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ABSTRACT

The paper investigates the following conjecture: the inability of investigators to make
meaningful point forecasts of stock returns despite strong evidence of nonlinear dependence is
caused by the episodic, or transient, nature of the dependencies.  A new methodology for detecting
transient dependence in a pure white noise process is applied to intra-day returns of a sample of
stocks who are members of the DJIA.  The methodology makes use of two portmanteau test
statistics.  The first, or C statistic, is similar to the Box-Pierce correlation test statistic.  The second
statistic, called H, detects third-order correlation, and is therefore a test for certain types of
nonlinearity.  In addition, Engle’s LM test for ARCH/GARCH, another form of nonlinearity, is used
to search for transient episodes of conditional heteroskedastic volatility in daily stock returns.
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The potential for making point predictions of stock returns generated considerable

excitement in econometric circles with the discovery, over a decade ago, of nonlinear dependence

in financial time series.  The idea of complex stock market dynamics with some degree of

predictability has theoretical appeal to many economists.  A prodigious amount of empirical

evidence supporting the existence of nonlinear dependence in economic and financial time series

has accumulated over the past decade.  Much of the evidence is related to the phenomenon of

conditional heteroskedasticity, a form of nonlinear dependence which can be generated by a

martingale difference process.  More generally,  nonlinear dependence can be classified into two

broad groups:  those processes which are also martingale differences, and those which are not.  The

former do not admit forecasts of the conditional mean, a significant distinction in finance.  In its

totality, the scientific evidence suggests that both classes of dependence are present in stock returns.

The first report of nonlinear dependence in stock market returns can be found in Hinich and

Patterson (1985).  That paper applied the Hinich (1982) bispectral linearity test to a sample of daily

common stock returns for fifteen different stocks selected at random from the daily CRSP file.  The

Hinich test is designed to detect third-order moment dependence, a complicated form of correlation.

The best known example of a nonlinear martingale model in the finance field is the

Autoregressive Conditional Heteroskedastic (ARCH) model of Engle (1982), and its close cousin

the Generalized Autoregressive Conditional Heteroskedastic (GARCH) model of Bollerslev (1986a).

These models have had wide appeal to finance researchers because they are capable of modeling

time varying stock market volatility.  ARCH and GARCH are specific models whose parameters can



1A partial list of the papers which apply the bispectrum test to stock market returns are
Hinich and Patterson (1985a), Hinich and Patterson (1985b), Ashley and Patterson (1989), and
Hinich and Patterson (1993).
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be estimated from data given there is suitable evidence that this type of conditional volatility is

present in the data.  

In his 1982 paper, Engle presents a Lagrange multiplier test which is capable of detecting

ARCH/GARCH effects in time series.  Bollerslev (1986b) is the first published paper that

documents the estimation of an autoregressive conditionally heteroskedastic model using stock

market data.  Asymptotically, the Hinich bispectrum test can not distinguish between an i.i.d.

process and ARCH/GARCH because the Hinich test1 is based upon third-order moments, whereas

the unconditional moments of ARCH and GARCH are of the fourth-order.  Hsieh (1991), and

Nelson (1991), present evidence that suggests ARCH-type models do not explain all of the nonlinear

dependence in stock returns.  Indeed, Diebold and Nason (1990) comment that “It is not clear,

however, that the ARCH effects are structural, i.e. that they are a characteristic of the true data-

generating process (DGP).  Instead, ARCH may indicate misspecification, serving as a proxy for

neglected nonlinearities in the conditional mean.”

A third widely-used test for detecting dependence has been developed by Brock, Dechert,

and Scheinkman (1986).  The BDS test makes use of the correlation integral in the test statistic,

which gives it an interesting connection with chaos.  The ideas behind the BDS test are used to study

nonlinear dependence in stock returns in Scheinkman and LeBaron (1986); also see Chapter 3 in

Brock, Hsieh and LeBaron (1991), and Hsieh (1991) for specific examples of applying the BDS test

statistic to stock market returns.  The BDS test is sensitive to all forms of dependence, including

serial correlation, and ARCH/GARCH volatility effects.  
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The ARCH and GARCH models are not the only mathematical specification that produces

an apparent non stationarity in variance.  Consider a quadratic nonlinear moving average (MA)

process of the forum:

(1.1)

Where e(t)~NIID(0,1).  Figure -1 is a plot of the e(t) process which is the innovation series for (1.1).

A plot of a fifteen term quadratic MA driven by the e(t) innovation series is shown in Figure 0; it

is  not a martingale difference process nor is it a Gaussian normal process.  In figures -1 and 0 we

have added horizontal dashed lines to indicate the limits of a 95% confidence interval - i.e. ± two

estimated standard deviations – around the observations.  In Figure 0 the relatively large number of

observations falling outside these limits is indicative of the non-Gaussian nature of this process.  A

histogram (not shown) of the data plotted in Figure 0 indicates that this data is characterized by “fat

tails” compared to a Gaussian process.

The idea that nonlinear structure in stock returns would lead to superior predictions of the

mean has not born fruit.  To date, no successful prediction method has been reported in literature,

although there have been serious attempts by various researchers.  One problem with developing a

prediction method is that the form of the nonlinearity is unknown, thereby forcing researchers to

employ approximation techniques.  See, for example, Diebold and Nason (1990), and Hsieh (1991),

who have applied the nearest neighbor regression technique to the prediction of financial time series.

Although these authors conclude that the evident nonlinearities do not appear to be exploitable in

the sense of making improved point forecasts, they offer no opinion on the apparent contradiction

between the existence of nonlinearity which is not a martingale difference, and their inability to



2A stationary time series is called pure-noise if x(n1),...,nN. A white-noise time series, by
contrast is one for which the autocovariance function is zero for all lags.  Whiteness does not
imply that x(n) and x(m) are independent for m… n unless the series is Gaussian (normal).  
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improve upon naive forecasting techniques such as a random walk.  Taking a different tack, White

(1988) reports that a neural network set up did no better than a simple random walk in predicting

IBM stock returns.

It is our conjecture that the failure to exploit nonlinearity in order to make improved point

forecasts is a reflection of the episodic nature of the nonlinear phenomenon.  We believe that the

high power of tests such as the bispectral linearity test and the BDS test masks the episodic

appearance and disappearance of nonlinear dependence in stock returns.

The paper applies a new methodology for detecting epoches of transient dependence in pure

white noise to the study of intra-day stock returns.  Both linear and nonlinear dependence are

considered.  The method views the candidate stochastic process as a pure-noise series2, that from

time to time, due to unknown factors, switches to a dependent stochastic process for some unknown

length of time, and then switches back to pure-noise.  The structure of the dependence follows some

unknown linear, or nonlinear, operation on lagged values of the process.  The probability model of

the dependence is unknown, and may vary from epoch to epoch.  The epoch occurrence times are

sparse, and their distribution is unknown.  The pure-noise process need not follow the normal law.

The single assumption made about the pure-noise process is that it is stationary and has finite

moments up to order twelve.  Thus the specification of the problem is very loose.  Because little is

known  about the probability structure, standard approaches for estimating parameters of a switching

model are not appropriate here.

I. TESTING FOR DEPENDENCE
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A. Overview

The sample design is to pass the data through a non-overlapped window.  The data consists

of eight time series of stock returns sampled every 10 minutes over a six and one-half year period.

The eight series correspond to eight of the thirty DJIA stocks.  The length of the window

corresponds to one trading day.  We look at individual windows because we want to detect episodic

events if present. 

Each window is tested for dependence under a null hypothesis of pure-noise.  Three different

portmanteau tests are performed: linear - similar to the Box-Pierce correlation test, nonlinear -

considers third-order correlations, cross nonlinear - cross third-order correlation between return and

volume.

We also test for conditional heteroskedasticity using Engle’s Lagrange multiplier test.  In

keeping with the spirit of ARCH/GARCH, we apply this test at the window level; that is we look

for evidence of conditional heteroskedasticity which evolves across windows.

B. Test Statistics

Below we introduce and define each test statistic.  The stated distribution of each statistic

holds asymptotically.  However, the portmanteau tests are run on small samples, 36 observations per

window, which makes the asymptotics questionable.  Therefore, in Appendix A, we report the size

and power of the statistics for a sample size of 36.

Let the sequence {x(tn)} denote the observed sampled data process.  Set the time unit such

that the sampling interval tn+1-tn=1, and use the standard convention that t is an integer.  As stated

at the top of this section, the sampling design employs a non-overlapped data window. If n is the

window length, the kth window is {x(t(k)),x(t(k)+1),...,x(t(k)+n-1)}. The next non-overlapped
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window is {x(t(k+1)),...,x(t(k+1)+n-1)} where t(k+1)=t(k)+n.  From now on let t(k) = 1.  The

statistics used in this paper are computed for each window.  The null hypothesis for each window

is that the transformed data {x(t)} are realizations of a stationary pure-noise process with finite

moments up to order twelve. The alternative hypothesis is that the process in the window is random

with some non-zero correlations cx2(r)=E[x(t)x(t+r)] or non zero bicorrelations

=E[x(t)x(t+r)x(t+s)].

B.1. C Statistic

Our C, or correlation, statistic is closely related to the widely used Box-Pierce portmanteau

test statistic which detects correlated (non white) noise (Box and Pierce, 1970).  The Box-Pierce

statistic is usually applied to the residuals of a fitted ARMA model, but here it is a function of the

standardized observations.  First, define z(t) as:

z(t)=[x(t)-mx]/sx (1.1) 

for each t=1,..., n where mx and sx are the sample mean and sample standard deviation of the

window. Next, define 

(1.2)

where 
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(1.3)

(1.4)

The Box-Pierce test does not specify the number of lags  to be used; that decision is left to

the user.  Here, we specify R=nb with 0<b<0.5.  In Box and Pierce (1970) it is proven that C is

asymptotically approximately chi-square with degrees-of-freedom.

B.2. H Statistic

The H statistic tests for certain forms of nonlinearity using third-order correlations.  The (r,s)

sample bicorrelation is

Let G(r,s) = (n-s)½ cz3(r,s) and define H as,

H is asymptotically distributed under the null as a chi-square with (R-1)/R/2 degrees-of-freedom when

R=nb, 0<b<0.5 as above.  (See Hinich (1995) for the proof).

The H statistic, which detects third-order correlations, can be considered a generalization of

the Box-Pierce portmanteau test.  It is our experience that the value b=0.4 for the exponent on n is

a good compromise between: 1) using the asymptotic result as a valid approximation for the

sampling properties of H for moderate sample sizes, and, 2) having enough sample bicorrelations

in the test statistic to have reasonable power against non-independent variates.
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(1.5)

(1.6)

B.3. HXY Statistic

This statistic is a test for cross-bicorrelation.  It is analogous to cross-correlation between two

time series, say series x and y, except that this statistic is based on a third-order cross moment.

Define the sum, cxxy(r,s), over certain third-order moments:

for 0˜r˜s as before.  Then write the statistic HXY as 

HXY is asymptotically distributed as a chi-square variate with 2 + R degrees-of-freedom for R=nb,

0<b<0.5, under the null hypothesis that {x(t)}, {y{t}} are independent pure-noise.  A proof of the

asymptotic properties of HXY is provided in Appendix A.

B.4. E Statistic

This is a lagrange multiplier test attributed to Engle (1982).  Consider the OLS regression

of the autocorrelated {x(t)} on its past:

x(t) = Wt $ + e(t) (1.7)

where wt = (1, x(t-1), ..., x(t-m)), and $ = ($0, $1, ..., $M)T, with M some predetermined lag integer,

and T denoting the transpose.  Suppose (1.7) is adequate for whitening the x(t)’s, that is, the

residuals { (t)} from (1.7) can be regarded as white-noise, but not necessarily pure-noise.



3The exception is McDonald’s, where the period is January 2, 1980, through December
31, 1985.
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Construct the sequence of squared residuals { 2(t)}, and denote it {a(t)}.  Regress a(t), using

OLS, on {1, at-1, ..., at-p}:

a(t) = Ut N + :(t) (1.8)

where  :(t) = {1, at-1, ..., at-p}, and N = (N0, N1 N, ..., Np)T.  Let R2 be the R-squared of the auxiliary

regression  (1.8).  Then the E test statistic is

E = nR2 (1.9)

with n the number of observations used in (1.8).  Note that E has a limit null distribution of chi-

square with p degrees-of-freedom.

II. The Data

We analyze 15 of the 30 DJIA stocks for the period January 2, 1980, through August 31,

1985.3  To illustrate the difference between our window by window methodology and standard time

series methodology for making inferences, we revisit the stock data we used in our earlier papers.

The included stocks are:

Alcoa, Inc. International Business Machines
American Express International Paper
Bethlehem Steel McDonald’s Corp.
Chevron Corp. Merck & Co.
Coca-Cola Co. Minnesota Mining and
Eastman Kodak Manufacturing Co.
General Motors Proctor & Gamble o.
Goodyear Tire and Rubber United Technologies Corp.

The source data is in the form of trade-by-trade prices provided by Fitch Investor Services.  Each

price series was first adjusted for dividends and stock splits.  Next, each series was smoothed using



4In Hinich and Patterson (1989) we use tick data to study the same stocks as included
here.  The time period covered in our 1989 paper was September 1978 through August 31, 1981,
and we employed a 15 minute sampler rather than a 10 minute sampler.  This paper applies more
statistical tests than our earlier paper, and, among other differences, here we examine individual
days rather than the entire record as a single series.  Further, we didn’t consider nonlinear cross
coupling between volume and returns in our 1989 paper.
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a Tukey filter.  This removes low-frequency or trend components.  Last, each series was sampled

every 10 minutes, and these sampled prices converted to returns by taking the first-difference of log

prices.  A 10 minute sample interval  produces 36 returns per trading day.  The data window is 36

observations long, and covers exactly a single trading day, with no overlap unless the stock failed

to open at 10:10 a.m. or earlier.  The first sample return for each day is at 10:10 a.m. and the last is

at 4:00 p.m.  Each stock series contains approximately 1,435 daily windows.  From equation (1.4),

b is set to 0.4 which yields R=4 correlations and six bicorrelations for each day.  The mean, standard

deviation (sig), skewness, kurtosis (k4), maximum, and minimum were computed for each window

along with the two test statistics H and C.  The standard deviation, skewness, kurtosis, and range

(max-min) were normalized by dividing each value by their sample values computed from the whole

sample period.  The H and C statistics are transformed by the cdf of the standard normal N(0,1) so

that they have a uniform U(0,1) distribution if the process is pure noise and when asymptotic

normality applies for their distributions.  The descriptive statistics over the whole period for these

eight stocks are shown in Table 1.  All the returns series are highly leptokurtic.

Low-pass filtering the returns is necessary in order to mitigate the influence of aliasing on

the time series statistics of the data.  In other words, if a time series is not independent increments,

then proper sampling technique requires that the data be band limited before sampling; see Hinich

and Patterson (1989) for a discussion sampling high-frequency stock data.4 
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Given that the data consists of the sequence of traded prices, some readers may be concerned

that bid-ask bounce and the possible sequential execution of limit orders is going to confound our

statistical tests, especially the correlation test.  However, these effects are mitigated for three

reasons: (1) low-pass filtering (bid-ask bounce is a high frequency phenomenon), (2) skip sampling

of prices, and (3) this sample of stocks (DJIA members) is frequently traded.  In Section III we will

return to this issue, and present some direct evidence that bid-ask bounce is not influencing our

statistical results in any significant sense.

III. Intra Window Results

In part A of this section we present the results from applying the C and H tests to the

univariate return series using a one-day data window.  These results are summarized in Table 2.  The

evidence to be presented in subsection A supports the assertion that the stock generating process is

non stationary in return dependence.  We will see that the rejection of the i.i.d. null using either the

C or H statistic is episodic in nature, with the null being accepted most of the time.  In part B we

consider nonlinear cross-coupling between trading volume and returns through the HXY statistic.

Part C deals with various econometric issues, including bid-ask bounce.

A. Returns

The C and H statistics are calculated for each data window.  A window covers a trading day,

and contains 36 non overlapping observations.  Four lags were used in calculating the C and H

statistics.  A 1% significance level is used in reporting the results.

A.1. C Statistic

The third column in Table 2 displays the number of windows where the null of i.i.d. returns

is rejected by the C statistic.  In parenthesis is the percentage of the total number of windows (days)
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where rejection occurs.  For example, in the case of Coke, the null was rejected on 48 days, which

is equivalent to 3.3% of the days tested.  By random chance, we would be expected to reject 1% of

the days at the 1% level, so in fact our rejection rate is more than three times greater than expected

under the null.  IBM and GM, and possibly McDonald’s, are stocks where evidence against the null

is weak.  For the remaining four stocks. the evidence against the null is reasonably strong.

The portmanteau correlation statistic, C,  is calculated from estimated correlations up to and

including lag 4 within a window.  The computer software that implements the tests prints out the

correlation estimates for each window where C was significant.  Typically, the largest correlations

were of the order 0.10 to 0.50.  Likewise, the smallest correlations fell in the range -0.10 to -0.50.

Occasionally, magnitudes as high as 0.70 were observed.

The occurrence of days on which the C statistic rejects tends to be isolated with infrequent

clusters of two or three significant days in sequence.  Figure 1(a) is typical of the patterns we

observed.  It is a plot of one minus the prob-value level of the C statistic for Coca-Cola during 1983.

We report the P-values this way for plotting purposes so that a very significant outcome is plotted

as a value near 1.0.  For clarity, we only show those days when one minus the P-value is $ .095.

Note that a few of the plotted values are very close to 1.00.

A.2. Correlation Across Windows

In this subsection we consider the following question:  Is it possible that there exist patterns

in the returns which extend across windows which exhibit a significant H statistic?  One approach

to pattern detection is as follows.  Suppose there is a significant positive correlation between the

returns at lag 9 and 22 in a particular (significant) window.  It would be interesting to know if lags



13

(3.1)

9 and 22 are also correlated in other significant C or H windows.  As an example calculate the

correlation measure

where M is the number of significant H windows, and the significant windows are grouped

sequentially.  More generally,  estimate the cross-window correlations for all possible combinations

of i, j (1#i, j#36).  Table 3 shows the 10 largest (positive) and 10 smallest (negative) correlations

for each stock in the study (all correlations are nominally significant at the 1% level).  The

magnitude of the correlations is surprisingly high, although not out of line with the intra-window

correlations at lags 1, 2, 3, and 4.  Of course, most of the windows included in the calculations of

Table 3 did not have a significant C statistic.  Turning to the negative correlations, notice that many

are located at adjacent lags, which indicates strong reversals over the two 10-minute intervals.

The reader is advised to use caution in the interpretation of the evidence of correlation

presented in Table 3.  Because the correlation measure is non standard, and because all possible lag

pairs were considered, the sampling properties of the estimator are not clear.  As a rough check on

how many significant correlations we might expect by chance, the exercise was repeated using only

insignificant windows.  Note: the number of significant windows was always less than 100, whereas

the number of insignificant windows was around 1,400.  With only the insignificant windows, the

magnitudes of the correlations are smaller than those shown in Table 3.  The positive correlations

are generally smaller than 0.10, and the negative correlations fall in the range -0.10 to -0.15.  Again,

some of the negative correlations are located at adjacent lags.  Therefore, it can be concluded that
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there exist  patterns of dependence across windows.  However, exactly what these patterns mean is

not clear.  Whether the observed reversals are linked to bid-ask bounce, despite the filtering

procedure, requires additional investigation, which is reported in Section C.1 below.  For now it can

be said that it is unlikely that bid-ask bounce can explain the reversals.  Remember that the reversals

occur at the same time on different days where the particular days in questions have in common the

fact that the H statistic is significant.  Although some reversals can be observed on other days, the

strength of the correlation is lower.

A.3. H Statistic

The H statistic is used as a nonlinearity test derived from the sample bicovariance function.

One can think of the test as measuring the cross-correlation between the level and the correlations.

Refer to Table 2 for a summary of the results.  At the 1% level, we reject the null in 1.8% of the

windows for IBM and up to 4.3% of the windows for Proctor and Gamble, and the nonlinearity test

rejects more frequently than the correlation test.  When linearity is rejected for a window, the

rejection tends to occur at a very high probability level despite the small sample size (36

observations per window).  This is brought out in Figure 1(b) where we plot the probability levels

for Coca-Cola during 1983.

In Figure 2, graphical evidence is presented that supports the idea that returns behave

differently on days when the H statistic rejects, than on days when the null is not rejected.  The

figure is analogous to using a scatter plot of a variable versus its lagged value to spot correlation.

Here the plot consists of lagged cross-products versus the contemporaneous value of the return, for

example, x(k-1)x(k-2) versus x(k).  Because the H statistic considers lags 1 through 4, all possible

cross-products of returns involving lags 1-4 are considered.  The process involves calculating the
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absolute value of the products, summing these six cross products together, and plotting the sum

against the contemporaneous return.  In figure 2, the returns are drawn from three consecutive days

when the H statistic rejected for McDonald’s Corporation.  Compare this with Figure 3, where we

have repeated the experiment over three consecutive days in the same month when the H statistic

did not reject.  It can be seen in Figure 3 that the points cluster around the origin, in sharp contrast

to Figure 2.

In summary, the evidence seen in Subsection A shows that that intraday security returns

exhibit episodes of significant dependence followed by periods where returns appear to be

identically and independently distributed.

B. Bid-Ask Bounce and Other Issues

In this final subsection of Section III, the question of bid-ask bounce is again considered, as

well as issues such as the correlation between test statistics, and the possible impact of poorly

behaved higher-order moments on the reported results.

B.1. C and H Tests Under Bid Prices

As is well known, there are certain situations where the price of a stock may sequentially

bounce between the specialist’s “bid” price and the specialist’s “ask” price.  Clearly, such behavior

will cause negative correlation in sequential returns.  If left unchecked, such negative correlation

would confound the C statistic, and possibly the H statistic.  Time series statisticians regard these

frequent reversals as a source of high frequency noise, which in turn, can be filtered from the data

using a low-pass digital filter.  A filtering approach to the issue is taken here.  In particular, a Tukey

filter with a base width of 15 minutes is applied to the data.  As a check on the adequacy of this



5Bid prices came from the ISSM tapes whereas the data employed is from Fitch Investor
services. The data available to us with ISSM tapes does not cover the entire period included in
this study.  We also found a number of missing days for those stocks and years where bid prices
were available.  For these reasons it was decided to only replicate the tests for McDonald’s Corp.
in 1983.
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method, we ran the C and H tests using bid prices for McDonald’s during 1983.5  Table 5 compares

the C and H test statistics when using traded prices versus bid prices (because of missing days in the

data base containing the bid prices, that sample size is slightly smaller).  As shown in the table, the

rejection frequencies using the C statistic are virtually identical.  Surprisingly, the rejection

frequency for the H statistic is slightly higher using bid prices.  Why this is the case is not known,

but it can be  concluded that bid-ask bounce does not appear to be responsible for intraday rejections

by either the C statistic or the H statistic.

B.2. Other Econometric Issues

Readers familiar with the statistics of stock returns know that they are characterized by heavy

tails vis-à-via the normal distribution.  Eugene Fama (1968) carefully documented this behavior in

the 30 DJIA stocks 30 years ago and explained that such a characteristic is referred to as

leptokurtosis.  Fama argued that a Stable Paretian distribution with a characteristic exponent less

than 2.0 fit the data much better than a normal distribution.  One immediate consequence of this

proposition is that the second moment does not exist.  Fama explained that non existence would

manifest itself in the form of a poorly behaved variance estimator, and, indeed, provided some

evidence that for his sample of stocks the variance did appear to be poorly behaved.  We provide this

background not because we want to enter the argument, still being carried on today, over the

existence of the second moment in stock returns, but rather to focus on the more narrow issue of
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whether or not the variance and higher order moments are sufficiently ill-behaved in our data such

that they are causing false rejections by the H statistics.

Evidence on this question is presented in Table 6.  For those windows where the H statistic

is significant at 1% the table shows correlation of H and C, the correlation of H and standard

deviation, the correlation of H and kurtosis, and finally, the correlation of H with range.  The

correlation of H and C is included because we are interested in whether or not correlation and

nonlinearity tend to occur in sympathy (asymptotically, the two test statistics are independent under

the null).  The two standard error interval in this table is approximately 0.3.  Correlation between

H and C appears to be the case for Coke, IBM, and GM, to some degree, but not the case for the

other stocks.  Next, if moment behavior is a problem, one would expect to see positive correlation

between H and various measures of dispersion such as standard deviation, kurtosis, and range.  But

from Table 6 it can be seen that this is not the case.  Regarding sigma, Coke has a moderate

correlation, but of the wrong sign.  The correlation of H with kurtosis tend to be low, but again of

the wrong sign, and the sample correlations of H and range are mostly small, and with one exception

of the wrong sign.  Given the above evidence it is difficult to see how poorly behaved moments

could be driving our nonlinearity results in any meaningful way.

IV. Inter Window Results

A. The E Statistic

The Autoregressive Conditional Heteroskedastic (ARCH), and the Generalized

Autoregressive Condition Heteroskedastic (GARCH) are two widely studied nonlinear time series

models.  These models have often been fitted to financial time series, including common stock
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returns, and have a natural appeal to financial economists because they are capable of explaining

(time varying) conditional volatility; see, for example, Schwert and Sequin (1990).

Good econometric practice requires identifying the order(s) of ARCH/GARCH processes

before model estimation.  Engle’s lagrange multiplier test is a popular method for identification.

Here his test is used to detect the likely presence of ARCH/GARCH in the data.  The spirit of these

models is to capture the relatively slow (longer than a day) evolution of volatility changes.  Hence,

one is interested in testing for the presence of ARCH/GARCH in daily returns, rather than the 10

minute returns.  The variate  under test is the standardized sample variance of the returns in each

window (a little more than 1400 windows for each stock).

For each stock the E (Engle) test statistic is calculated over the entire sample, and then over

7 subgroups of about 214 days each.  Table 7 displays the result of the experiment (the test statistic

is chi-square with 11 d.f.).  Regarding the entire sample, all series wildly reject at the 1% level, with

the exception of United Technologies.  The subgroups, however, tell a different story.  Here we

again see evidence of episodic nonlinearity, as was the case with the H statistic.  IBM and General

Motors reject the null in five of the seven subgroups, and the other stocks reject less often.  It should

also be noted that there is no pattern with regard to which subgroups reject.  Although United

Technologies did not reject for the entire sample, subgroups 3 and 6 did reject at the 1% level.

B. Is ARCH/GARCH Responsible for Rejection of the Null by the H Statistic?

Because the presented evidence suggests the presence of third-order nonlinearity (H statistic)

and fourth-order nonlinearity (E statistic) it is natural to speculate as to whether or not fourth-order

nonlinearity (i.e. ARCH/GARCH) is causing false alarms in the H test.  Two methods are employed

to investigate this question.  First, a computer simulation of a GARCH model is carried out, and the
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size of the H statistic reported.  Second, the simulated GARCH data is transformed to a binary series

(0,1).  Because ARCH/GARCH is a martingale difference process, the transformed data should be

a bernoulli sequence if the original distribution is symmetric.

All the ARCH/GARCH specifications have the following structure: x(t) = h(x,e)e(t), where

{e(t)} is a zero mean stationary pure-noise process, and h(x,e) is a positive functional of {x(s), e(s);

s=t-1,t-2,...}.  The process is ARCH if the functional only depends on e(s), and is GARCH if it

depends on x(s) and e(s) for s<t. Thus {x(t)} is a stationary martingale difference process since the

conditional expectation of x(t) given x(s) for s<t is zero. For example, a GARCH(1,1) model is

x(t)=h(t)e(t), where h(t) = [b0+bee2(t)+bhh(t-1)]½ where b0, be, and bh are positive parameters. In most

applications it is assumed that the e's are gaussian.  

In order to get a handle on the validity of the large sample approximation for the H statistic,

a GARCH(1,1) model with parameters b0=0.0108, be=0.1244, and bh =0.8516 was simulated. These

parameters are typical of a GARCH(1,1) fit to financial time series.  The same three noise processes

used in the simulations of Appendix B are employed: gaussian, exponential, and uniform.  For 1000

repetitions of the GARCH(1,1) with 51,622 observations (1433 windows) per repetition, the H

statistic rejected for 1.4% of the windows.  This is within the two standard error band for a 1% test,

so we conclude that the H statistic has the appropriate size in the face of a GARCH(1,1).

The second way of looking at the false alarm question is with the binary transformation.

Define the following transformation of {x(t)} to {y(t): y(t) = 1 if x(t) $ 0 and y(t) = -1 if x(t) < 0}.

Thus if {x(t)} is a ARCH or GARCH process with a symmetric distribution, the {y(t)} is a stationary

binary pure noise process.  Although a GARCH(1,1) is a martingale difference, and thus white noise,

it is not pure-white noise.  The maintained hypothesis of this paper is therefore not true for
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GARCH(1,1).  However the binary transformation turns an ARCH/GARCH into a pure noise

process whose cumulants are very well behaved with respect to the asymptotic theory presented in

Appendix A.  Therefore, if the C or H statistics are significant for a sample, and if their large sample

distribution is valid, then the presence of ARCH/GARCH effects cannot be used to explain the

rejections.

The GARCH(1,1) model described above was used to simulate the source process.  The

x(t)’s so generated were  then transformed to binary variates as defined above.  The estimates of the

size for six thousand replications of length n=36, and length n=50, are given in Table 8.  The sizes

are conservative.

V. Binary Stock Data

The binary transformation of Section IV.B. can be easily applied to the 10 minute stock

returns.  Doing so will provide another check on the validity of the results reported earlier for intra

day returns.  The exercise is of independent interest because the C test can be interpreted as a “runs”

test.  That is to say, in a runs test of a stock series a plus is assigned if the stock price increased over

an interval, and a minus if it declines.  A run is defined as a sequence of pluses, or a sequence of

minuses.  The number of runs observed is compared to the number expected under a sequence of

bernoulli trials.  If an observed binary sequence passes a runs test, it will also not cause the C test

to reject.  Next, we report the results of the C and H tests when the stock market data is transformed

to binary sequences.

The C and H statistics were computed for a sequence of n=36 daily windows using the binary

return data. The days were the same as used for the real returns. The number of significant windows
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for the binary data is given in Table 9. Please note that the number of rejections is smaller than the

number reported for the real returns but nevertheless much larger than the nominal level of 1.0%.

The pattern of significant windows is different for the binary data as compared with the

patterns for the real returns. A larger fraction of the rejections is attributed to the C statistic in the

binary data. Figure 4(a) shows a comparison with the pattern for the C's shown in Figure 1 for

Proctor and Gamble.  Only a minority of the windows have statistically significant C's for both the

real and the binary data. The same holds for the H's (Figure 4(b)). Yet the results for the binary data

suggest that these data series are not statistically independent, that is, they are not generated by a

random walk.

The maintained hypothesis after the binary transformation of the data remains iid.  Therefore,

it is useful to examine the correlation pattern of the binary data. The results for Coca-Cola are

typical of what was found. The mean of the sample Cz2(1) (see equation (1.2)) for the 49 significant

windows is <Cz2(1)>=-0.30, with a standard deviation of 0.30. This mean is slightly biased towards

zero since some of the rejections were due to the H rather than the C statistic. The mean of Cz2(1)

for the 1380 non significant windows is <Cz2>=-0.12 with a standard deviation of 0.167. Thus the

standard errors for the means are 0.039 and 0.005 respectively, and the difference between the

means is clearly statistically significant.

The results for the other three correlations are as follows: <Cz2(2)>=0.25 for the significant

windows and <Cz2(2)>=0.00 for the rest (standard dev's of 0.19 and 0.166 respectively),

<Cz2(3)>=-0.14 for the significant windows and <Cz2(3)>=-0.05 for the rest (standard dev's of 0.31

and 0.165), and <Cz2(4)>=0.10 for the significant and <Cz2(4)>=-0.05 for the rest (standard dev's of

0.29 and 0.171).  Only four lags are used for a window size of 36. Windows of size n=72 and 108
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were also considered and it was found that the correlations for significant windows have at most a

lag of seven periods, which is 70 minutes. These results indicate that the signs of price changes in

the 10 minute returns cannot be regarded as bernoulli sequences, although the dependence may die

out quickly.

5. CONCLUSION

The portmanteau bicorrelation test of Hinich (1995) and a modified Box-Pierce test have

been used to detect epoches of transient dependence in eight high frequency time series of stock

returns. The results provide evidence that there is some form of nonstationarity in the underlying

generating process. The results can be regarded as consistent with a switching process. There appear

to be epoches of dependence in the ten-minute returns followed by long periods where no evidence

of second or third-order dependence is observed in the data.  Significant short term correlations and

bicorrelations appear for certain days in the binary sign sequences.

The lagrange multiplier test of Engle (1982) provided additional evidence of nonlinearity in

stock returns at daily intervals.  This nonlinearity is consistent with the presence of ARCH/GARCH

effects in the return generating process.  There appears to be no reason to believe that ARCH or

GARCH is responsible for the rejections by the bicorrelation portmanteau tests.
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APPENDIX

The purpose of this appendix is to provide evidence concerning the size and power of the C

and H tests.  Assume that {x(t)} has non-zero bicorrelations.  Then under the alternative hypothesis,

G(r,s)=(n-s)½cz3(r,s)+O(1) by applying the central limit theorem for dependent variates to equation

(1.4) in the text.  Thus G2(r,s)=(n-s)(cz3(r,s))2+O(n½), and consequently H=(n/R)B2[1+O(1/R n½)]

where

The power of the H test will be near one if the n(1-c)B2 is large, and clearly the test is consistent as

n64 for any alternative with at least one non-zero bicorrelation.  A similar results holds for C as long

as there are some non-zero correlations for the alternative.  Asymptotic theory does not give much

insight into whether the asymptotic normal distribution for H applies for a given sample size.  In

order to provide such insight, we turn to artificial data analysis.  

The sizes (Type I errors) of the H and C tests were estimated for three sample sizes (n=50,

200, 1000) and for three types of distributions for pure noise ,(k)’s - normal N(0,1), one tailed

exponential, and uniform U(0,1) - using six thousand (6000) replications.  The ,(k) variates were

generated using the IMSL pseudo-random number generators GGNML, GEXP, and GGUB.  Table

1 shows the estimated sizes of the H and C statistics for the levels of the 1% and 5% nominal sizes

using the N(0,1) approximation.  The sizes are well approximated by the tests even for a sample size

of 50.  

In order to obtain some idea of the power of the H and C tests, pseudo-random x(k) variates

were generated by the following nonlinear autoregressive model which has non-zero bicorrelations

as well as significant skewness and kurtosis.  Let {,(k)} be a pure noise process where tk-k for all



integers.  Then the nonlinear AR model is x(k)=ax(k-2)x(k-1)+,(k) if *ax(k-2)*<1 or x(k)=,(k)

otherwise.  For a=0.50 this model has a correlation at lag three of about 0.42.

Table 2 shows the estimated power of the H statistic for the 1% and 5% levels using the

N(0,1) approximation.  As with the size, the ,(k)’s were computed using the normal, exponential,

and uniform pseudo-random generators and n=50, 200, and 1000.  The scales used were a=0.10,

0.25, and 0.50.  The H test correctly rejected more than 50% of the runs at the 5% level for n=50 and

a=0.50.  It correctly rejected about 50% of the runs for n=200 at the 5% level for all three values of

a. 

Although the model generates few non-zero correlations, the C test correctly rejected the null

hypothesis of pure noise at a 50% rate for n=50 and a=0.50.  The power of the C test increases with

increasing n, as is indicated by the theoretical calculation for the power.



Table 1.  Summary Statistics of 10 Minute Returns for the Fifteen DJIA Stocks

Sample
Name Mean % Stand Dev % Skew Kurtosis Max % Min % Size-Days

Alcoa 7.15E-04 0.276 0.36 10.2 4.07 -3.86 51516-1431

American Express 1.71E-03 0.288 -0.050 12.0 3.50 -5.46 51516-1431

Bethlehem Steel 1.15E-04 0.299 0.267 14.9 5.86 -6.34 51552-1432

Chevron 9.29E-04 0.264 1.17 40.6 8.82 -4.34 51516-1431

Coke 1.42E-03 0.217 -0.174 14.2 2.64 -4.72 51622-1432

GM 8.90E-04 0.191 0.097 17.3 2.72 -4.70 51622-1432

Goodyear 1.56E-03 0.297 -0.019 10.2 3.94 -6.61 51552-1432

IBM 1.26E-03 0.169 0.467 12.3 2.91 -2.34 51585-1431

Int. Paper 8.26E-04 0.225 0.507 21.1 4.82 -4.18 51552-1432

Kodak 8.36E-04 0.191 0.10 14.2 2.91 -3.72 51552-1432

McDonalds 1.95E-03 0.205 1.06 36.6 5.74 -3.00 54540-1515

Merck 8.64E-04 0.194 0.303 9.8 2.63 -2.22 51622-1432

MMM 9.32E-04 0.196 0.350 9.4 3.21 -2.19 51622-1432

Proctor & Gamble 9.57E-04 0.188 0.514 14.5 4.78 -2.02 51586-1431
  
United Tech 1.19E-03 0.241 1.76 76.9 10.10 -4.52 51549-1430
 



Table 2.  C and H Statistics Using a Threshold of 0.10%

Total Number Significant1 Significant1

Name Windows (Days) C Windows H Windows

Alcoa 1431 11 (0.77%) 26 (1.82%)

American Express 1431 3 (0.21%) 6 (0.42%)

Bethlehem Steel 1432 13 (0.19%) 35 (2.44%)

Chevron 1431 10 (0.70%) 14 (0.98%)

Coke 1432 13 (0.91%) 16 (1.12%)

GM 1432 4 (0.28%) 26 (1.82%)

Goodyear 1432 21 (1.47%) 24 (1.68%)

IBM 1431 6 (0.42%) 3 (0.21%)

Int. Paper 1432 6 (0.42%) 31 (2.16%)

Kodak 1432 5 (0.35%) 7 (0.49%)

McDonalds 1515 4 (0.26%) 23 (1.52%)

Merck 1432 9 (0.63%) 16 (1.12%)

MMM 1432 11 (0.77%) 18 (1.26%)

Proctor & Gamble 1431 7 (0.49%) 23 (1.61%)

United 1430 7 (0.49%) 23 (1.61%)
  Tech

1Four lags used in calculating C and H portmanteau statistics.



Table 3. Test for patterns across H windows which are significant at 5.0%.  Shown are the largest statistically significant
correlations (10 positive and 10 negative), when the ith return, r(i), in a significant window is correlated with return
r(j) in all other significant windows.

Alcoa (i,j) = (30,31) ( 1,15) (21,24) (31,35) (14,17) (30,36) (22,25) ( 3,23) ( 2,23) ( 3,24)
+ = 0.36 0.27 0.27 0.26 0.26 0.26 0.25 0.24 0.22 0.22

(i,j) = (12,13) ( 6, 7) (33,34) (18,19) (17,18) (26,29) ( 2, 4) (16,17) ( 3, 4) (24,30)
- = -0.57 -0.43 -0.38 -0.35 -0.33 -0.32 -0.30 -0.29 -0.29 -0.28

American
Express (i,j) = (18,34) (28,21) ( 9,12) ( 2, 3) ( 3,13) ( 6,36) (26,29) ( 1,10) ( 6,13) ( 2,13)
+ = 0.46 0.37 0.32 0.32 0.32 0.31 0.31 0.30 0.29 0.29

(i,j) = (29,30) ( 6, 7) (18,20) ( 1, 4) (20,34) ( 4,10) ( 5, 6) (23,27) (13,14) (32,36)
- = -0.49 -0.48 -0.48 -0.48 -0.41 -0.35 -0.35 -0.34 -0.34 -0.33

Bethlehem
Steel (i,j) = (10,13) ( 1, 2) (13,23) ( 2,18) (25,28) (14,20) (28,31) (10,22) ( 7,12) (17,28)
+ = 0.32 0.28 0.27 0.24 0.22 0.22 0.21 0.21 0.20 0.20

(i,j) = ( 5, 6) (10,11) (35,36) (31,32) (18,20) (26,27) (16,17) (29,30) (22,24) (19,20)
- = -0.52 -0.52 -0.46 -0.42 -0.42 -0.41 -0.39 -0.35 -0.34 -0.34

Chevron (i,j) = (12,13) ( 7, 8) (17,30) (13,16) (31,36) (31,34) (13,30) ( 5,28) (12,28) (15,30)
+ = 0.63 0.53 0.47 0.40 0.38 0.38 0.37 0.31 0.31 0.30

(i,j) = (13,14) (28,29) (12,14) ( 7, 9) (33,34) (22,23) (19,20) (20,21) (17,18) (12,22)
- = -0.57 -0.43 -0.43 -0.41 -0.40 -0.39 -0.39 -0.37 -0.35 -0.34



Table 3. Test for patterns across H windows which are significant at 5.0%.  Shown are the largest statistically significant
correlations (10 positive and 10 negative), when the ith return, r(i), in a significant window is correlated with return
r(j) in all other significant windows.

 Coke (i,j) = (20,29) ( 5, 6) (19,22) ( 6,20) ( 9,32) (15,22) (19,26) (11,34) (28,34) ( 5,25)
+ = 0.32 0.31 0.30 0.28 0.26 0.25 0.25 0.23 0.23 0.22

(i,j) = (20,21) ( 6, 7) (10,11) (24,26) (22,23) ( 7, 8) (32,33) (11,36) (21,22) (15,16)
- = -0.46 -0.46 -0.41 -0.39 -0.39 -0.34 -0.34 -0.31 -0.30 -0.30

GM (i,j) = (17,28) (22,23) ( 1, 2) (27,28) (24,29) (19,25) ( 9,15) ( 3,23) (25,27) (14,18)
+ = 0.39 0.37 0.37 0.29 0.29 0.27 0.27 0.25 0.25 0.25

(i,j) = (20,24) ( 8,12) (22,25) (24,27) ( 6,10) ( 5, 6) ( 1,23) (23,28) ( 1, 3) (23,27)
- = -0.40 -0.38 -0.35 -0.34 -0.31 -0.31 -0.30 -0.30 -0.28 -0.28

Goodyear(i,j) = (19,22) ( 8,11) (28,34) (28,31) (12,28) (29,32) ( 8,26) (20,25) (25,29) (11,36)
+ = 0.33 0.33 0.32 0.30 0.29 0.25 0.25 0.24 0.23 0.23

(i,j) = (19,20) ( 5, 6) (22,23) (35,36) (28,29) ( 4, 5) (20,22) (11,12) (17,18) (13,14)
- = -0.47 -0.47 -0.46 -0.45 -0.45 -0.40 -0.40 -0.40 -0.39 -0.39

IBM (i,j) = (35,36) (34,35) (34,36) (21,36) (32,35) (16,12) (11,13) (30,31) (21,35) (20,36)
+ = 0.71 0.68 0.60 0.48 0.42 0.41 0.40 0.39 0.37 0.35

(i,j) = (12,13) (10,11) (10,13) (11,12) (16,17) ( 8, 9) (31,32) (23,36) (25,35) ( 5, 9)
- = -0.64 -0.57 -0.52 -0.50 -0.38 -0.38 -0.38 -0.36 -0.35 -0.35



Table 3. Test for patterns across H windows which are significant at 5.0%.  Shown are the largest statistically significant
correlations (10 positive and 10 negative), when the ith return, r(i), in a significant window is correlated with return
r(j) in all other significant windows.

Int.Paper(i,j) = (20,21) (31,35) (31,33) ( 1, 2) (25,34) (20,25) ( 2,15) (21,25) (13,17) (33,35)
+ = 0.69 0.48 0.43 0.29 0.28 0.28 0.27 0.27 0.26 0.26

(i,j) = (21,22) (20,22) (18,19) ( 8,11) (35,36) (31,36) ( 2, 6) (15,17) (16,18) (19,27)
- = -0.58 -0.47 -0.40 -0.37 -0.29 -0.29 -0.29 -0.27 -0.27 -0.27

Kodak (i,j) = (29,35) (30,33) (32,33) (27,36) (18,23) ( 8,14) (16,20) (27,33) (24,29) ( 2,17)
+ = 0.57 0.42 0.41 0.38 0.32 0.31 0.30 0.30 0.30 0.30

(i,j) = (27,35) (22,24) (24,27) (23,29) (33,34) (14,15) (33,35) (22,35) (27,29) ( 2, 3)
- = -0.49 -0.49 -0.44 -0.43 -0.43 -0.40 -0.37 -0.37 -0.33 -0.33

Mc-
Donalds (i,j) = (11,28) (21,33) (13,19) ( 9,36) ( 9,17) (23,29) (20,29) ( 9,12) ( 9,10) ( 6,17)
+ = 0.36 0.32 0.27 0.27 0.27 0.27 0.26 0.25 0.25 0.24

(i,j) = (33,34) (12,14) (31,34) (19,23) ( 7, 8) (32,34) (13,14) (27,29) (28,30) (10,14)
- = -0.37 -0.35 -0.31 -0.31 -0.30 -0.30 -0.30 -0.29 -0.29 -0.27

Merck (i,j) = (12,14) (14,15) (19,22) (31,33) ( 2,18) (31,36) (10,14) (31,32) ( 4,26) (22,31)
+ = 0.45 0.34 0.33 0.28 0.28 0.27 0.25 0.25 0.24 0.24

(i,j) = (14,16) (15,16) (20,21) (12,16) (21,22) ( 1, 5) (17,18) ( 6, 7) ( 4, 5) (35,36)
- = -0.64 -0.56 -0.46 -0.43 -0.40 -0.38 -0.33 -0.32 -0.30 -0.28



Table 3. Test for patterns across H windows which are significant at 5.0%.  Shown are the largest statistically significant
correlations (10 positive and 10 negative), when the ith return, r(i), in a significant window is correlated with return
r(j) in all other significant windows.

MMM (i,j) = (13,15) ( 4, 5) ( 1, 2) (15,17) (30,34) (28,33) ( 8,17) ( 4,25) ( 2,34) (17,32)
+ = 0.36 0.36 0.31 0.31 0.29 0.28 0.26 0.25 0.24 0.24

(i,j) = (18,19) ( 5, 6) ( 9,10) (15,19) ( 7, 8) (30,35) ( 4, 6) (10,11) (10,18) (21,23)
- = -0.58 -0.50 -0.45 -0.37 -0.36 -0.35 -0.33 -0.32 -0.31 -0.31

Proctor &
Gamble (i,j) = ( 5, 6) (23,26) ( 5,18) (33,36) ( 4,21) ( 9,14) (31,34) ( 9,11) (11,22) (29,36)
+ = 0.37 0.28 0.28 0.27 0.26 0.25 0.25 0.24 0.24 0.23

(i,j) = (14,15) ( 6, 7) ( 5, 7) (17,18) (31,35) (34,35) (15,18) ( 7,20) ( 7,21) (11,29)
- = -0.45 -0.40 -0.38 -0.37 -0.37 -0.37 -0.33 -0.30 -0.28 -0.27

United Tech-
nologies (i,j) = (11,13) (15,26) (26,35) (10,11) (12,28) (23,34) (27,32) ( 3, 4) (10,23) (11,20)
+ = 0.34 0.30 0.30 0.29 0.29 0.28 0.27 0.27 0.26 0.25

(i,j) = (11,12) (14,15) (15,16) (22,23) (21,22) ( 9,26) ( 6,10) (32,35) (14,17) (25,29)
- = -0.72 -0.48 -0.47 -0.40 -0.40 -0.35 -0.33 -0.33 -0.33 -0.32



Table 4.  Comparison of C and H Tests Using Bid Prices Rather Than
Traded Prices.  McDonalds Corp., 1983.  Threshold is 0.1%.

Traded Prices Bid Prices
252 Days 237 Days

Significant 2(0.8%) 1(0.4%)
C Windows

Significant 3(1.2%) 10(4.2%)
H Windows



Table 5.  Correlations of Statistics for Significant H Windows Using a Threshold of 0.10%

Name Cor(H,C) Cor(H,Sig) Cor(H,KURT) Cor(H,Range)

Alcoa 0.298 -0.106 -0.221 -0.085

American Express * * * *

Bethlehem Steel 0.268 -0.465 -0.148 0.332

Chevron -0.061 -0.081 -0.093 -0.015

Coke 0.315 -0.232 -0.462 -0.298

GM 0.196 -0.289 -0.371 -0.302

Goodyear 0.049 0.430 -0.315 0.335

IBM -0.239 -0.116 -0.304 -0.344

Int. Paper 0.192 -0.237 -0.485 -0.251

Kodak * * * *

McDonalds 0.096 -0.027 -0.131 -0.078

Merck -0.510 0.493 0.094 0.389

MMM 0.375 -0.283 -0.634 -0.341

Proctor & Gamble 0.344 0.100 -0.278 -0.031

United Tech 0.693 -0.385 -0.594 -0.471

* Insufficient significant H windows to calculate a meaningful statistic.



Table 7.  Summary of LaGrange Multiplier Test for Included Stocks
Test Stat = NR2 of Regression for Daily Variance Estimate on 10 Lagged

Variances.  Entire Period, and Groups of 214 Days.

Entire
Name Sample Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Alcoa 243.62** 14.69 14.06 22.95* 31.21** 13.71 30.46** 6.25
American 
     Express 218.85** 47.22** 22.95* 30.58** 47.59** 6.61 57.51** 22.12*
Bethlehem
     Steel 617.94** 19.87 2.43 18.07 50.27** 32.17** 47.76** 62.76**
Chevron 70.23** 7.43 3.90 26.89** 7.87 5.90 25.85** 14.67
Coke 233.27** 23.30* 7.05 7.54 10.75 11.56 10.54 27.83**
GM 115.18** 4.87 23.35* 21.57* 28.03** 32.10** 32.55** 11.83
Goodyear 399.88** 62.22** 40.74** 17.91 1.98 19.38 16.65 15.51
IBM 321.29** 71.59** 29.36** 27.23** 70.83** 11.20 35.59** 16.12
Int. Paper 92.48** 15.77 10.98 17.48 19.42 18.30 5.08 15.10
Kodak 157.99** 7.25 43.80** 27.07** 41.76** 3.37 17.38 29.89**
McD 228.15** 11.757 58.92** 26.11** 39.35** 24.91** 15.32 6.16
Merck 299.90** 44.85** 18.33 13.14 65.42* 8.28 22.04* 22.85*
MMM 263.35** 13.06 21.32* 21.75* 49.29** 28.66** 14.00 6.69
P&G 121.50** 30.92** 1.05 26.52** 54.82** 17.56 21.77* 15.30
UTX 11.64 18.18 0.53 35.53** 10.55 17.24 44.51** 3.79

  *significant at 5%
**significant at 1%
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