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1 Introduction

For many centuries, national economies have been linked to one another �nancially primarily
because of trade. The importing nation received goods and paid in some pre-agreed currency.
Currency trading predates both bond and stock trading as a �nancial innovation. However,
there is very little doubt that during the past 50 years globalization grew at a remarkable pace
and with it, currency trading. Today, the daily volume of currency transactions in currency
futures, forwards, swaps and options dominates all other types of trading volumes. This
volume is driven by globalization that includes both trade and foreign direct investments,
by portfolio diversi�cation and by hedging and speculation, among other factors.
After a rapid bibliographical review of the importance of global currencies in the next 3

sections we use daily data to perform state-of-the-art statistical tests to identify economic
and statistical characteristics of several key currencies.
The paper is organized as follows. In Section 2 we o¤er a rapid historical development of

the energy industry to illustrate its economic dynamics. This is followed by an assessment of
the impact of the energy sector on the U.S. economy to simply reemphasize the often-cited
fact of the currently diminished role of energy in contrast to its elevated signi�cance three
decades ago. In Section 6 we present the data and investigate the univariate time series
properties of the crude oil, gasoline, heating oil, propane, and natural gas time series. In
section 7 we discuss a number of tests for nonlinear structure, apply each of these tests to
each of the �ve energy price series, and present and discuss the empirical results. The �nal
section provides a brief summary and conclusion.

2 Globalization

Globalization is an extension of labor specialization beyond national borders and it is impor-
tant to understand the international economic developments of the last �fty years. With a
deepening of specialization, a growing population and improved attitudes toward taking risks
over a widening area, production has become increasingly international. The technological
advances of recent decades have increased the e¤ects of globalization on economic growth
and during the last decades policymakers have been trying to better understand global and
technological changes that seemed to have changed world economic development.
Changes in information and communication technologies, for example, have accelerated

the processing and transmission of data and ideas to a level far beyond our capabilities of
a decade or two ago. Real-time information, by eliminating much human intervention, has
signi�cantly reduced errors in all forms of recordkeeping and lead times on purchases. These
changes have had positive e¤ects on the economic well-being for most of the economic partic-
ipants but if globalization is to sustain the necessary public support we need also to consider
an equitable distribution of global bene�ts among participating nations. Fortunately, global
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trade has long been viewed ans a positive sum game that bene�ts all participants. Although
such bene�ts are clearly positive they need not be equal.
The dynamics of globalization include the lowering of tari¤s and various trade barriers,

deregulation, increased innovation and competition, the emergence of multinational �rms,
increased global trade and direct foreign investments and a faster pace in global GDP than
in earlier decades. As a result, domestic economies are increasingly exposed to international
competition.
Production of traded goods has increased in economies with large, low-wage labor forces

and as a consequence, signi�cant additions to world production and trade have put downward
pressure on domestic and global prices. This trend of declining prices all over the world has
been an important factor in the decrease of world economic volatility. To many people,
the combination of increasing globalization and monetary policy has become increasingly
e¤ective in achieving the goal of price stability.
This view called the Great Moderation dominated economic thinking during 1990-2006

but the global �nancial crisis of 2007-2009 has challenged this paradigm. The current think-
ing suggests that globalization contributed to stable and low prices that encouraged various
central banks to maintain low interest rates since there were no obvious risks of in�ation
and such an easy monetary policy on a global scale contributed to the emergence of �nancial
bubbles both in global stock markets and housing prices.
Considering that so much of our recent experience with globalization has little precedent,

we cannot fully determine how long the current globalization dynamic will last. We have little
evidence that economic forces that are fostering international specialization, and hence cross-
border trade and increasing dispersion of current account balances, are as yet diminishing.
The increasing globalization of the post-war world was supported at its beginnings by

the judgment that burgeoning prewar protectionism was among the primary causes of the
depth of the Great Depression of the 1930s. As a consequence, trade barriers began to fall
after the war. Globalization was enhanced further when the in�ation-ridden 1970s provoked
rethinking of the philosophy of economic policy, the roots of which were still planted in the
Depression era.
Globalization has expanded markedly in recent decades. Not only has the ratio of interna-

tional trade in goods and services to world GDP risen inexorably over the past half-century,
but a related measure, the extend to which savers reach beyond their national borders to
invest in foreign assets, has also risen.
During some time after the World War II, countries were used to invest most of their

domestic savings in domestic capital assets without considering the potential for superior
risk-adjusted returns if they were to invest abroad. In the beginning of the 1990s, this bias
to invest in its domestic capital assets started do decrease and countries started to invest
their current account balances in di¤erent places. Thus, this expanding globalization enabled
the USA to �nance and, hence, incur so a large current account de�cit. As a result of these
capital �ows, the ratio of foreign net claims against U.S residents to our annual GDP has risen
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to approximately one-fourth. While some other countries are far more in debt to foreigners,
at least relative to their GDPs, they do not face the scale of international �nancing that we
require.
We may not be able to usefully determine at what point foreign accumulation of net

claims on the US will slow or even reverse, but up until recently it postulated that the
greater the degree of international �exibility, the less the risk of a crisis. Obviously we now
know that globalization during the last three years has caused serious �nancial imbalances,
in particular in terms of emerging nations such as China �nancing along with advanced
economies such as the EU, Japan and England the US twin de�cits of the federal budget
and the balance of payments.
In a world economy that is �exible, as debt projections rise, product and equity prices,

interest rates, and exchange rates presumably would change to reestablish global balance.
However, the penchant of humans for quirky, often irrational, behaviors gets in the way of this
conclusion as recent history has demonstrated. A discontinuity in valuation judgments, often
the cause building a bubble may quickly reverse and contribute to bursting such bubbles.
Such developments can occasionally destabilize even the most liquid and �exible of markets
as was witnessed during the current global �nancial crisis, in particular during the month of
September 2008.

3 Portfolio Diversi�cation

Increased �nancial globalization has o¤ered important opportunities for portfolio diversi�-
cation. There is a wide spectrum of �nancial risks that include �rm speci�c risks, industry
wide risks and country risks. Several macroeconomic policies such as monetary policy, �scal
policy and level of regulation are included in country risks, among several other factors. The
growth in the size and complexity of international �nancial markets has been one of the most
striking aspects of the world economy over the last decade. Lane and Milesi-Ferretti (2001,
2006) document the increase in gross holdings of cross-country bond and equities for a large
group of countries. They describe this as a process of �nancial globalization. Economists and
policy makers have speculated on the implications of �nancial globalization for the design
of monetary policy. Most central banks now either explicitly or implicitly follow a policy of
in�ation targeting. Under this policy, price stability, appropriately de�ned, is the principal
goal of monetary policy.
Devereux and Sutherland (2007) results�imply that �nancial globalization does not a¤ect

the fundamental aims of monetary policy. Although their model produces an international
�nancial structure where countries are holding large o¤setting gross nominal asset positions,
so that exchange rate movements can generate substantial �valuation e¤ects�, the presence
of these e¤ects does not directly change the optimal monetary rule. Because portfolios
are chosen optimally, the wealth redistribution arising from exchange-rate-induced valuation
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e¤ects represent the workings of an e¢ cient international �nancial structure.
However, Devereux and Sutherland (2007) argue that the e¤ects of monetary policy on

other variables may be very di¤erent in a model with endogenous portfolio choice than in
the standard analysis. Because the monetary rule leads to changes in the structure of inter-
national portfolios, the e¤ects of monetary policy may be the opposite of what traditional
reasoning would imply. For instance, a policy putting more weight on price stability may
increase rather than reduce exchange rate volatility and the volatility of international capital
�ows. Because the exchange rate represents the excess return on nominal bonds, this means
that an optimal monetary policy may increase rather than reduce asset price volatility.
Over the period 1975 to 2005, the US dollar and the euro and Swiss franc have moved

against world equity markets. Thus, these currencies should be attractive to risk-minimizing
global equity investors despite their low average returns. The risk-minimizing currency
strategy for a global bond investor is close to a full currency hedge, with a modest long
position in the US dollar.
Many investors hold indirect positions in foreign currency when they buy foreign equities

or bonds without hedging the currency exposure implied by the foreign asset holding. Such
investors receive the foreign-currency excess return on their foreign assets, plus the return
on foreign currency.
Following Glen and Jorion, Campbell et al. (2009) considered an equity investor who

chooses �xed currency weights to minimize the unconditional variance of her portfolio. Such
an investor wishes to hold currencies that are negatively correlated with equities. Their
�rst novel result is that at one extreme, the Australian dollar and the Canadian dollar
are positively correlated with local-currency returns on equity markets around the world,
including their own domestic markets. At the other extreme, the euro and the Swiss franc
are negatively correlated with world stock returns and their own domestic stock returns.
The Japanese yen, the British pound, and the US dollar fall in the middle,
with the yen and the pound more similar to the Australian and Canadian dollars, and

the US dollar more similar to the euro and the Swiss franc.

4 Hedging and Speculation

When considering currencies in pairs, Campbell et al. found that risk-minimizing equity
investors should short those currencies that are more positively correlated with equity returns
and should hold long positions in those currencies that are more negatively correlated with
returns. When considering all seven currencies as a group, they found that optimal currency
positions tend to be long the US dollar, the Swiss franc, and the euro, and short the other
currencies. A long position in the US-Canadian exchange rate is a particularly e¤ective
hedge against equity risk.
Campbell et al. achieved the second novel result when they considered the risk-minimization

5



problem of global bond investors rather than global equity investors. They found that most
currency returns are almost uncorrelated with bond returns and thus risk-minimizing bond
investors should fully currency-hedge their international bond positions. The US dollar is an
exception to the general pattern in that it tends to appreciate when bond prices fall, that is
when interest rates rise, around the world. This generates a modest demand for US dollars
by risk-minimizing bond investors.
The third novel result was obtained after Campbell et al. analyzed the historical average

returns on currency pairs. They found that high-beta pairs have delivered higher average
returns. However the historical reward for taking equity beta risk in currencies
has been quite modest, and much smaller than the historical average excess return
on a global stock index.
The fourth novel result is that increases in interest rates have only modest e¤ects on

currency-equity covariances. Over the full sample period, and particularly the �rst half of the
sample, increases in interest di¤erentials are, if anything, associated with decreases in these
covariances. This implies that risk-minimizing equity investors should tilt their portfolios
towards currencies that have temporarily high interest rates, amplifying the speculative
�carry trade�demands for such currencies rather than o¤setting them.

5 Hypotheses

The above rapid discussion leads us to the conclusion that certain global currencies have
received great signi�cance the past few decades. When we also consider the creation of the
euro this signi�cance becomes even greater since several important national currencies such
as the German marc, the French franc, the Italian lira and several others were replaced by
the euro. This global signi�cance translates into a search for the pricing of these currencies.
The challenge becomes even greater since currencies are priced one in terms of another.
One may view the issue of pricing currencies as a comparison of all economic and �nancial
fundamentals between two nations.
When pricing equities, economists have observed that returns have exhibited strong,

short, and medium term serial correlation. The phenomenon of persistent performance over
time has challenged the traditional random walk assumption for stock returns. The basic
idea is that a single normal distribution is insu¢ cient to describe the observed stock returns,
evidenced by fat tails, skewness and excess kurtosis.
The classical intertemporal CAPM model of Merton (1980) indicates that risk premiums

are positively related to market volatility. However, other researches have found di¤erent
results. A large stock price drop is usually associated with a concurrent increase in volatility,
which makes equity returns and volatility negatively correlated. This market phenomenon
has led to two academics explanations. One is the leverage e¤ect and the other one is the
volatility feedback e¤ect.
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The leverage e¤ect argues that a stock price drop increases the debt to equity ratio,
which makes the stock riskier and raises the equity risk premium, that is, the leverage e¤ects
relates how realized stock returns are to future returns volatility.
The volatility feedback e¤ect, which reverses the direction of causality, assumes that

volatility is incorporated in stock prices and carried over to future returns, a positive volatility
shock increases the future required return on equity and, therefore, stock prices are expected
to fall simultaneously. Conclusions drawn from both of these academic thoughts are not
satisfactory due to insigni�cant relations implied in their empirical work and researches
using the same model were able to �nd competing results.
Instead of pricing currencies in this paper we study the time series behavior of leading

currency relative prices. Our main hypothesis is that perfect randomness in price changes for
all currencies does not hold. If price changes are not random but follow nonlinear determin-
istic patterns such information may allow economists to better evaluate the overall impact
of leading currencies in the global economy. This paper performs state-of-the-art univariate
tests to uncover the structure of currency prices for several leading currencies.
Mandelbrot and Hudson (2004) give a detailed description and of the presence of non-

linear determinism in �nancial markets. Empirical evidence of chaotic dynamics in �nancial
data such as stock market indexes, foreign currencies, macroeconomic time series and several
others have been performed by various researchers Kyrtsou and Vorlow (2007) recently and
in much more detail earlier by Brock, Scheinkman and LeBaron, (1989) and Brock and
Malliaris (1989). However, there is very little empirical work done to study nonlinear chaotic
determinism in currency markets.
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6 The Data

We use daily exchange rates (per United States dollar), provided by www.barchart.com, on
the Australian dollar, British pound, Brazilian real, Canadian dollar, euro, Japanese yen,
Mexican peso, and the Swiss franc. The sample period is from January 3, 2000 to June 2,
2009 (a total of 2,492 observations). Figure 1 plots U.S. dollar prices of each of the eight
currencies. A rise in these plots indicates a strengthening of the currency (a weakening of
the U.S. dollar). In Figure 2, we plot �rst logarithmic di¤erences of the nominal exchange
rates and in Figure 3 we show the frequency distributions of the �rst logged di¤erences in
the form of histograms. Summary statistics (not reported here) indicate that the skewness
parameters are close to zero for all series, but that the kurtosis parameters are all greater than
3, suggesting peaked (leptokurtic) distributions relative to the normal distribution, consistent
with the evidence in Figure 3. In fact, the Jarque and Bera (1980) test statistic, distributed
as a x2(2) distribution under the null hypothesis of normality, leads to the rejection of the
null hypothesis of a normal distribution with p < :0001 for each exchange rate series.
The �rst step in conducting nonlinear analysis is to test for stochastic trends (unit roots)

in the autoregressive representation of each individual time series. In doing so, we use four
alternative testing procedures to deal with anomalies that arise when the data are not very
informative about whether or not there is a unit root. In the �rst three columns of Table 1,
we report p-values for the augmented Weighted Symmetric (WS) unit root test [see Pantula
et al. (1994)], the augmented Dickey-Fuller (ADF) test [see Dickey and Fuller (1981)], and
the nonparametric, Z(tb�), test of Phillips (1987) and Phillips and Perron (1988). These
p-values (calculated using TSP 4:5) are based on the response surface estimates given by
MacKinnon (1994). As discussed in Pantula et al. (1994), the WS test dominates the ADF
test in terms of power. Also, the Z(tb�) test is robust to a wide variety of serial correlation
and time-dependent heteroskedasticity. For the WS and ADF tests, the optimal lag length
was taken to be the order selected by the Akaike information criterion (AIC) plus 2 � see
Pantula et al. (1994) for details regarding the advantages of this rule for choosing the number
of augmenting lags. The Z(tb�) test is done with the same Dickey-Fuller regression variables,
using no augmenting lags. Based on the p-values for the WS, ADF, and Z(tb�) test statistics
reported in Table 1, the null hypothesis of a unit root in the �rst logged di¤erences can be
rejected for each exchange rate series.
Given that unit root tests have low power against relevant (trend stationary) alterna-

tives, we also follow Kwiatkowski et al. (1992) and test for level and trend stationarity to
distinguish between series that appear to be stationary, series that appear to be integrated,
and series that are not very informative about whether or not they are stationary or have
a unit root. KPSS tests for level and trend stationarity are presented in columns 4 and 5
of panel A of Table 1. As can be seen, the t-statistic b�� that tests the null hypothesis of
level stationarity is large relative to the 5% critical value of :463 given in Kwiatkowski et al.
(1992). Also, the t-statistic b�� that tests the null hypothesis of trend stationarity exceeds
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the 5% critical value of :146 [also given in Kwiatkowski et al. (1992)]. Hence, combining
the results of our tests of the stationarity hypothesis with the results of our tests of the unit
root hypothesis, we conclude that all the �rst logged di¤erenced exchange rate series are
stationary.

7 Nonlinearity Tests

7.1 Bispectral Tests

Hinich (1982) developed a statistical test for determining whether a sampled stationary time
series fx(t)g is linear. This is a direct test for linearity and also a test for Gaussianity; it is
possible that fx(t)g is linear without being Gaussian, but all of the stationary Gaussian time
series are linear. The Hinich (1982) test involves estimating the bispectrum of a stationary
time series � see also Hinich and Patterson (1989) for more details. If the process generating
the data is linear then the skewness of the bispectrum will be constant. If the test rejects
constant skewness then a non-linear process is implied. It is to ne noted, however, that as
Barnett et al. (1997) show, the Hinich bispectrum test did poorly in a competition among
tests for nonlinearity, while a test by Kaplan (1994) did far better.
Let�s present a brief description of the Hinich (1982) bispectrum-based linearity and

Gaussianity tests. Consider a third order stationary time series fx(t)g, where the time unit
t is an integer. The third-order cumulant function of fx(t)g is de�ned to be

Cxxx(r; s) = E
h
x(t+ s)x(t+ r)x(t)

i
,

for each (r; s) when E [x(t)] = 0, in which s � r and r = 0; 1; 2; � � �. Because third-order
cumulants are hard to interpret, the bispectrum, which is the double Fourier transform of
the third-order cumulant function, Cxxx(r; s), is calculated. The bispectrum at frequency
pairs (f1; f2) is de�ned as

Bx(f1; f2) =

1X
r=�1

1X
s=�1

Cxxx(r; s) exp
h
�i2�(f1r + f2s)

i
,

assuming that jCxxx(r; s)j is summable.
The symmetries of Cxxx(r; s) translate into symmetries of Bx(f1; f2) that yield a principal

domain for Bx(f1; f2) given by 
 = f0 < f1 < 0:5; f2 < f1; 2f1 + f2 < 1g. Since the (ordinary
power) spectrum of x(t) at frequency f , Sx(f), is given by

Sx(f) = �2 jA(f)j2 ,
the skewness function of fx(t)g,  (f1; f2), is de�ned by

 2(f1; f2) =
jBx(f1; f2)j2

Sx(f1)Sx(f2)Sx(f1 + f2)
,
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for all f1 and f2 in 
 and A(f) =
P1

s=0 �(s) exp (�i2�fs).
Linearity and Gaussianity of fx(t)g can be tested using a sample estimator of the skewness

function. In particular, linearity of fx(t)g is tested through the null hypothesis that the
skewness function,  (f1; f2), is constant over all frequencies. Gaussianity of fx(t)g is tested
through the null hypothesis that  (f1; f2) is zero over all frequencies.
Columns 1 and 2 of Table 5 present p-values for Hinich�s (1982) bispectrum-based Gaus-

sianity and linearity tests. The results reject the null hypothesis of Gaussianity in all eight
exchange rate series (see column 1). Although Gaussianity and linearity tests are linked,
a rejection of Gaussianity does not necessarity rule out linearity. However, the p-values in
column 2 reject the null hypothesis of a linear generating mechanism in all eight exchange
rate series, suggesting the existence of nonlinear dependencies within the daily changes.

7.2 Bicorrelation Tests

Hinich (1996) proposed a modi�ed version of the Box and Pierce (1970) portmanteau Q-
statistic for autocorrelation and a third order portmanteau statistic, which can in a sense
be viewed as a time domain analogue of the bispectrum test. A full theoretical derivation of
the test statistics and a number of Monte Carlo simulations to assess their size and power
are given in Hinich (1996) and Hinich and Patterson (1985).
Let fx(t)g denote the sampled data process, where the time unit t is an integer. In this

paper the time series will be daily energy returns. The method is to break the observed
series into equal length frames and apply a number of statistics to each frame, generat-
ing a multivariate time series of frame statistics which are then used to test for linear and
nonlinear serial dependencies. In particular, if n is the window length, then the kth window is
fx(tk); x(tk + 1); � � �; x(tk + n� 1)g. The next window is fx(tk+1); x(tk+1 + 1); � � �; x(tk+1 + n� 1)g,
where tk+1 = tk+n. We de�ne z(tk) as the standardized observations (created by subtracting
the sample mean of the window, and dividing by its standard deviation) at time t = k, that
is,

z(tk) =
x(tk)� �x

�x
,

where �x and �2x are the sample mean and sample standard deviation of the window. The null
hypothesis for each window is that x(t) are realizations of a statioanary pure noise process
that has zero bicorrelation. The alternative hypothesis is that the process in the window is
random with some non-zero correlations or non-zero bicorrelations.
The C (or correlation) statistic, which has been developed for the detection of linear

serial dependencies, is de�ned as

C =

LX
r=1

h
C2(r)=(T � r � 1)

i
� �2(L), (1)
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where

C(r) =
T�sX
k=1

z(tk)z(tk+r)

is the sample correlation.
The H statistic, which has been developed for the detection of nonlinear serial depen-

dencies, tests for certain forms of nonlinearity using third-order correlations. It is de�ned
as

H =
LX
s=2

s�1X
r=1

h
G2 (r; s) =(T � s)

i
� �2(L (L� 1) =2), (2)

where

G(r; s) =
T�sX
k=1

z(tk)z(tk+r)z(tk+s)

is the (r; s) sample bicorrelation.
In (1) and (2), the number of lags L is speci�ed as L = T c with 0 < c < 0:5, where c is a

parameter under the choice of the analyst. Based on results from Monte Carlo simulations
[see Hinich and Patterson (1995)], the use of c = 0:4 is recommended in order to maximize
the power of the tests whilst ensuring a valid approximation to the asymptotic theory even
when T is small.
The C statistic in (1) is asymptotically distributed, under the null of pure white noise,

as a chi-square with L degrees of freedom for large T if L = T c with 0 < c < 0:5. It is
closely related to the Box-Pierce portmanteau test statistic which detects correlated (non
white) noise � see Box and Pierce (1970). Usually, the Box and Pierce Q-statistic for
autocorrelation is applied to the residuals of a �tted ARMA model, but the C statistic is
applied to the standardized observations, z(tk). Moreover, the Box and Pierce test does not
specify the number of lags L to be used; that decision is left to the analyst. The C statistic
speci�es L = T c with 0 < c < 0:5.
The H statistic in (1) is asymptotically distributed, under the null that the observed

process is pure white noise (i.i.d.), as a chi-square with L (L� 1) =2 degrees of freedom for
large T if L = T c with 0 < c < 0:5. It tests for certain forms of nonlinearity using third-order
correlations and is considered as a generalization of the Box and Pierce portmanteau test.
In particular, the test is of a null of pure white noise against an alternative that the process
has m non-zero correlations or bicorrelations in the set 0 < r < s � L, i.e. that there exists
second or third order dependence in the data generating process, and relies on the property of
pure noise that it has zero bicovariance. The test is particularly useful in detecting nonlinear
dependencies, since it has much better small-sample properties, and does not have such sti¤
data requirements as many of its competitors, such as the BDS test [Brock et al. (1996)] for
a useful survey.
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Columns 3 and 4 of Table 5 present p-values for the correlations (C) and bicorrelations
(H) test statistics. The results show that the null of pure noise is strongly rejected by both
the C and H statistics in all eight exchange rate series.

8 Modeling Heteroscedasticity

In conventional econometric models, stochastic variables are assumed to have a constant vari-
ance (and are called homoskedastic, as opposed to heteroskedastic). Many macroeconomic
and �nancial variables, however, exhibit clusters of volatility and tranquility (i.e., serial de-
pendence in the higher conditional moments). In such circumstances, the homoskedasticity
assumption is inappropriate.
Having concluded that the logged �rst di¤erences of the exchange rates are stationary,

we estimate the best �tted autoregressive model for each series according to equation (2):

� ln zt =
rX
i=1

�i� ln zt�i +
5X
k=1

dkDkt + "t. (3)

In equation (3), Dkt are day of the week dummy variables, r is the order of the autoregression,
and � and d are unknown parameters to be estimated.
We �rst select a minimum autoregression order rmin for each series such that the mod-

els show no autocorrelation according to the Q(36) test statistic. Then we use both the
Schwartz Information Criterion (SIC) and the Akaike Information Criterion (AIC) to opti-
mally determine the value of r in equation (3), by estimating several models with r = rmin
to r = 25. However, as the AIC tends to overparameterize the model while the SIC tends
to select the true model as the sample size increases (and if the true model is included in
the choices), we follow the SIC in selecting the optimal lag length of the autoregression, r.
The results are reported in Table 1.
Both visual inspection and the use of the Q(36) statistic for residual serial correlation

(as seen in the last two columns of Table 2) suggest that the residuals of the autoregressive
model with the order of the autoregression, r, chosen as above are not serially correlated.
However, the Q2(36) statistic, which represents the Q-statistic for the squared residuals and
is designed to pick nonlinearities and the presence of heteroskedasticity, is highly signi�cant
providing evidence for the presence of conditional heteroskedasticity in the error term. For
this reason in order to capture the heteroskedasticity in the error term we estimate the
autoregressive AR(r) model (3) for each series assuming that "t is IN(0; �2t ) with �

2
t following

a GARCH(p; q) process as follows,

�2t = w0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�j�
2
t�j +

5X
k=2

dkDkt (4)
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or an EGARCH(p,q) process as follows

log
�
�2t
�
= w0 +

qX
i=1

�
�i

���� "t�i�t�i

����+ i
"t�i
�t�i

�
+

pX
j=1

�j log(�
2
t�j) +

5X
k=2

dkDkt (5)

see, for example, Bollerslev (1986) and Nelson (1991), respectively, for more details.
In both equations (4) and (5) above, p; q 2 [1; 2] such that eight di¤erent conditional

heteroskedasticity speci�cations are estimated for each series. The lagged values of the error
term, "t�i, i = 1; � � �; q, in equations (4) and (5) represent news in the market about volatility
in the previous period, while the lagged values of the conditional variance, �2t�j, j = 1; � � �; q,
are lagged forecasted variances. Thus, this period�s variance prediction is formed as a
weighted average of a long term average (the constant, w0), the forecasted variance from
previous periods, and information about volatility observed in earlier periods. This variance
modeling is consistent with the volatility clustering observed in the returns of the eight series
(see Figure 2).
In Table 3 we report the AIC and SIC for the alternative speci�cations of the conditional

variance for the eight exchange rate series and in Table 4 the model selected by the two
criteria. For reasons discussed earlier we again use the SIC to select the best model for
each exchange rate series and according to this for all series a GARCH(1; 1) is the best
speci�cation of the conditional variance with the exception of the Brazilian real where the
EGARCH(1; 1) is selected.
The models estimated and selected so far use the normal distribution as the density

function for the error term. Now we explore di¤erent error distributions in an attempt to
improve the �t of the models. In particular, in addition to the normal distribution we use
the Student�s t distribution, used by Bollerslev (1987), and the generalized error distribution
(GED), used by Nelson (1988) for each of the eight exchange rate series.
The Student�s t distribution is given by

f(z) = ��:5��:5�

�
� + 1

2

�
�

�
�

2

��1�
1 +

z2

� � 2

��:5(�+1)
where � > 2 is the degrees of freedom (controling the tail behavior) and �(�) is the gamma
function. This distribution is normalized to have unit variance and becomes the standard
normal distribution when � ! 1. Under a Student�s t distribution for the errors, the log
likelihood function takes the form

L = �T
2
log

 
��:5��:5�

�
� + 1

2

�
�

�
�

2

��1!
� 1
2

TX
t=1

log �2t �
� + 1

2

TX
t=1

log

�
1 +

"2t
�2t (� � 2)

�
.

Moreover, the generalized error distribution (GED), used by Nelson (1988), is used. The
density of a GED random variable normalized to have a mean of zero and a variance of one
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is given by

f(z) =
� exp

�
�1
2
jz=�j�

�
�2(1+1=�)� (1=�)

,

where �1 < z <1, 0 < � � 1, �(�) is the gamma function, and

� �
�
2(�2=�)� (1=�)

� (3=�)

�1=2
.

Above, � is a tail-thickness parameter, � > 0. When � = 2, z has a standard normal
distribution. For � < 2, the distribution of z has thicker tails than the normal (for example,
when � = 1, z has a double exponential distribution). For � > 2, the distribution of z has
thinner tails than the normal (for example, for � = 1, z is uniformly distributed on the
interval

�
�31=2; 31=2

�
. Under a GED distribution for the errors, the log likelihood function

takes the form

L = �T
2
log

 
� (1=�)3

� (3=�) (�=2)2

!
� 1
2

TX
t=1

log �2t �
TX
t=1

�
� (3=�) "2t
�2t� (1=�)

��=2
.

In Table 5, we produce the AIC and SIC for the estimated models according to the three
di¤erent distributional assumptions and we use the SIC to determine the best overall model
as it is reported in Table 6 for the eight exchange rate series. With the exception of the
Australian Dollar and the Japanese Yen where the Student�s-t distribution is selected, for
the rest of the exchange rates the GED provides the best �t. According to the Q(36) and
Q2(36) statistics that are reported in the last two columns of Table 6, for the selected models
we cannot reject the null of no autocorrelation and no non-linearities in the residuals.

8.1 Chaos Tests

Finally, we test for chaos by applying the recently developed methods by Whang and Lin-
ton (1999), Linton and Shintani (2003), and Shintani and Linton (2004) and construct the
standard error for the Nychka et al. (1992) dominant Lyapunov exponent � see Serletis and
Shintani (2003) for a detailed discussion of the methodology and an application to the U.S.
stock market or Serletis and Shintani (2006) for an application to U.S. monetary aggregates.
Lyapunov exponent point estimates, along with p-values for the null hypothesis H0 : � �

0, are reported in Table 6, for the logarithmic �rst di¤erences of the series. The results are
presented for dimensions 1 through 6, with the optimal value of the number of hidden units
in the neural net being chosen by minimizing the BIC criterion � see, for example, Serletis
and Shintani (2006) for more details.
As can be seen, the reported Lyapunov exponent point estimates are negative and in every

case we reject the null hypothesis of chaotic behavior. Of course, the failure to detect low-
dimensional chaos does not preclude the possiblity of high-dimensional chaos in these series

14



� see, for example, Barnett and Serletis (2000). The presence, however, of dynamic noise
makes it di¢ cult and perhaps impossible to distinguish between (noisy) high-dimensional
chaos and pure randomness. Thus, as Granger (1991, p. 268) put it, �it will be a sound,
pragmatic strategy to continue to use stochastic models and statistical inference.�

9 Conclusion

We have discussed a number of (widely used) univariate tests from dynamical systems theory
to distinguish between deterministic and stochastic origin for time series.

15



References

[1] Barnett, W.A. and A. Serletis. �Martingales, Nonlinearity, and Chaos.� Journal of
Economic Dynamics and Control 24 (2000), 703-724.

[2] Barnett, W.A., A.R. Gallant, M.J. Hinich, J.A. Jungeilges, D.T. Kaplan, and M.J.
Jensen. �A Single-Blind Controlled Competition Among Tests for Nonlinearity and
Chaos.�Journal of Econometrics 82 (1997), 157-192. Reprinted (as Chapter 26) in W.A.
Barnett and J. Binner (eds.), Functional Structure and Approximation in Econometrics,
Elsevier, Amsterdam, 2004.

[3] Belaire-Franch J. �Testing for Non-linearity in an Arti�cial Financial Market: A Recur-
rence Quanti�cation Approach.� Journal of Economic Behavior and Organization 54
(2004), 483-494.

[4] Belaire-Franch J., D. Contreras, and L. Tordera-Lledo. �Assessing Nonlinear Structures
in Real Exchange Rates using Recurrence Plot Strategies.�Physica D 171 (2002), 249-
264.

[5] Bernanke, B.S., M. Gertler, and M. Watson. �Systematic Monetary Policy and the
E¤ects of Oil Price Shocks.�Brookings Papers on Economic Activity 1 (1997), 91-142.

[6] Box, G.E.P. and D.A. Pierce. �Distribution of Residual Autocorrelations in
Autoregressive-Integrated Moving Average Time Series Models.�Journal of the Amer-
ican Statistical Association 65 (1970), 1509-1526.

[7] Brock, W.A. and A.G. Malliaris. Di¤erential Equations, Stability and Chaos in Dynamic
Economics. Amsterdam: North Holland (1989).

[8] Brock, W.A., W.D. Dechert, B. Lebaron, and J.A. Scheinkman. �A Test for Indepen-
dence Based on the Correlation Dimension.�Econometric Reviews 15 (1996), 197-235.

[9] Brown, S.P.A. and M.K. Yücel. �What Drives Natural Gas Prices?�Working Paper
#0703. Research Department, Federal Reserve Bank of Dallas (2007).

[10] Dickey, D.A., and W.A. Fuller. �Likelihood Ratio Statistics for Autoregressive Time
Series with a Unit Root.�Econometrica 49 (1981), 1057-72.

[11] Elder, J. and A. Serletis. �Oil Price Uncertainty.�Mimeo. Department of Economics,
University of Calgary (2008a).

[12] Elder, J. and A. Serletis. �Oil Price Uncertainty and the Canadian Macroeconomy.�
Mimeo. Department of Economics, University of Calgary (2008b).

16



[13] Engle, R.F. �Autoregressive Conditional Heteroscedasticity with Estimates of the Vari-
ance of United Kingdom In�ation.�Econometrica 50 (1982), 987-1007.

[14] Federal Reserve Bank of Dallas. �Do Energy Prices Threaten the Recovery?�The South-
west Economy 3 (2004).

[15] Granger, C.W.J. �Developments in the Nonlinear Analysis of Economic Series.�Scan-
dinavian Journal of Economics 93 (1991), 263-276.

[16] Greenspan, A. Energy. Speech Before the Economic Club of New York, The Federal
Reserve Board, May 20, 2005.

[17] Hamilton, J.D. �What is an Oil Shock?�Journal of Econometrics 113 (2003), 363-98.

[18] Hamilton J.D. �Causes and Consequences of the Oil Shock of 2004.�Mimeo, University
of California, San Diego (2004).

[19] Hamilton, J.D. and A.M. Herrera. �Oil Shocks and Aggregate Macroeconomic Behavior:
The Role of Monetary Policy.�Journal of Money, Credit, and Banking 36 (2004), 265-
286.

[20] Hinich, M.J. �Testing for Gaussianity and Linearity of a Stationary Time Series�, Jour-
nal of Time Series Analysis 3 (1982), 169-176.

[21] Hinich, M.J. �Testing for Dependence in the Input to a Linear Time Series Model.�
Journal of Nonparametric Statistics 6 (1996), 205-221.

[22] Hinich, M.J. and D.M. Patterson. �Evidence of Nonlinearity in Daily Stock Returns.�
Journal of Business and Economic Statistics 3 (1985), 69-77.

[23] Hinich, M.J. and D.M. Patterson. �Evidence of Nonlinearity in the Trade-by-Trade
Market Return Generating Process.�In Barnett, W.A., J. Geweke, and K. Shell (Eds.),
Economic Complexity: Chaos, Sunspots, Bubbles, and Nonlinearity. Cambridge: Cam-
bridge University Press 1989, pp. 383-409.

[24] Hooker, M.A. �What happened to the Oil-Price Macro Economy Relationship?�Journal
of Monetary Economics 38 (1996), 195-213.

[25] Hooker, M.A. �Are Oil Shocks In�ationary? Asymmetric and Nonlinear Speci�cations
versus Changes in Regime.�Journal of Money, Credit, and Banking 34 (2002), 540-61.

[26] Kaplan, D.T. �Exceptional Events as Evidence for Determinism.�Physica D 73 (1994),
38-48.

17



[27] Keenan, D.M. �A Tukey Nonadditivity-Type Test for Time Series Nonlinearity.�Bio-
metrica 72 (1985), 39-44.

[28] Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, and Y. Shin. �Testing the Null Hypothesis
of Stationarity Against the Alternative of a Unit Root.� Journal of Econometrics 54
(1992), 159-178.

[29] Kyrtsou, C. �Evidence for Neglected Linearity in Noisy Chaotic Models.�International
Journal of Bifurcation and Chaos 15 (2005), 3391-3394.

[30] Kyrtsou, C. �Heterogeneous Non-Linear Agents�Strategies and Routes to Chaotic Dy-
namics.�Working Paper, LAMETA, University of Montpellier I (2006).

[31] Kyrtsou, C. and W. Labys. �Evidence for Chaotic Dependence between US In�ation
and Commodity Prices.�Journal of Macroeconomics 28 (2006), 256-266.

[32] Kyrtsou, C. and W. Labys. �Detecting Positive Feedback in Multivariate Time Series:
The Case of US In�ation and Metal Prices.�Physica A 377 (2007), 227-229.

[33] Kyrtsou C. and A. Malliaris. �The Impact of Information Signals on Market Prices
when Agents have Non-linear Trading Rules.�Economic Modelling 26 (2009), 167-176.

[34] Kyrtsou, C. and A. Serletis. �Univariate Tests for Nonlinear Structure.� Journal of
Macroeconomics 28 (2006), 154-168.

[35] Kyrtsou, C. and M. Terraza. �Stochastic Chaos or ARCH E¤ects in Stock Series? A
Comparative Study.�International Review of Financial Analysis 11 (2002), 407-431.

[36] Kyrtsou, C. and M. Terraza. �Is It Possible to Study Chaotic and ARCH Behaviour
Jointly? Application of a Noisy Mackey-Glass Equation with Heteroskedastic Errors to
the Paris Stock Exchange Returns Series.�Computational Economics 21 (2003), 257-
276.

[37] Kyrtsou, C. and M. Terraza. �Seasonal Mackey-Glass-GARCH Process and Short-Term
Dynamics.�Empirical Economics (2009, forthcoming).

[38] Kyrtsou, C. and C. Vorlow. �Complex Dynamics in Macroeconomics: A Novel Ap-
proach.�In C. Diebolt and C. Kyrtsou (eds.), New Trends in Macroeconomics. Springer
Verlag (2005), pp. 225-251.

[39] Kyrtsou, C. and C. Vorlow. �Modelling Nonlinear Comovements between Time Series.�
Journal of Macroeconomics (2009, forthcoming).

18



[40] Kyrtsou, C., W. Labys, and M. Terraza. �Noisy Chaotic Dynamics in Commodity Mar-
kets.�Empirical Economics 29 (2004), 489-502. Reprinted (as chapter 8) in W. Labys,
Modeling and Forecasting Primary Commodity Prices, Ashgate, England, 2006.

[41] Leduc, S. and K. Sill �A Quantitative Analysis of Oil Price Shocks, Systematic Monetary
Policy and Economic Downturns.�Journal of Monetary Economics 51 (2004), 781-808.

[42] Linton, O. and M. Shintani. �Is There Chaos in the World Economy? A Nonparametric
Test Using Consistent Standard Errors.� International Economic Review 44 (2003),
331-358.

[43] MacKinnon J.G. �Approximate Asymptotic Distribution Functions for Unit-Root and
Cointegration Tests.�Journal of Business and Economic Statistics 12 (1994), 167-176.

[44] Mandelbrot, B.B. and R.L. Hudson. The (Mis)Behavior of Markets: A Fractal View of
Risk, Ruin & Reward. New York: Basic Books (2004).

[45] McLeod, A.I. and W.K. Li. �Diagnostic Checking ARMA Time Series Models Using
Squared Residuals Autocorrelations.�Journal of Time Series Analysis 4 (1983), 269-
273.

[46] Nychka, D.W., S. Ellner, A.R. Gallant, and D. McCa¤rey. �Finding Chaos in Noisy
Systems.�Journal of the Royal Statistical Society B 54 (1992), 399-426.

[47] Pantula S.G., G. Gonzalez-Farias, and W.A. Fuller. �A Comparison of Unit-Root Test
Criteria.�Journal of Business and Economic Statistics 12 (1994), 449-459.

[48] Phillips, P.C.B. �Time Series Regresion with a Unit Root.�Econometrica 55 (1987),
277-301.

[49] Phillips, P.C.B. and P. Perron. �Testing for a Unit Root in Time Series Regression.�
Biometrica 75 (1988), 335-346.

[50] Rahman, S. and A. Serletis. �The Asymmetric E¤ects of Oil Price Shocks.�Mimeo.
Department of Economics, University of Calgary (2008).

[51] Scheinkman, J.A. and B. LeBaron. �Nonlinear Dynamics and GNP Data.�In Barnett,
W.A., J. Geweke, and K. Shell (Eds.), Economic Complexity: Chaos, Sunspots, Bubbles,
and Nonlinearity. Cambridge: Cambridge University Press (1989), pp. 213-227.

[52] Serletis, A. and I. Andreadis. �Random Fractal Structures in North American Energy
Markets.�Energy Economics 26 (2004), 389-399.

19



[53] Serletis, A. and P. Gogas. �The North American Natural Gas Liquids Markets are
Chaotic.�The Energy Journal 20 (1999), 83-103.

[54] Serletis, A. and S. Rahman. �Oil Price Uncertainty and the Canadian Macroeconomy:
Evidence from a VARMA, GARCH-in-Mean Asymmetric BEKK Model.�Mimeo. De-
partment of Economics, University of Calgary (2008).

[55] Serletis, A. and A. Shahmoradi. �Semi-Nonparametric Estimates of Interfuel Substitu-
tion in U.S. Energy Demand.�Energy Economics 30 (2008), 2123-2133.

[56] Serletis, A. and M. Shintani. �No Evidence of Chaos But Some Evidence of Dependence
in the U.S. Stock Market.�Chaos, Solitons & Fractals 17 (2003), 449-454.

[57] Serletis, A. and M. Shintani. �Chaotic Monetary Dynamics with Con�dence.�Journal
of Macroeconomics 28 (2006), 228-252.

[58] Shintani, M. and O. Linton. �Nonparametric Neural Network Estimation of Lyapunov
Exponents and a Direct Test for Chaos.�Journal of Econometrics 120 (2004), 1-33.

[59] Strozzi F., J.-M. Zaldivar, and J.P. Zbilut. �Application of Nonlinear Time Series Analy-
sis Techniques to High Frequency Currency Exchange Data.�Physica A 312 (2002),
520-538.

[60] Takens, F. �Detecting Strange Attractors in Turbulence.�In D. Rand and L.S. Young
(eds.) Dynamical Systems and Turbulence: Lecture Notes in Mathematics (1981).
Springer, Berlin.

[61] Trulla, L.L., A. Giuliani, J.P. Zbilut, and C.L. Webber. �Recurrence Quanti�cation
Analysis of the Logistic Equation with Transients.�Physics Letters A 223 (1996), 225-
260.

[62] Tsay, R.S. �Nonlinearity Tests for Time Series.�Biometrica 73 (1986), 461-466.

[63] Webber, C.L. and J.P. Zbilut J.P. �Dynamical Assessment of Physiological Systems
and States using Recurrence Plot Strategies.�Journal of Applied Physiology 76 (1994),
965-973.

[64] Whang, Y.-J. and O. Linton. �The Asymptotic Distribution of Nonparametric Estimates
of the Lyapunov Exponent for Stochastic Time Series.� Journal of Econometrics 91
(1999), 1-42.

[65] Zbilut, J.P., A. Giuliani, and C.L. Webber. �Recurrence Quanti�cation Analysis as an
Empirical Test to Distinguish Relatively Short Deterministic versus Random Number
Series.�Physics Letters A 267 (2000), 174-178.

20



[66] Zivot, E. and D.W.K. Andrews. �Further Evidence on the Great Crash, the Oil Price
Shock and the Unit Root Hypothesis.�Journal of Business and Economic Statistics 10
(1992), 251-270.

21


