Five
special cases are discussed. Monte Carlo experiments are conducted in Section
4. Section 5 concludes the paper.

1There is a vast and growing literature on the structural-change models over the last decade.
Recent studies by the author include Chong (2003, 2001).

2 Similar examples include the development of the antibody of an insect to insecticide, or
the mutation of an virus at some point in time.

3A related studies in this problem is Chang and Huang (1997).
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2 The Model
Consider the model

yt = α1 (1− x∗t ) + γ1x
∗
t + ut for t ≤ k0,

yt = α2 (1− x∗t ) + γ2x
∗
t + ut for t > k0, (1)

t = 1, 2, ..., T.
x∗t is zero-one variable. For example, we let x

∗
t = 1 if the respondent has

taken the medicine at time t, and x∗t = 0 otherwise.
(α1, γ1) , (α2, γ2) are true structural parameters for 0 < t ≤ k0 and t > k0

respectively. In this paper, we exclude the case where α1 = α2 and γ1 = γ2.
Let k = [τT ], where [·] is the greatest integer function, and τ ∈ [0, 1].
Suppose the true value of x∗t is not perfectly measured and is approximated

by an error-ridden measure called xt. We define

p = Pr (xt = 0|x∗t = 1) , (2)

and

q = Pr (xt = 1|x∗t = 0) . (3)

The misclassification matrix (Küchenhoff et al, 2006) is therefore equal to

Π =

µ
1− q p
q 1− p

¶
. (4)

Assume that:

(A1) τ0 =
k0
T
∈ K ⊂ (0, 1) where K is compact.

(A2) ut ∼ i.i.d.
¡
0, σ2u

¢
, σ2u <∞.

(A3) x∗t ∼ i.i.d. which equals 1 with probability a and equals 0 with proba-
bility 1− a, where 0 ≤ a ≤ 1.
(A4) x∗t are independent of ut.

Assumption (A1) states that the true change point belongs to a compact set
in (0,1). This assumption is necessary because the least-squares estimators are
not defined at the boundary of time domain. Assumptions (A2)− (A4) describe
the nature of the regressor and disturbance terms.

3 Estimation

3.1 Asymptotic Behavior of the Estimators

Model (1) can be rewritten as
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yt = α1 + β1x
∗
t + ut for t ≤ k0,

yt = α2 + β2x
∗
t + ut for t > k0, (5)

where

β1 = γ1 − α1, (6)

and

β2 = γ2 − α2. (7)

Note that although the covariate is misclassified, the conditional meanE (yt|xt)
will still have a shift. As a result, we may still be able to estimate the true change
point.
For any given τ ∈ (0, 1), the pre-shift estimators are defined as

bβ1τ =
[τT ]P
t=1

(xt − x) yt

[τT ]P
t=1

(xt − x)xt

, (8)

bα1τ = 1

[τT ]

⎛⎝[τT ]X
t=1

yt − bβ1τ [τT ]X
t=1

xt

⎞⎠ , (9)

bγ1τ = bα1τ + bβ1τ , (10)

and the post-shift estimators are defined as

bβ2τ =
TP

t=[τT ]+1

(xt − x) yt

TP
t=[τT ]+1

(xt − x)xt

, (11)

bα2τ = 1

T − [τT ]

⎛⎝ TX
t=[τT ]+1

yt − bβ2τ TX
t=[τT ]+1

xt

⎞⎠ , (12)

bγ2τ = bα2τ + bβ2τ . (13)

We define the change-point estimator as

bτ = Argminτ∈KST (τ) , (14)

where
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ST (τ) =

[τT ]X
t=1

³
yt − bα1τ − bβ1τxt´2 + TX

t=[τT ]+1

³
yt − bα2τ − bβ2τxt´2 (15)

is the sum of squared residuals at τ .
The final pre- and post-shift estimators are evaluated at the change-point

estimate bτ .
From the Appendix,

1

T
ST (τ) converges uniformly to a non-stochastic func-

tion h (τ) such that supτ∈[0,1]

¯̄̄̄
1

T
ST (τ)− h (τ)

¯̄̄̄
= op (1), where for τ ≤ τ0,

h (τ) = h (τ0) +Θ (τ0 − τ)
1− τ0
1− τ

, (16)

and

h (τ0) = σ2u + a (1− a)
¡
τ0β

2
1 + (1− τ0)β

2
2

¢
×
Ã
1− a (1− a) (1− p− q)

2

(ap+ (1− a) (1− q)) (a (1− p) + (1− a) q)

!
, (17)

Θ = (α2 − α1 + a (β2 − β1))
2

+
(β2 − β1)

2
a2 (1− a)

2
(1− p− q)

2

(ap+ (1− q) (1− a)) (a (1− p) + q (1− a))
.

Note that h (τ0) ≥ σ2u. Thus, under fairly general conditions, the variance
of the regression error ut will be over-estimated.

The first and second derivatives of h (τ) are h0 (τ) = −Θ(1− τ0)
2

(1− τ)2
≤ 0 and

h00 (τ) = −2Θ(1− τ0)
2

(1− τ)3
≤ 0 respectively. Hence, for τ ≤ τ0, h (τ) is non-

increasing and concave. For τ > τ0, h (τ) = h (τ0) + Θ
(τ − τ0) τ0

τ
, h0 (τ) =

Θ
τ20
τ2
≥ 0 and h00 (τ) = −2Θτ

2
0

τ3
≤ 0. Thus, for τ > τ0, h (τ) is non-decreasing

and concave. To summarize, for all τ ∈ [0, 1], bα1τ , bα2τ , bγ1τ and bγ2τ are in-
consistent estimates for α1, α2, γ1 and γ2 respectively. However, since the

criterion function
1

T
ST (τ) converges uniformly to a piecewise concave function

h (τ) whose minimum takes place at the true change point, the change-point
estimator is consistent.

Theorem 1: Under assumptions (A1)− (A4), as T →∞, we have:
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bτ p→ τ0 (18)

and

bα1τ p→ α1 (1− λb) + γ1λb, (19)

bγ1τ p→ α1 (1− λc) + γ1λc, (20)

bα2τ p→ α2 (1− λb) + γ2λb, (21)

bγ2τ p→ α2 (1− λc) + γ2λc, (22)

where

λa =
a (1− a) (1− p− q)

(ap+ (1− a) (1− q)) (a (1− p) + (1− a) q)
, (23)

λb =
ap

ap+ (1− a) (1− q)
, (24)

λc = λa + λb =
a (1− p)

a (1− p) + (1− a) q
. (25)

Proof. See Appendix.

Note that λa can be negative, whereas λb and λc are between zero and one.
Theorem 1 states that the change point can be identified. However, the struc-
tural estimators converge to a convex combination of the regression coefficients.
In general, bα1τ and bα2τ will be consistent if λb = 0, while bγ1τ and bγ2τ will be
consistent if q = 0.
An inspection of Theorem 1 suggests that it is not possible to recover the

true pre- and post-shift parameters without additional information. In our
case, when λb and λc are known, the true pre- and post-shift parameters can be
identified. Note that if p, q and a are known, then

λcbα1τ − λbbγ1τ
λa

p→ α1, (26)

bγ1τ (1− λb)− bα1τ (1− λc)

λa

p→ γ1, (27)

λcbα2τ − λbbγ2τ
λa

p→ α2, (28)

bγ2τ (1− λb)− bα2τ (1− λc)

λa

p→ γ2. (29)

In the cases where λa = 0, i.e., a = 0, a = 1, or p + q = 1, the coefficients
cannot be recovered.
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3.2 Special Cases

3.2.1 Case 1: a = 0 or a = 1

If there is only one category, two categories will be observed due to misclassifica-
tion. The case where a = 0 is studied. When a = 0, we have λa = λb = λc = 0

and bα1τ p→ α1, bγ1τ p→ α1, bα2τ p→ α2, bγ2τ p→ α2.
The case where a = 1 has an opposite interpretation and is therefore skipped.

In general, estimators for both categories converge to the true parameters of
the existing category. The coefficients of the non-existing category cannot be
identified even if the values of p and q are known.

3.2.2 Case 2: p = 0 or q = 0

Consider the case where p = 0, which implies that λb = 0 and

λa = λc =
a

a+ (1− a) q
.

In this case, we have

bα1τ p→ α1,

bγ1τ p→ α1 (1− λc) + γ1λc,

bα2τ p→ α2,

bγ2τ p→ α2 (1− λc) + γ2λc.

Thus, the parameters for one category can be identified. The structural esti-
mators for another category converge to a convex combination of the regression
coefficients. Further, if the values of q and a are known, then all the parameters
can be identified. The case for q = 0 has an opposite interpretation and is
therefore skipped.

3.2.3 Case 3: p = 1 or q = 1

When p = 1, i.e., the values in one category are always wrongly measured, we
have λc = 0 and

λa = −
a

a+ (1− a) (1− q)
,

λb = −λa,

bα1τ p→ α1 (1− λb) + γ1λb,
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bγ1τ p→ α1,

bα2τ p→ α2 (1− λb) + γ2λb,

bγ2τ p→ α2.

Note that the pre-shift and post-shift structural estimators are inconsistent.
The estimators for the wrongly-measured category will converge to the true
coefficient of another category. The estimate of the other category will be a
convex combination of the true regression coefficients. If the information of p,
q and a are available, then all the parameters can be retrieved. The case for
q = 1 has an opposite interpretation and is therefore skipped.

3.2.4 Case 4: p = q = 1

When p = q = 1, the dichotomous covariate is always misclassified. In this
case, λa = −1, λb = 1, λc = 0 and bα1τ p→ γ1, bγ1τ p→ α1, bα2τ p→ γ2, bγ2τ p→ α2.
Thus, the estimator for one category will converge to the coefficient of another
category.

3.2.5 Case 5: p+ q = 1

When p = 1−q, the two different categories are misclassified in such a way that
the statistical properties of the two observed categories are identical. In this
case, we have λa = 0, λb = λc = a and

bα1τ p→ α1 (1− a) + γ1a,

bγ1τ p→ α1 (1− a) + γ1a,

bα2τ p→ α2 (1− a) + γ2a,

bγ2τ p→ α2 (1− a) + γ2a.

Thus, the two pre-shift estimators converge to the same point, and the two
post-shift estimators also converge to the same value. Thus, even if the coeffi-
cients of the two categories are different, this difference cannot be observed due
to the common statistical properties of the two observed categories. Further,
since λa = 0, the true parameters cannot be identified.
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4 Monte Carlo Experiments
This experiment verifies Theorem 1. Consider the model in Section 2:

yt = α1 (1− x∗t ) + γ1x
∗
t + ut (t = 1, 2, ..., k0) ,

yt = α2 (1− x∗t ) + γ2x
∗
t + ut (t = k0 + 1, k0 + 2, ..., T ) .

We perform the following experiment:
Let

T = 5000, k0 = 2500, τ0 =
k0
T
= .5.

ut ∼ Nid (0, 1) ,

x∗t ∼ i.i.d. Bernoulli((1, a), (0, 1− a)),

xt = x∗t + εt.

If x∗t = 1, then εt = −1 with probability p and εt = 0 with probability (1− p) ;

if x∗t = 0, then εt = 1 with probability q and εt = 0 with probability (1− q) .

x∗t and εt are independent of ut. λa, λb and λc are defined as in Theorem 1.

For each value of a, p and q, we perform a single replication. The probability
limits of the estimators are calculated under Theorem 1. The results of 20 cases
are reported in Table 1.

Case 1 is the case without misclassification. Case 2 to case 9 are general
cases. Case 10 to case 20 are special cases. Cases 10 and 11 correspond to
the first special case. Note that estimators for both categories converge to the
true parameters of the existing category. The coefficients of the non-existing
category cannot be identified. Cases 12 and 13 correspond to special case 2. In
case 12, when q = 0, γ1 and γ2 are identified. In case 13, when p = 0, α1 and
α2 are identified. Cases 14 and 15 correspond to special case 3. Note that the
pre-shift and post-shift structural estimators are inconsistent. The estimators
for the wrongly-measured category converge to the true coefficient of another
category. Case 6 is the fourth special case. The estimator for one category
converges to the coefficient of another category. Cases 17 to 20 correspond to
the last special case. The two pre-shift estimators converge to the same point,
and the two post-shift estimators also converge to the same value. Note that
the change point is consistently estimated in all cases. The simulated results in
Table 1 largely conform to our theory.
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Table 1: Performance of the estimators under various kinds of misclassifications

Case 1 2 3 4 5
(a,p,q) (.5,0,0) (.5,.3,.4) (.5,.4,.3) (.5,.2,.2) (.3,.2,.2)

(α1, α2, γ1, γ2) (2,−1, 7, 9) (2,−1, 7, 9) (2,−1, 7, 9) (10, 15, 10, 15) (10, 15, 10, 15)
λa 1 0.3030 0.3030 0.6 0.5348
λb 0 0.3333 0.3636 0.2 0.0968
λc 1 0.6363 0.6667 0.8 0.6316

plim bα1τ 2 3.6667 3.8090 10 10
plim bα2τ -1 2.3333 2.7796 15 15
plim bγ1τ 7 5.1818 5.3333 10 10
plim bγ2τ 9 5.3995 5.6667 15 15bα1τ 2.0588 3.7218 3.8182 9.9978 9.9590bα2τ -0.9690 2.1099 2.6364 15.01 15.00bγ1τ 6.9732 5.1542 5.3769 9.9945 10.02bγ2τ 8.9776 5.1455 5.7299 15.01 15.03bτ 0.5000 0.5060 0.5000 0.5000 0.5002

Case 6 7 8 9 10
(a,p,q) (.5,.7,.4) (.5,.6,.6) (.3,.2,.4) (.3,.4,.2) (0,.2,.2)

(α1, α2, γ1, γ2) (2,−1, 7, 9) (2,−1, 7, 9) (2,−1, 7, 9) (2,−1, 7, 9) (10, 15, 15, 23)
λa -0.1099 -0.2 0.3366 0.3860 0
λb 0.5385 0.6 0.125 0.1765 0
λc 0.4286 0.4 0.4615 0.5625 0

plim bα1τ 4.6923 5 2.625 2.8824 10
plim bα2τ 4.3846 5 0.25 0.7647 15
plim bγ1τ 4.1429 4 4.3077 4.8125 10
plim bγ2τ 3.2857 3 3.6154 4.625 15bα1τ 4.8293 4.8857 2.6294 2.8476 10.01bα2τ 4.5149 4.9573 0.2770 0.7003 14.96bγ1τ 4.0639 3.9620 4.4003 4.8606 10.04bγ2τ 3.0039 3.0244 3.6584 4.3695 14.99bτ 0.4998 0.4960 0.4970 0.5076 0.5000
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Table 1 cont.

Case 11 12 13 14 15
(a,p,q) (1,.2,.2) (.5,.3,0) (.5,0,.4) (.5,1,.3) (.5,.3,1)

(α1, α2, γ1, γ2) (10, 15, 15, 23) (2,−1, 7, 9) (2,−1, 7, 9) (10, 15, 15, 23) (5, 8, 15, 23)
λa 0 0.625 0.7143 -0.5882 -0.5882
λb 1 0.375 0 0.5882 1
λc 1 1 0.7143 0 0.4118

plim bα1τ 15 3.875 2 12.94 15
plim bα2τ 23 2.75 -1 19.76 23
plim bγ1τ 15 7 5.5714 10 12.06
plim bγ2τ 23 9 6.1429 15 18.29bα1τ 14.89 3.8664 2.0139 12.89 14.99bα2τ 22.96 2.7719 -1.0173 19.54 23.01bγ1τ 14.99 6.9242 5.5294 10.01 11.99bγ2τ 23.00 8.9698 6.0438 14.99 18.15bτ 0.5000 0.5000 0.5000 0.5002 0.5000

Case 16 17 18 19 20
(a,p,q) (.5,1,1) (.5,.6,.4) (.5,.6,.4) (.5,.5,.5) (.5,.3,.7)

(α1, α2, γ1, γ2) (2,−1, 7, 9) (10, 15, 15, 23) (2,−1, 7, 9) (2,−1, 7, 9) (2,−1, 7, 9)
λa -1 0 0 0 0
λb 1 0.5 0.5 0.5 0.5
λc 0 0.5 0.5 0.5 0.5

plim bα1τ 7 12.5 4.5 4.5 4.5
plim bα2τ 9 19 4 4 4
plim bγ1τ 2 12.5 4.5 4.5 4.5
plim bγ2τ -1 19 4 4 4bα1τ 6.993 12.47 4.4957 4.5847 4.3995bα2τ 9.019 19.04 3.9884 3.7918 3.5123bγ1τ 1.980 12.35 4.3579 4.5788 4.4196bγ2τ -0.99 19.30 3.7532 4.1638 4.0422bτ 0.5000 0.5000 0.5110 0.4960 0.5070
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5 Conclusion
In sum, this paper studies a structural-change model with the regressor being
a zero-one variable subject to misclassification. This kind of model is new, in
the sense that none of the previous studies in misclassification has considered
the structural-change problem. The interest of this paper lies primarily in the
unknown change point. Despite the fact that the data are contaminated, and the
existence of a non-zero correlation between the latent variable, x∗t and latent
random error εt, it is shown that the time of change can still be identified.
Further, it is also shown that the true structural parameters can be extracted
from the information of p, q and a. Special cases of our model, as well as Monte
Carlo evidence are provided to help illustrating the generic identifiability of the
change point in the presence of classification errors. Our results are in line
with Chong (2003), who has shown that the consistency of the change-point
estimator is preserved when the regression model is misspecified.

APPENDIX
Proof of Theorem 1:
Let

εt = xt − x∗t .

Note that

E(x∗2t ) = E(x∗t ) = 1× Pr (x∗t = 1) + 0× Pr (x∗t = 0) = a.

V ar (x∗t ) = a (1− a) .

E(εt) = E (εt|x∗t = 1)Pr (x∗t = 1) +E (εt|x∗t = 0)Pr (x∗t = 0)
= [p× (−1) + (1− p)× 0] a+ [q × (1) + (1− q)× 0] (1− a)

= −ap+ (1− a)q.

E(ε2t ) = E
¡
ε2t |x∗t = 1

¢
Pr (x∗t = 1) +E

¡
ε2t |x∗t = 0

¢
Pr (x∗t = 0)

=
h
p× (−1)2 + (1− p)× 02

i
a+

h
q × (1)2 + (1− q)× 02

i
(1− a)

= ap+ (1− a)q.

V ar (εt) = E(ε2t )−E2(εt) = ap+ (1− a)q − (−ap+ (1− a)q)
2

= 2ap− (ap− q (1− a)) (a (p+ q) + 1− q) .
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E(x∗t εt) = E (x∗t εt|x∗t = 1)Pr (x∗t = 1) +E (x∗t εt|x∗t = 0)Pr (x∗t = 0)
= E (εt|x∗t = 1)Pr (x∗t = 1)
= [p× (−1) + (1− p)× 0] a
= −ap.

Cov (x∗t , εt) = E(x∗t εt)−E(x∗t )E(εt) = −ap−a (−ap+ (1− a)q) = −a (p+ q) (1− a) .

E(xt) = E(x∗t ) +E(εt) = a (1− p) + (1− a)q.

E(x2t ) = E(x∗2t )+E(ε
2
t )+2E(x

∗
t εt) = a+ap+(1−a)q−2ap = a (1− p)+(1− a) q.

E (xtεt) = E(x∗t εt) +E(ε2t ) = −ap+ ap+ (1− a)q = (1− a)q.

V ar (xt) = a (1− a) + 2ap− (ap− q + qa) (ap+ 1− q + qa)− 2a (p+ q) (1− a)

= (ap+ (1− a) (1− q)) (a (1− p) + (1− a) q) .

For τ ∈ [0, 1] ,

S∗∗ (τ)
def
=

1

T

[τT ]X
t=1

¡
x∗t − x∗

¢2 p→ τV ar(x∗t ),

Sεε (τ)
def
=

1

T

[τT ]X
t=1

(εt − ε)2
p→ τV ar(εt)

uniformly.

These results bound the variation of the stochastic insignificant terms and
will be utilized in the proof of the uniform convergence result below.

Let

λa =
a (1− a) (1− p− q)

(ap+ (1− a) (1− q)) (a (1− p) + (1− a) q)
,

λb =
ap

ap+ (1− a) (1− q)
,

λc = λa + λb =
a (1− p)

a (1− p) + (1− a) q
,
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Γ1 (τ) = β1
τ0 − τ

1− τ
+ β2

1− τ0
1− τ

,

Ψ1 (τ) = α1
τ0 − τ

1− τ
+ α2

1− τ0
1− τ

,

Λ1 (τ) = γ1
τ0 − τ

1− τ
+ γ2

1− τ0
1− τ

,

Γ2 (τ) = β1
τ0
τ
+ β2

τ − τ0
τ

,

Ψ2 (τ) = α1
τ0
τ
+ α2

τ − τ0
τ

,

Λ2 (τ) = γ1
τ0
τ
+ γ2

τ − τ0
τ

.

For τ ≤ τ0,

bβ1τ =
[τT ]P
t=1

(xt − x) (α1 + β1x
∗
t + ut)

[τT ]P
t=1

(xt − x)xt

p→ β1λa.

bα1τ =
1

[τT ]

⎛⎝[τT ]X
t=1

(α1 + β1x
∗
t + ut)− bβ1τ [τT ]X

t=1

(x∗t + εt)

⎞⎠
p→ α1 + β1 [a (1− λa) + (ap− (1− a)q)λa]

= α1 (1− λb) + γ1λb.

bβ2τ p→
µ
β1

τ0 − τ

1− τ
+ β2

1− τ0
1− τ

¶
λa = Γ1 (τ)λa.

bα2τ =
1

T − [τT ]

⎛⎝ [τ0T ]X
t=[τT ]+1

(α1 + β1x
∗
t + ut) +

TX
t=[τ0T ]+1

(α2 + β2x
∗
t + ut)− bβ2τ TX

t=[τT ]+1

(x∗t + εt)

⎞⎠
p→ Ψ1 (τ) + Γ1 (τ) [(1− λa)E (x

∗
t )− λaE (εt)]

= Ψ1 (τ) + Γ1 (τ)λb

= Ψ1 (τ) (1− λb) + Λ1 (τ)λb.

1
T ST (τ) =

1
T

[τT ]P
t=1

³
yt − bα1τ − bβ1τxt´2+ 1

T

k0P
t=[τT ]+1

³
yt − bα2τ − bβ2τxt´2+ 1

T

TP
t=k0+1

³
yt − bα2τ − bβ2τxt´2
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= 1
T

[τT ]P
t=1

³
(α1 − bα1τ ) + β1x

∗
t + ut − bβ1τxt´2+ 1

T

k0P
t=[τT ]+1

³
(α1 − bα2τ ) + β1x

∗
t + ut − bβ2τxt´2

+ 1
T

TP
t=k0+1

³
(α2 − bα2τ ) + β2x

∗
t + ut − bβ2τxt´2

= 1
T

TP
t=1

u2t +
1
T

[τT ]P
t=1

(β1x
∗
t − β1 (λb + λaxt))

2

+ 1
T

k0P
t=[τT ]+1

µ
(α1 − α2)

1− τ0
1− τ

+ β1x
∗
t − Γ1 (τ) (λb + λaxt)

¶2
+ 1

T

TP
t=k0+1

µ
(α2 − α1)

τ0 − τ

1− τ
+ β2x

∗
t − Γ1 (τ) (λb + λaxt)

¶2
+ op (1)

p→ σ2u+τβ
2
1E (x

∗
t − (λb + λaxt))

2+(τ0 − τ)E

µ
(α1 − α2)

1− τ0
1− τ

+ β1x
∗
t − Γ1 (τ) (λb + λaxt)

¶2
+(1− τ0)E

µ
(α2 − α1)

τ0 − τ

1− τ
+ β2x

∗
t − Γ1 (τ) (λb + λaxt)

¶2

= σ2u+
¡
τ0β

2
1 + (1− τ0)β

2
2

¢
E
¡
x∗2t
¢
+(τ0 − τ)

1− τ0
1− τ

((α2 − α1) + (β2 − β1)E (x
∗
t ))

2

+
¡
τβ21 + (1− τ)Γ21 (τ)

¢
E (λb + λaxt)

2 − (τ0 − τ)
1− τ0
1− τ

(β2 − β1)
2E2 (x∗t )

−2
£
τβ21 + (1− τ)Γ21 (τ)

¤
E (x∗t (λb + λaxt))

= σ2u + (τ0 − τ)
1− τ0
1− τ

((α2 − α1) + (β2 − β1) a)
2

+
¡
τ0β

2
1 + (1− τ0)β

2
2

¢
a−(τ0 − τ)

1− τ0
1− τ

(β2 − β1)
2 a2−

¡
τβ21 + (1− τ)Γ21 (τ)

¢
a2

+
¡
τβ21 + (1− τ)Γ21 (τ)

¢ h
E (λb + λaxt)

2 − 2E (x∗t (λb + λaxt)) + a2
i

= σ2u+(τ0 − τ)
1− τ0
1− τ

((α2 − α1) + (β2 − β1) a)
2+
¡
τ0β

2
1 + (1− τ0)β

2
2

¢
(1− a) a

− a2 (1− a)2 (1− p− q)2

(ap+ (1− a) (1− q)) (a (1− p) + (1− a) q)

¡
τβ21 + (1− τ)Γ21 (τ)

¢
def
= h (τ) .
Note that

h0 (τ) = −Θ(1− τ0)
2

(1− τ)2
≤ 0,

h00 (τ) = −2Θ(1− τ0)
2

(1− τ)
3 ≤ 0,
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where

Θ = (α2 − α1 + a (β2 − β1))
2
+

(β2 − β1)
2 a2 (1− a)2 (1− p− q)2

(ap+ (1− q) (1− a)) (a (1− p) + q (1− a))
.

For τ > τ0,

bβ1τ p→ Γ2 (τ)λa.

bα1τ =
1

[τT ]

⎛⎝[τ0T ]X
t=1

yt − bβ1τ [τ0T ]X
t=1

xt

⎞⎠+ 1

[τT ]

⎛⎝ [τT ]X
t=[τ0T ]+1

yt − bβ1τ [τT ]X
t=[τ0T ]+1

xt

⎞⎠
p→ τ0

τ
(α1 + β1E (x

∗
t ) +E (ut)− Γ2 (τ)λa (E (x∗t ) +E (εt)))

+
τ − τ0

τ
(α2 + β2E (x

∗
t ) +E (ut)− Γ2 (τ)λa (E (x∗t ) +E (εt)))

= Ψ2 (τ) + [Γ2 (τ)− Γ2 (τ)λa] a− (−ap+ (1− a)q)Γ2 (τ)λa

= Ψ2 (τ) (1− λb) + Λ2 (τ)λb.

bγ1τ = bα1τ + bβ1τ p→ Ψ2 (τ) (1− λc) + Λ2 (τ)λc.

bβ2τ p→ β2λa.

bα2τ =
1

T − [τT ]

⎛⎝ TX
t=[τT ]+1

(α2 + β2x
∗
t + ut)− bβ2τ TX

t=[τT ]+1

(x∗t + εt)

⎞⎠
= α2 +

1

T − [τT ]

⎛⎝β2

TX
t=[τT ]+1

x∗t +
TX

t=[τT ]+1

ut − bβ2τ TX
t=[τT ]+1

(x∗t + εt)

⎞⎠
p→ α2 + β2

µ
a− a (1− a) (1− p− q)

(ap+ (1− a) (1− q)) (a (1− p) + (1− a) q)
(a (1− p) + (1− a)q)

¶
= α2 (1− λb) + γ2λb.

bγ2τ = bα2τ + bβ2τ p→ α2 (1− λc) + γ2λc.

1
T ST (τ)

= 1
T

[τ0T ]P
t=1

³
(α1 − bα1τ ) + β1x

∗
t + ut − bβ1τxt´2+ 1

T

[τT ]P
t=k0+1

³
(α2 − bα1τ ) + β2x

∗
t + ut − bβ1τxt´2
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+ 1
T

TP
t=[τT ]+1

³
(α2 − bα2τ ) + β2x

∗
t + ut − bβ2τxt´2

p→ σ2u+(1− τ)β22E (x
∗
t − (λb + λaxt))

2+(τ − τ0)E
³
(α2 − α1)

τ0
τ
+ β2x

∗
t − Γ2 (τ) (λb + λaxt)

´2
+τ0E

µ
(α1 − α2)

τ − τ0
τ

+ β1x
∗
t − Γ2 (τ) (λb + λaxt)

¶2

= σ2u +
(τ − τ0) τ0

τ
(α2 − α1 + a (β2 − β1))

2

+
¡
(1− τ0)β

2
2 + τ0β

2
1

¢
a−(τ − τ0) τ0

τ
(β2 − β1)

2
(E (x∗t ))

2−
¡
(1− τ)β22 + τΓ22 (τ)

¢
a2¡

(1− τ)β22 + τΓ22 (τ)
¢ h

E (λb + λaxt)
2 − 2E (x∗t (λb + λaxt)) + a2

i
= σ2u+

(τ − τ0) τ0
τ

(α2 − α1 + a (β2 − β1))
2+

¡
τ0β

2
1 + (1− τ0)β

2
2

¢
(1− a) a

− a2 (1− a)2 (1− p− q)2

(ap+ (1− a) (1− q)) (a (1− p) + (1− a) q)

¡
(1− τ)β22 + τΓ22 (τ)

¢
def
= h (τ) .

h0 (τ) = Θ
τ20
τ2
≥ 0.

h00 (τ) = −2Θτ
2
0

τ3
≤ 0.

Thus,
1

T
ST (τ) converges pointwise to a piecewise concave function h (τ),

with the unique minimum at the true change point. Under assumptions (A1)
to (A4), the uniform convergence result follows, i.e.,

sup
τ∈[0,1]

¯̄̄̄
1

T
ST (τ)− h (τ)

¯̄̄̄
= op (1) .

The consistency results of Chong (2001) applies. The change-point estima-
tor is T -consistent, and the pre- and post-shift estimators are

√
T -consistent.

Q.E.D.
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