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NOTE

RISK WHEN SOME STATES ARE
LOW-PROBABILITY EVENTS

MELVIN J. HINICH
University of Texas at Austin

One usually assumes that the joint probability distribution is known or that agents will use
Bayesian updating to estimate the true probabilities after a number of trials when the
states of nature are finite in classical decision theory under uncertainty. If there are
important states that have very low probabilities of occurrence, then each agent must make
a subjective assessment of the probability distribution until a sufficient number of
outcomes are observed in order to generate a precise estimate of the probability
distribution. If one assumes that all agents know the states and their payoffs, the
probability distribution is stationary, and they observe all outcomes that unfold over time,
then it will take at least 10 times the mean time between occurrences of the lowest
probability event in order to generate enough outcomes that all agents share the same
objective knowledge of the distribution. The mean time of recurrence depends on both the
probability distribution and the time unit used between recordings of the observations. If
at least one state has a low probability of occurrence, then the time to convergence will
exceed the period of stationarity of the process.
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1. INTRODUCTION

The states of nature are finite in the classical decision theory of choice under
uncertainty. One either assumes that the joint probability distribution is known or
that agents will use Bayesian updating to estimate the true probabilities after a
number of trials [La Valle (1970)]. If there are important states that have very low
probabilities of occurrence, then each agent must make a subjective estimate of
the probability distribution until a sufficient number of outcomes are observed to
generate a precise estimate of the true probabilities. Assume that all agents know
the states and their payoffs, that they also observe all the outcomes that unfold
over time, and that the joint distribution is stationary over time.

I show that it takes at least 10 times the mean time between realizations of the
lowest probability event in order to generate enough outcomes that all agents share
the same objective knowledge of the distribution. The mean time of recurrence of
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a state depends on both the probability distribution and the time unit between
observations.

The relationship between the mean time to get a sample of rare states and the
precision of estimation of state probabilities has been overlooked in the application
of Bayesian learning in social science theory building. See, for example, Feldman
(1987), Jordan (1991), Kalai and Lehrer (1993), and Kim and Yannelis (1997).

I show that subjectivity persists when agents must employ Bayesian updating
of subjective probabilities in decision problems when there are low-probability
states. The importance of the time unit in the convergence to a precise estimation
of rare events is important for modeling financial markets.

The next section presents a simple economy made up of risky assets whose
payoffs are determined by a probability distribution for a finite number of states
of nature. This simplistic model is used to show how subjectivity persists when at
least one state has a low probability of occurrence.

2. SIMPLE MODEL OF RISKY ASSETS

Suppose that an economy has j = 1, . . . , J risky assets. Asset j can be in one of
K j states at the end of each discrete time point t , which for purposes of exposition
will on the hour. Each asset will have a payoff on the hour, 24 hours each day of
the year, for a total of 8,760 payoffs per year. These payoffs can be negative as well
as positive. All agents observe all outcomes in the economy starting at an initial
time t0 when the market starts functioning. There are no realizations of the states
before time t0.

Picture this economy as that of a simple agricultural society with fixed land and
static technology. The land is divided into plots that are owned by individuals. The
society’s law allows and supports tradable property rights. The source of risk for
each agricultural asset is the vagaries of the weather, crop disease, and parasites.
The assumption of a stationary technology and fixed land removes the growth
dynamics from this simple model.

The nonagricultural industrial and service economy is also static and will be
ignored. The only service to be factored later in this work is a banking sector that
makes fixed-term loans to the landowners.

Each asset has a payoff distribution that depends on the state of nature that exists
on the hour. If asset j is in state k j , then it will pay the owner of that asset x jk

with probability π jk for any time t . The x jk are the realizations of this stationary
discrete-time multivariate stochastic process whose joint probability distribution is
π j = (π j1, . . . , π j K j ). To simplify calculations, assume that the payoff outcomes
are independently distributed realizations over time, but not across assets.

All agents in the economy know the states and their payoffs and they observe
all the outcomes that occur after the payoffs begin at time t0. This is the common
knowledge set in this idealized model world.

A probability distribution is not observable. It can be estimated from a sequence
of independently distributed observations of the outcomes of the stochastic process.
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Suppose that each agent uses a subjective prior probability distribution for the
true distribution π j in order to make decisions about holding assets. There is
no restriction on agent communication in this world but the classical theory of
decisionmaking under risk does not deal with the psychology and sociology of
probability assessment. Probabilities in the theory used in this work are treated as
individual preference orders are used in economics.

Savage (1954) used the term personal probability for the probability values
used by a person making decisions. An individual’s personal probability is up-
dated by Bayes’ rule as observations are made from the conditional probability
of the payoff conditional on the state. Savage makes a clear comparison between
his theory of personal probability based decisionmaking and the standard frequen-
tist concept of probability theory. The term personal probability has lost out to
the now standard term a priori or prior probability. The word personal better
reflects the distinction between the standard objective probability approach and
Savage’s approach to the foundations of statistics. The subjective probabilities are
personal.

The concept of personal probabilities was indirectly challenged by Aumann
(1976) in an influential short paper where he proves that “if two people have the
same priors, and their posteriors for an event A are common knowledge, then
these posteriors must be equal.” He then argues for the assumption of equal priors
for different people by distorting the arguments of Harsanyi (1967–1968) about
information and inventing the “Harsanyi doctrine.” It really does not matter what
Harsanyi argues about information since both papers are about theory and not
about scientific evidence about how people use and share information in real deci-
sionmaking. The agents in the model in this paper are making personal decisions,
not collective ones.

Recall the furor about what was to happen in early 2000 as a result of the Y2K
calendar-field problem for computers. A number of respected financial analysts
and computer experts took very different public positions on the Y2K impact on
the economy. One can always argue that they were not revealing their true beliefs.
However, if one rereads the financial journals for the latter part of 1999, then it is
easy to see that there was considerable stated disagreement about the likelihood of
an economic disaster. A simple argument for what happened is that many experts
had different personal probabilities upon which they acted. An excellent review of
the literature on the diversity of probability beliefs is presented by Kurz (1997).

3. BAYESIAN UPDATING OF SMALL PROBABILITIES

The asset indexes the states and probabilities in order to show that this seemingly
simple discrete state world has a large number of parameters if there are many
assets, even if there are only two states for each asset. Since the point is made, the
states are now assumed to hold for each asset, and so, the asset index on the state
is now unnecessary. The outcomes depend on the asset as well as the state so that
the outcome is still doubly indexed.
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Suppose that there is a state k0 whose probability π(k0) is very small. If the
probability π(k0) = 10−5, for example, then this event will occur, on average, every
11.42 years based on the assumption of 8,760 payoffs per year and a stationary
probability distribution. Assuming that our agents can function as classical as well
as Bayesian statisticians, if nine occurrences of state k0 occur in a 100-year period,
the sample proportion estimate of π(k0) is π̂(k0) = 9/876,000 = 1.03 × 10−5. The
95% approximate confidence interval is (0.36 × 10−5, 1.70 × 10−5). This interval
contains the true value of π(k0) but with a 67% plus- or minus spread. It will take
about 100 years for agents to observe sufficient outcomes of this low-probability
state to estimate the probability to an accuracy of an order of magnitude. This is
truly a long time!

The stationarity of the joint distribution is crucial for this convergence result to
hold. If the distribution shifts either abruptly or gradually over a period of 10 to
20 years, then the agents will always have heterogeneous subjective probability
estimates. If π(k0) shifts, say, from 10−5 to 5 · 10−6, then the agents will not
detect this shift before another occurs. Time plays an important role in this simple
statistical problem when there is at least one low-probability state.

This convergence result is consistent with the theory of rational belief devel-
oped by Kurz (1997) and Kurz and Motolese (2001). In the theory of rational
belief, agents have different beliefs about the probabilities of outcome from an
endogenous nonstationary economic system. The existence of a nonstationary en-
vironment is central to the rational-belief theory and thus the speed of convergence
matters. Indeed, slow learning is the foundation of this theory.

The confidence-interval calculations present an insight into the rarity of
this event but they do not directly address the Bayesian updating issue. To
work this problem into a Bayesian update problem, suppose that state k0

does not occur in a 100-year period. The conditional probability of this event
E = {k0 does not occur in 100 years} is [1 − π(k0)]n , where n is 876,000.

Suppose that agent alpha uses the prior density function pα[π(k0)] = α[1 −
π(k0)]α−1, where α > 1. This prior density makes sense when agent alpha knows
that the true value of π(k0) is small. Consequently, the agent has the posterior
probability density

pα[π(k0)|E] = (α + n)[1 − π(k0)]
α+n−1. (1)

The mean of this posterior probability density is (α + n + 1)−1. The parameter α

serves as a subjective augmentation of the sample size n. This example shows that
the prior subjective probability distribution can strongly influence the posterior
distribution for large n when π(k0) is very small.

The independence assumption is made for simplicity. If there is positive depen-
dence over time, then the number of observations required to reach an accurate
estimate is longer than what is presented above.

The posterior density of π(k0) when the first outcome of state k0 occurs will
put more mass around the true probability than does (1). As more outcomes are
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observed, the posterior probability density will concentrate around the true prob-
ability. This simple argument shows that the time span for updating to a precise
posterior will take a long time. These results will be the same if π(k0) = 10−7

and the time interval between observations is 0.6 minute. The objective reality for
small-probability outcomes requires a long time of observation when the outcome
timescale is not small.

Agents will trade assets using subjective probability assessments. Even if only
one state of nature has a low probability, the subjectivity leaks into the expected
value since the probabilities of all the states must sum to one. It is now time to
address the issue of “so what.” The next section addresses some of the implications
for market decisionmaking when there are heterogeneous beliefs about the π(k)

probabilities. The simplicity of the multinomial model makes it easy to see the basic
relationships between prior probability beliefs, the time between observations, and
the length of time it takes for agents to converge to a common posterior probability
distribution.

4. MARKETS AND LOTTERIES

Let πα(k) denote agent alpha’s subjective probability that state k occurs at time
t . There is a subjective component for each state k since πα(k0) is subjective and∑K

k=1 πα(k) = 1. Assuming that at least one state has a sufficiently low probability
such that the mean time between outcomes is at least 10 years, the subjective
probability updating takes so long that a time index is not needed for the agent’s
subjective probability distribution. In other words, the πα(k)’s can be treated as
stationary over a period of about 100 years, which is longer than the stationarity
of the whole economy. Over time, some assets disappear, others change their
character, and new assets come into existence. The mean time between rare events
is longer than what stationarity exists in the market process.

All agents know that the other agents use subjective probabilities in their deci-
sion process. They know that there is no objective method to accurately estimate
the low probabilities. Each individual makes idiosyncratic estimates based on com-
mon knowledge. Assume that no two agents have identical subjective probability
distributions.

Let pjt denote the market price of asset j at time t . Assume for now that each
agent has a linear cardinal utility function for wealth. The assumption of risk-
neutral utility function is made to allow simple calculations of examples. Standard
concave utility-based portfolio theory is invoked in the next section to address agent
borrowing to acquire assets. A generalization to standard risk avoidance makes the
portfolio calculations a bit more complicated without altering the validity of the
argument that subjectivity plays a crucial role in the market process.

Agent alpha’s expected utility for one unit of asset j at time t is

µα j = pjt

K∑

k=1

πα(k)x jk . (2)
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Agent alpha prefers the asset with the highest expected value. Variance does not
affect the preference since the agent is risk neutral. If there are several assets
with the same expected value, the agent is indifferent among them. Assume for
simplicity that there is only one asset at the maximum.

An example is helpful here. Suppose that there are only four states and two assets
in the economy. Suppose that the outcomes of asset 1 and asset 2, respectively, are

x11 = −105, x12 = 0, x13 = 10, x14 = 104;
(3)

x21 = −106, x22 = 0, x23 = 102, x24 = 105.

Suppose that agent alpha’s subjective probability distribution is

πα(1) = 10−5, πα(2) = 0.3 −πα(1), πα(3)= 0.7 − πα(4), πα(4) = 10−4. (4)

Then, agent alpha’s expected utilities for assets 1 and 2, respectively, at time t are
µα1 = 6.999p1t and µα2 = 60.99p2t .

Suppose agent beta’s subjective probability distribution is

πβ(1) = 10−4, πβ(2) = 0.3 −πβ(1), πβ(3) = 0.7 −πβ(4), πβ(4) = 10−4. (5)

Then, agent beta’s expected utilities for assets 1 and 2, respectively, at time t are
µβ1 = −2.001p1t and µβ2 = −29.01p2t .

If p1t < p2t , then agent alpha prefers asset 2 to asset 1 whereas agent beta prefers
asset 1. Both agents possess the same information about the states and outcomes
and both use Bayesian updating to modify their prior probabilities. Yet they have
different expected values for the two assets. Note that alpha has positive expected
values whereas beta has negative expected values for the two assets. If beta owns
either asset, he will want to trade it for an asset with positive expected value.

Assume that all agents have strictly concave utility functions rather than linear
utility functions. Standard portfolio theory now applies for each period [portfolio
theory when agents have quadratic utility functions is developed by Markowitz
(1959)].

Assume that an agent has a budget per period for investment. The agent allocates
this fixed amount per period to buying assets along with proceeds from sales
of assets per period. This assumption simplifies the decisionmaking problem
by separating the consumption versus savings multiperiod problem [Lippman &
McCall (1981, Sect. 4)]. Each agent during every period selects a portfolio of
assets that maximizes his expected utility, given his budget constraint.

This decision process continues each period. Since the subjective probabilities
are slowly changing, individual portfolios change from period to period due to
changes in prices and budgets. The subjective probabilities of the agents are an
important component of the market transaction process.

Assume that there are sufficient agents in the economy operating in an effi-
cient market-clearing process so that an equilibrium market price of each asset is
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achieved at each period. What is different in this theory from the standard the-
ory is that agents with the same utility function, the same budget, and the same
information will have different expected values of an asset.

Recall that all agents observe all states and know the states and their payoffs.
They start with different personal beliefs about the low-probability states. Trading
in this world is different from that discussed by Milgrom and Stokey (1982). The
differences in personal probabilities are not due to differences in information about
the true probability distribution. All agents are uninformed about the true proba-
bility of the unlikely state. Each individual acts as if he has a personal probability
distribution and update using Bayes’ rule. Since all are uninformed about the true
probabilities, they cannot convince one another about the truth since all know that
they all do not know the truth.

5. RESERVE REQUIREMENTS UNDER UNCERTAINTY

Assume that agents can borrow to buy more assets by using some of their assets
as collateral. If the lenders are regulated banks, then the subjective element of the
market poses a problem for bank regulation.

Suppose that an agent wants to borrow to buy an asset whose expected value is
greater than the interest rate for the period. The agent borrows the price of the asset
using as collateral some low-risk assets in his portfolio. The term “low risk” is used
rather than the standard term “risk-free” because no assets are truly risk-free. U.S.
government bonds are low risk at present but there is some very low-probability
that the U.S. government will suddenly adopt some policy that results in default of
the bonds. The main thesis of this paper is that low-probability states play a subtle
role in the market process.

Bankers share the subjectivity inherent in the economy. Individuals have dif-
ferent subjective probabilities over the states. A loan officer has a different ex-
pected value from the borrower for the asset to be purchased and the collateral
assets. The owners of the bank shares and the bank regulators have different
evaluations.

Suppose that a number of large banks underestimate the probability of a “bad”
state by an order of magnitude or two. They will loan money to agents with the
same or lower subjective probability of that state provided that the expected value
is in their favor given the interest they can charge the agent. Each agent may
borrow a small amount but if there are a large number of optimistic agents, then
the bank can be in a more exposed position, given the true probability distribution
as compared with their subjective assessment.

If the “bad” state occurs, then the banks may be in trouble. If bank problems
have no impact on the general economy but only on the owners of the bank, then
the “bad” outcomes are the downs of doing business. However, if the bad loans
weigh on the economy due to the fractional reserve nature of banking, then the
issue of proper reserve requirements must reflect the incomplete knowledge of the
true probability distribution.
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Individual choice market mechanisms do not provide enough information to
solve this problem. There is no simple solution to the problem of setting reserve
requirements when the probability distribution of the states of nature is not exactly
known.

The fundamental uncertainty inherent in the Bayesian updating of prior proba-
bilities for finite observations over a finite time results in a collectivization of this
banking risk. The specific collective decision rule used depends on the politics of
the society.
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