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Abstract

This paper extends the work in Serletis and Shintani [Serletis A, Shintani M. No evidence of chaos but some evidence
of dependence in the US stock market. Chaos, Solitons & Fractals 2003;17:449–454], Elder and Serletis [Elder J, Serletis
A. On fractional integrating dynamics in the US stock market. Chaos, Solitons & Fractals [forthcoming, 2007]], and
Koustas et al. [Koustas Z, Lamarche J-F, Serletis A. Threshold random walks in the US stock market. Chaos, Solitons
& Fractals [forthcoming, 2007]] by examining the empirical evidence for random walk type behavior in the US stock
market. In doing so, it uses the FORTRAN 95 program developed by Hinich [Hinich MJ. A statistical theory of signal
coherence. IEEE J Oceanic Eng 2000;25:256–261] and detects a statistically significant randomly modulated periodic
signal.
� 2006 Elsevier Ltd. All rights reserved.

1. Introduction

This paper extends the work in Serletis and Shintani [6], Elder and Serletis [2], and Koustas et al. [5] by re-examining
the empirical evidence for random walk type behavior in the US stock market. In doing so, it tests the random walk
hypothesis by using a parametric statistical model called randomly modulated periodicity (RMP), recently proposed by
Hinich [3] and Hinich and Wild [4]. In doing so it uses data on the Dow Jones Industrial Average over the period from
January 3, 1928 to March 15, 2006 – a total of 19,758 observations.

The paper is organized as follows. In Sections 2 and 3, we briefly discuss the RMP model for the study of varying
periodic signals. In Section 4, we test for randomly modulated periodicity in the daily Dow Jones Industrial Average
and report and discuss the results. Section 5 provides a brief conclusion.

2. Randomly modulated periodicity

All signals that appear to be periodic have some sort of variability from period to period regardless of how stable
they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and
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thus has zero bandwidth around the sinusoid’s frequency. Bandwidth, a term from Fourier analysis, is the number of
frequency components that are needed to have an accurate Fourier sum expansion of a function of time. A single sinu-
soid has no such expansion. A zero bandwidth is impossible in nature since all signals have some intrinsic variability
over time.

Deterministic sinusoids are used to model cycles as a mathematical convenience. It is time to break away from this
simplification in order to model the various periodic signals that are observed in fields ranging from biology, commu-
nications, acoustics, astronomy, and the various sciences.

Hinich [3] introduced a parametric statistical model, called randomly modulated periodicity (RMP), that allows one
to capture the intrinsic variability of a cycle. A discrete-time random process x(tn) is an RMP with period T = Ns if it is
of the form

xðtnÞ ¼ s0 þ
2

N

XN=2

k¼1

½ðs1k þ u1kðtnÞÞ cosð2pfktnÞ þ ðs2k þ u2kðtÞÞ sinð2pfktnÞ�

where tn = ns, s is the sampling interval, and fk = k/T is the kth Fourier frequency, and where for each period the
{u11(t1), . . .,u1,N/2(tn),u21(tn), . . .,u2,N/2(tn)} are random variables with zero means and a joint distribution that has the
following finite dependence property: {ujr(s1), . . .,ujr(sm)} and {uks(t1), . . .,uks(tn)} are independent if sm + D < t1 for
some D > 0 and all j,k = 1,2 and r,s = 1, . . .,N/2 and all times s1 < � � � < sm and t1 < � � � < tn. Finite dependence is a
strong mixing condition – see Billingsley [1].

These time series, uk1(t) and uk2(t), are called ‘modulations’ in the signal processing literature. If D� N then the
modulations are approximately stationary within each period. The process x(tn) can be written as:

xðtnÞ ¼ sðtnÞ þ uðtnÞ

where

sðtnÞ ¼ E½xðtnÞ� ¼ s0 þ
2

N

XN=2

k¼1

½s1k cosð2pfktnÞ þ s2k sinð2pfktnÞ�

and

uðtnÞ ¼
2

N

XN=2

k¼1

½u1k cosð2pfktnÞ þ u2k sinð2pfktnÞ�

Thus, s(tn), the expected value of the signal x(tn), is a periodic function. The fixed coefficients s1k and s2k determine the
shape of s(tn). If s11 5 0 or s21 5 0 then s(tn) is periodic with period T = Ns. If s11 = 0 and s21 = 0, but s12 5 0 or
s22 5 0, then s(tn) is periodic with period T/2. If the first k0 � 1 s1k and s2k are zero, but not the next, then s(tn) is peri-
odic with period T/k0.

3. Signal coherence spectrum

To provide a measure of the modulation relative to the underlying periodicity, Hinich [3] introduced a concept called
the signal coherence spectrum (SIGCOH). For each Fourier frequency fk = k/T the value of SIGCOH is

cxðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jsk j2

jsk j2 þ r2
uðkÞ

s

where sk = s1k + is2k is the amplitude of the kth sinusoid written in complex variable form, i ¼
ffiffiffiffiffiffiffi
�1
p

, r2
uðkÞ ¼ EjUðkÞj2

and

UðkÞ ¼
XN�1

n¼0

ukðtnÞ expð�i2pfktnÞ

is the discrete Fourier transform (DFT) of the modulation process uk(tn) = u1k(tn) + iu2k(tn) written in complex variable
form.

Each cx(k) is in the (0,1) interval. If sk = 0 then cx(k) = 0. If U(k) = 0 then cx(k) = 1. The SIGCOH measures the
amount of ‘wobble’ in each frequency component of the signal x(tn) about its amplitude when sk > 0. The ampli-
tude-to-modulation standard deviation (AMS) is
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qxðkÞ ¼
jsk j

ruðkÞ

for frequency fk. Thus,

c2
xðkÞ ¼

q2
xðkÞ

q2
xðkÞ þ 1

is a monotonically increasing function of this signal-to-noise ratio. Inverting this relationship, it follows that

q2
xðkÞ ¼

c2
xðkÞ

1� c2
xðkÞ

An AMS of 1.0 equals a signal coherence of 0.71 and an AMS of 0.5 equals a signal coherence of 0.45.
To estimate the SIGCOH, cx(k), suppose that we know the fundamental period and we observe the signal over M

such periods. The mth period is {x((m � 1)T + tn),n = 0, . . .,N � 1}. The estimator of c(k) introduced by Hinich [3] is

ĉðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX ðkÞj2

jX ðkÞj2 þ r̂2
uðkÞ

s

where

X ðkÞ ¼ 1

M

XM

m¼1
X mðkÞ

is the sample mean of the DFT,

X mðkÞ ¼
XN�1

n¼0

xððm� 1ÞT þ tnÞ expð�i2pfmtnÞ;

and

r̂2
uðkÞ ¼

1

M

XM

m¼1
jX mðkÞ � X ðkÞj2

is the sample variance of the residual discrete Fourier transform, X mðkÞ � X ðkÞ. This estimator is consistent as M!1
and if the modulations have a finite dependence of span D then the distribution of

ZðkÞ ¼ M
N
jX ðkÞj2

r2
uðkÞ
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Fig. 1. (Logged) Dow Jones industrial average, 1928–2006.
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is asymptotically chi-squared with two degrees-of-freedom and a noncentrality parameter kk ¼ ðM=NÞq2
xðkÞ as M!1

– see Hinich and Wild [4]. These v2
2ðkkÞ variates are approximately independently distributed over the frequency band

when D� N.
If the null hypothesis for frequency fk is that cx(k) = 0 and thus its AMS is zero, then Z(k) is approximately a central

chi-squared statistic. Thus, Z(k) can be used to falsify the null hypothesis that cx(k) = 0. The tests across the frequency
band are approximately independently distributed tests. The use of the transformation to the Z(k)s is the only straight-
forward way to put statistical confidence on the signal coherence point estimates.

4. RMP in the US stock market

We use daily observations on the Dow Jones Industrial Average from January 3, 1928 to March 15, 2006 – see Fig. 1
for a graphical representation of the series. We applied the signal coherence spectral analysis to the differences of the
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Fig. 2. Logged first differences of the Dow Jones industrial average.
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Fig. 3. Signal coherence spectrum of the daily Dow Jones industrial average.
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natural logs of the Dow Jones Industrial Average, shown in Fig. 2, using the FORTRAN 95 ‘Spectrum.for’ program
developed by Hinich [3] and available at his web page, www.la.utexas.edu/~hinich.

The spectra were computed using the nonoverlapping frame average method. The length of the frame is the longest
period of the spectra. Its inverse is called the fundamental frequency of the randomly modulated periodicity. The user
must specify the frame length. We experimented with a number of frame lengths and found that a length of 390 days
gave a p-value of 0.015 for the Hinich and Wild [4] test for the presence of a randomly modulated periodicity. There are
50 full frames of length 390 days in the data.

The fundamental frequency only has a signal coherence value of 0.39 with a coherence probability of 0.709. Thus,
the fundamental frequency has a lot of modulation. The first harmonic frequency with period 195 days has a signal
coherence of 0.55 with a coherence probability of 0.994. Many of the higher harmonics have coherence probabilities
less than 0.5 and thus are very unstable. The most stable harmonics are 39 days (probability = 0.967), 26 days (prob-
ability = 0.987), 7.6471 days (probability = 0.995), 6.5 days (probability = 0.980), 5.9091 days (probability = 0.985),
and several short periods less than four days. The signal coherence spectrum is shown in Fig. 3 and the coherence prob-
ability spectrum is shown in Fig. 4.

5. Conclusion

We have applied the signal coherence spectral analysis to the daily returns series of the Dow Jones Industrial Aver-
age, over the period from January 3, 1928 to March 15, 2006. We detected sufficiently large modulations, suggesting the
absence of opportunities for sufficiently large returns after transactions costs.
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Fig. 4. Signal coherence probability spectrum of the daily Dow Jones industrial average.
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