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ABSTRACT 

In this article, we use half hourly spot electricity prices and load data for the National 

Electricity Market (NEM) of Australia for the period from December 1998 to June 2009 

to test for episodic nonlinearity in the dynamics governing daily and weekly cycles in 

load and spot price time series data. We apply the portmanteau correlation, bicorrelation 

and tricorrelation tests introduced in Hinich (1996) to the time series of half hourly spot 

prices and load demand from 7/12/1998 to 30/06/2009 using a FORTRAN 95 program. 

We find the presence of significant third and fourth order (non-linear) serial dependence 

in the weekly load and spot price data in particular, but to a much more marginal extent, 

in the daily data. 
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1 INTRODUCTION 

The Australian electricity market encompasses generation, transmission, distribution 

and retail sale activities. The key part of the market in Australia is the wholesale National 

Electricity Market (NEM) which is structured as a gross pool arrangement. It commenced 

operation as a de-regulated wholesale market in New South Wales, Victoria, Queensland, 

the Australian Capital Territory (ACT) and South Australia in December 1998. In 2005, 

Tasmania joined as a sixth region. There are six interconnected regions that broadly 

follow state boundaries (AEMO (2009)).  

There are a number of ‘stylised’ facts that are widely accepted as applying to load 

demand and spot price dynamics in the market. First, observed load demand patterns in 

the market tend to vary from region to region, depending upon such factors as population, 

temperature and industrial and commercial needs, and there are well-defined cyclical 

variations in electricity demand over the year.  

The second ‘stylised’ fact is that the load curve has both a weekly and a daily cycle. 

The peak hourly load in Australia has two distinct peaks, in early morning and early 

evening, that are generated by domestic activity and these vary at weekends.  

The third ‘stylised’ fact is that spot electricity prices exhibit both the properties of high 

volatility (i.e. a lot of price spikes) and strong mean-reverting behaviour (volatility 

clustering followed by sustained periods of ‘normality’). Spot price spikes are outliers 

producing significant deviations from the Gaussian distribution.  In fact, the spot price 

data displays the same predominant empirical ‘leptokurtosis’ feature found in most high 

frequency asset price data – the tails of the empirical distribution functions are much 
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fatter than those associated with the normal distribution implying large fourth order 

cumulants. 

In Foster et al (2008), the extent of and stability of daily and weekly cycles in both 

load and spot price time series data was investigated using the Randomly Modulated 

Periodicity (RMP) Model introduced in Hinich (2000) and Hinich and Wild (2001). A 

major finding was that the mean properties of both the load and spot price data for the 

NEM States considered were periodic.1 The most important periodicities for both datasets 

were found to contain significant but imperfect signal coherence suggesting that some 

‘wobble’ existed in the waveforms of the load and spot price data. It was originally 

postulated in Hinich (2000) and Hinich and Wild (2001) that the generating mechanism 

for an RMP process would be nonlinear. Therefore, a natural research question is whether 

the mechanism responsible for generating both daily and weekly electricity load and price 

data exhibits some type of nonlinearity, and if so, whether this nonlinearity is ‘episodic’ 

in character. It is likely that the existence of episodic nonlinearity is necessary for the 

strong mean reversion observed in spot electricity prices. If nonlinearity exists, it also 

rules out many classes of linear models as candidates for explaining both load and spot 

price dynamics.  

The article is organized as follows. In Section 2 we briefly discuss the data used and 

highlight some transformations that were made to the spot price electricity data in order 

to implement the tests considered. In Section 3 we outline the portmanteau correlation, 

bicorrelation and tricorrelation tests employed. These tests were used to test for second-

order (linear), third- and fourth-order (nonlinear) serial dependence, respectively. In 

                                                 
1 Serletis (2007, Ch 19) has applied the same type of RMP analysis to the Canadian Alberta market. 
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Section 4 we briefly state the well-known Engle LM ARCH test that was used to test for 

the presence of ARCH and GARCH structures in the daily and weekly waveforms. In 

Section 5, the empirical results for both the daily and the weekly waveforms are 

presented. In Section 6, the implications of our findings for modeling load and spot price 

dynamics and implications for risk management practices within the industry are 

discussed. Finally, in Section 7, some concluding comments are offered. 

2    DATA AND ASSOCIATED TRANSFORMATIONS 

In this article, we use half hourly spot electricity prices and load data for the period 

from 7/12/1998 to 30/06/2009.2 This produced a sample size of 185,162 observations.  

We apply the tests to time series load and spot price data from New South Wales (NSW), 

Queensland (QLD), Victoria (VIC) and South Australia (SA).   

In applying the various tests outlined in this article, we convert all data series to 

continuous compounded returns by applying the relationship 

( ) ( )
( )

100*
1

ln 








−
=

ty

ty
tr ,                                                                                           (1) 

where: 

   .  ( )tr  is the continuous compounded return for time period ‘t’; and 

   .  ( )ty  is the source price or load time series data. 

In order to apply (1), ( )ty  cannot take negative or zero values. However, it was 

evident that for Queensland, Victoria and South Australia, there was the occasional 

occurrence of negative spot prices.  
                                                 
2 The half hourly load and spot price data were sourced from files located at the following web address: 
http://www.aemo.com.au/data/price_demand.html. 
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In the presence of negative prices, some transformations had to be made to the 

respective price series to remove negative prices before we were able to apply (1) to 

convert the data to returns. This transformation involves two steps. First, any values 

which were negative or zero are set to the previous non-negative value using the 

following decision rule: 

( ) ( ) ( )
( ) ( )

0, 1

,

x t y t
if y t

else x t y t

≤ = −
= 

=
,                                                                            (2) 

where ( )ty  is the source time series data and ( )tx  is the transformed data series. The 

second step involved applying a linear interpolation routine to the transformed series ( )tx  

obtained by using the following decision rule: 

( )
( )

( ) ( )

( ) ( ) ( )

1 1
0,

2

,

x t x t
z t

if y t

else z t x t y t

   − + +  ≤ =  
=    


 = =  

,                                                        (3) 

where ( )tz  is the new transformed data (see Foster, Hinich and Wild (2008)). 

3   THE PORTMANTEAU CORRELATION, BICORRELATION AND 

TRICORRELATION TEST STATISTICS IN MOVING TIME WINDOWS 

FRAMEWORK 

We utilize the framework originally proposed in Hinich and Patterson (1995), (now 

published as Hinich and Patterson (2005)) which seeks to detect epochs of transient serial 

dependence in a discrete-time pure white noise process (i.e. i.i.d random variates).3 A 

common approach to processing time series with a periodic structure is to partition the 

                                                 
3 Also see Czamanski, Dormaar, Hinich and Serletis (2007) who apply a similar testing methodology to the 
Canadian Alberta market. 
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observations into non-overlapping frames where there is exactly one waveform in each 

sample (data) frame. This methodology involves computing the portmanteau correlation, 

bicorrelation and tricorrelation test statistics (termed asC , H  and 4H  statistics) for each 

frame to detect linear and nonlinear serial dependence respectively.  

Let the sequence ( ){ }tx  denote the sampled (and transformed) data process in (3), 

where the time unit ‘ t ’ is an integer. The test procedure employs non-overlapped time 

frames (windows), thus if n  is the frame length, then the -thk  window is defined 

as ( ) ( ) ( ){ }1,...,1, −++ ntxtxtx kkk . The next non-overlapped window is 

( ) ( ) ( ){ },1,...,1, 111 −++ +++ ntxtxtx kkk  where 1 .k kt t n+ = +  Define ( )Z t  as the sequence of 

standardized observations given by 

( ) ( )
x

x

s

mtx
tZ

−
= ,                                                (4) 

for each nt ,...,2,1=  where 
xm and 

xs  are the sample mean and standard deviation of the 

sample frame. So the data in each sample is standardised on a frame-by-frame basis. 

The null hypothesis for each sample frame is that the transformed data ( ){ }Z t  are 

realizations of a stationary pure white noise process. Therefore, under the null hypothesis, 

the correlations ( ) ( ) ( )[ ] 0,0 ≠∀=+= rrtZtZErCZZ , the bicorrelations 

( ) ( ) ( ) ( )[ ] srstZrtZtZEsrCZZZ ,,0, ∀=++=  except when 0== sr , and the 

tricorrelations ( ) ( ) ( ) ( ) ( )[ ] vandsrvtZstZrtZtZEvsrCZZZZ ,,,0,, ∀=+++=  except 

when 0=== vsr . The alternative hypothesis is that the process in the sample frame has 

some non-zero correlations, bicorrelations or tricorrelations in the set Lvsr <<<<0 , 

where L  is the number of lags associated with the length of the sample frame. In other 
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words, if there exists second-order (linear) or third- or fourth-order (nonlinear) serial 

dependence in the data generating process, then 

( ) ( ) ( ) 0,,,0,,0 ≠≠≠ vsrCorsrCrC ZZZZZZZZZ  for at least one r  value or one pair of r  

and s  values or one triple of vandsr,  values, respectively.  

The r  sample correlation coefficient is 

( ) ( ) ( )∑
−

=

+
−

=
rn

t

ZZ rtZtZ
rn

rC
1

1
.                                                     (5) 

The C  statistic is designed to test for the existence of non-zero correlations (i.e. second-

order linear serial dependence) within a sample frame, and its distribution is 

( )[ ]∑
=

≈=
L

r

LZZ rCC
1

22
.χ                                                             (6) 

The ( ),r s  sample bicorrelation coefficient is 

( ) ( ) ( ) ( )∑
−

=

++
−

=
sn

t

ZZZ stZrtZtZ
sn

srC
1

,
1

,  for sr ≤≤0 .                                      (7) 

The H statistic is designed to test for the existence of non-zero bicorrelations (i.e. third-

order nonlinear serial dependence) within a sample frame, and its corresponding 

distribution is 

( ) ( )∑∑
=

−

=
−≈=

L

s

s

r

LLsrGH
2

1

1

2

2/1

2 , χ                                    (8) 

where ( ) ( )srCsnsrG ZZZ ,, −= .  

The ( )vsr ,,  sample tricorrelation coefficient is 

( ) ( ) ( ) ( ) ( )∑
−

=

+++
−

=
vn

t

ZZZZ vtZstZrtZtZ
vn

vsrC
1

,
1

,,  for vsr ≤≤≤0 .                (9) 
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The 4H statistic is designed to test for the existence of non-zero tricorrelations (i.e. 

fourth-order nonlinear serial dependence) within a sample frame and its corresponding 

distribution is 

( ) ( )( )∑∑∑
=

−

=

−

=
−−≈=

L

v

v

s

s

r

LLLvsrTH
3

1

2

1

1

2

3/21

3 ,,4 χ                      (10) 

where ( ) ( )vsrCvnvsrT ZZZZ ,,,, ×−= .  

Since it is conceptually difficult to quantify how much of any ‘significant’ 

autocorrelation can be attributed to thin trading volume or spot price limits, this 

investigation focuses instead on whether load and spot price data contain predictable 

nonlinearities after removing all linear dependence. The autocorrelation structure in each 

sample frame is removed by an autoregressive AR(p) fit, where ‘ p ’ is the number of lags 

that is selected in order to remove significant C  statistics at some pre-specified threshold 

level.4 It is worth noting that the AR fitting is employed purely as a ‘pre-whitening’ 

operation and not in order to obtain a model of ‘best fit’. The portmanteau bicorrelation 

and tricorrelation tests are then applied to the residuals of the fitted AR(p) model of each 

sample frame, so that any rejections of the null hypothesis of pure white noise can be 

attributed to significant H  or 4H statistics. 

The number of lags L  is defined as bL n=  with 5.00 << b  for the correlation and 

bicorrelation tests and 33.00 << b  for the tricorrelation test, and where b  is a parameter 

to be chosen by the user. Based on results of Monte Carlo simulations, Hinich and 

                                                 
4 In the literature particularly dealing with long-term dependence, pre-filtering by means of an AR-GARCH 
procedure is often used to remove short-term autocorrelation and time-varying volatility. However, this 
procedure is unnecessary, in the current context, since the bicorrelation and tricorrelation tests rely on the 
property that the bicorrelation and tricorrelation coefficients equal zero for a pure noise process. As such, 
the null hypothesis is only rejected when there exists some non-zero bicorrelations or tricorrelations 
suggesting nonlinear serial dependence in the conditional mean (additive nonlinearity), and not the 
presence of conditional variance dependence (conditional heteroskedasticity). 
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Patterson (1995, 2005) recommended the use of 0.4b =  (in relation to the bicorrelation 

test) which is a good compromise between: (1) using the asymptotic result as a valid 

approximation for the sampling properties of the H  statistic for moderate sample sizes; 

and (2) having enough sample bicorrelations in the statistic to have reasonable power 

against non-independent variates.  

Another element that must be decided upon is the choice of the frame length. In 

principal, there is no unique value for the frame length. The larger the frame length, the 

larger the number of lags and hence the greater the power of the test, but at the ‘expense’ 

of increasing the uncertainty of the event time when the serial dependence ‘episode’ 

occurs. The data is split into a set of equal-length non-overlapped moving frames of 48 

and 336 half hour observations corresponding to a frame of a day and a week’s duration, 

respectively.5 Our objective is to measure the extent to which any observed nonlinearity 

that is episodically present appears to be operating on a daily or weekly time scale. 

We can also use the correlation, bicorrelation and tricorrelation tests to examine 

whether a symmetric GARCH or stochastic volatility model represent adequate 

characterisations of the data under investigation.  We can define a ( )qpGARCH ,  process 

as 

( ) .,,0,
1

2

1

2

0

22 ∑∑
=

−
=

− ++=≈=
p

j

jtj

q

k

ktktttttt hhhNIIDhy βεααεε                                 (11)6 

We can similarly define a stochastic volatility model as 

                                                 
5 In principle, this window length needs to be sufficiently long enough to validly apply the bicorrelation 
and tricorrelation tests and yet short enough for the data generating process to have remained roughly 
constant (see Monte Carlo results in Hinich (1996) and Hinich and Patterson (1995, 2005)). 
6 If we set the sj 'β coefficients to zero in (11), we get an ( )qARCH  process. 
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( ) ( )2101 ,0,,1,0,
2

exp ηδηηααεε NIIDhhNIID
h

y ttttt
t

tt ≈++=≈





= +             (12) 

(Shephard (1996, pp. 6-7)).  In both cases, the ‘ th ’ term acts to model volatility of the 

observed process ty  by multiplicatively changing the amplitude of the NIID  process tε .  

The binary transformation defined below  removes the amplitude affects of the processes 

modelled by the th  term in the above equations and yields a Bernoulli process given the 

assumption that the ‘volatility’ models in (11) and (12) are adequate characterisations of 

the data and provided and that the distribution of tε  is symmetric.7  

The binary data transformation, called ‘hard clipping’, is defined as 

( ){ } ( ) ( )
( ) ( ) 0,1

0,1
:

<−=

≥=

tZifty

tZifty
ty .                                                                                   (13) 

If ( )tZ  is generated by a pure ARCH/GARCH or stochastic volatility process whose 

innovations are symmetrically distributed with zero mean, then the binary data set ( ){ }ty  

will be a stationary pure noise (i.i.d) Bernoulli sequence. While ( )tZ  is a martingale 

difference process, the binary transformation outlined in (13) converts it into a pure noise 

process (Lim, Hinich and Liew (2005)) which has moments that are well behaved with 

respect to asymptotic theory (Hinich (1996)).  Therefore, if the null of pure noise is 

rejected by the C, H or H4 tests when applied to binary data determined from (13), this 

then signifies the presence of structure in the data that cannot be modelled by symmetric 

                                                 
7 For our purposes, the crucial requirement is that tε  is a pure (symmetric) white noise process, (i.e. iid). 

The assumption of normality was made purely for convenience. Other distributional assumptions used in 

relation to 
tε in the literature include the t distribution (Bollerslev (1987)) and Generalised Error 

Distribution (Nelson (1991)).   
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ARCH/GARCH or stochastic volatility models. Moreover, while the rejections might be 

because of the presence of serial dependence in the innovations, this outcome still 

violates a critical assumption underpinning the formulation of these ‘volatility’ models.  

Specifically, if the innovations are dependent (not i.i.d), then the statistical properties of 

the parameter estimates of ARCH/GARCH processes, for example, are unknown 

(Bonilla, Meza and Hinich (2007)). 

To implement the test procedures on a frame-by-frame basis, define a frame as 

significant with respect to the C, H or H4 tests if the null of pure noise is rejected by each 

of the respective tests for that particular sample frame at some pre-specified (false alarm) 

threshold. This threshold controls the probability of a TYPE I error, - that of falsely 

rejecting the null hypothesis when it is true.8 For example, if we adopt a false alarm 

threshold of 0.90, this would signify that we would expect random chance to produce 

false rejections of the null hypothesis of pure noise in 10 out of every 100 frames. In a 

similar way, false alarm thresholds of 0.95 and 0.99 would signify that false rejections of 

the null hypothesis in 5 out of 100 frames and 1 out of 100 frames respectively could be 

attributed to random chance. 

Thus, according to the above criteria, if we secure rejections of the test statistics at 

rates (significantly) exceeding 10%, 5% and 1% of the total number of sample frames 

examined, then this would signify the presence of statistical structure, thus pointing to the 

presence of (significant) second, third or fourth order serial dependence in the data set. 

                                                 
8 The false alarm threshold is to be interpreted as a confidence level, for example, a false alarm threshold of 
0.90 is to be interpreted as a 90% confidence level. The level of significance associated with this 
confidence level is interpreted in the conventional way as 1 minus the threshold value. Therefore, for a 
threshold of 0.9, we get a corresponding significance level 0.1 – that is, a significance level of 10%.  
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In principal, the tests can be applied to either the source returns data determined from 

application of (3)-(4) or to residuals from frame based autoregressive fits of this data.  

Recall that the latter can be viewed as a ‘pre-whitening’ operation and can be used to 

effectively remove second order (linear) serial dependence, thus producing no significant 

C frames. In this case, any remaining serial dependence left in the residuals must be a 

consequence of nonlinearity that is episodically present in the data - thereby, only 

significant H and H4 statistics will lead to the rejection of the null hypothesis of a pure 

noise process.     

4 ENGLE LM ARCH TEST 

In this article, we also investigate the issue of parameter instability of GARCH models 

and the transient nature of ARCH effects. The well-known Engle LM test for 

Autoregressive and Conditional Heteroscedasticity (ARCH) in residuals of a linear model 

was originally proposed in Engle (1982). This test should have power against more 

general GARCH alternatives, see Bollerslev (1986). The test statistic is based on the 2R  

of the following auxiliary regression 

∑
=

− ++=
p

i

titit xx
1

2

0

2 ξββ ,                                                                                              (14) 

where 2

tx  are typically squared residuals from a linear regression. Therefore, equation 

(14) involves regressing the squared residuals on an intercept and its own p  lags.   

Under the null hypothesis of a linear generating mechanism for tx , ( )2NR  from the 

regression outlined in (14) is asymptotically distributed as 2

pχ , where N is the number of 
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sample observations and 2R  is the coefficient of multiple correlation from the regression 

in (14).  

The ARCH testing procedure that is applied in this article involves applying the LM 

test to the squared data in each sample frame. As in the case of the application of C, H 

and H4 statistics on a frame-by-frame basis, this data will typically be the (squared) 

residuals from a frame-by-frame ‘pre-whitening’ AR(p) fit in the case of the ARCH LM 

test.  One key aspect of interest with this test procedure will be to determine whether 

there is a strong ARCH effect over all time periods (i.e. all sample frames) or whether 

ARCH is present only for short periods of time, for example, in a relatively small number 

of sample frames. It should also be noted that the same arguments made in the previous 

section in relation to false alarm thresholds and extent of rejections that can be attributed 

to random chance will continue to hold in this current case.  

The ARCH test is only applied to the spot price data. The load data does not exhibit 

any ‘volatility clustering’ affects that generate the conditional variance dependence 

(conditional heteroskedasticity) that the ARCH test is designed to identify.  The spot 

price data, on the other hand, does display the type of patterns conventionally associated 

with conditional heteroskedasticity.  

5 EMPIRICAL RESULTS 

In Table 1 and Table 2 the summary statistics of the NEM State load and spot price 

returns series are documented. It is apparent from inspection of both tables that the mean 

of the series are very small in magnitude. In Table 1, the mean returns for the load data 

are all positive while the average returns for the four spot price returns series listed in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 15 

Table 2 were negative over the complete sample. A difference in scale can also be 

observed from an investigation of the maximum and minimum values of the respective 

returns series. For the load data, the maximum and minimum returns are in the range 

between 30 and 50 percent in absolute terms while the corresponding results for the spot 

price returns are of the order of 480 to 610 percent. Moreover, the differences in the 

values of the sixth order cumulants listed in both tables also reinforce the obvious 

difference in scale of the different series.  

It is also evident from inspection of both tables that the spot price returns are more 

volatile when compared with the load data as indicated by the higher standard deviations 

documented in Table 2 compared to those listed in Table 1. This indicates that the likely 

‘risk profile’ of the load and spot price returns is quite different.  Furthermore, volatility 

in both load and spot prices is slightly higher for SA than for the other States considered - 

SA has the highest standard deviations for both load and spot price returns data.  

All of the series, except for SA spot price returns, display positive or right skewness.  

All of the series also display evidence of leptokurtosis although this is a much more 

prominent feature in the case of the spot price returns data with excess kurtosis values in 

the range of 69 to 104 in magnitude. This implies that the tails of the empirical 

distribution functions of the spot price returns in particular taper down to zero much more 

gradually than would the tails of the normal distribution (Lim, Hinich, Liew (2005)). Not 

unexpectedly, the Jarques-Bera (JB) Normality Test for all of the returns series listed in 

both tables indicates that the null hypothesis of normality is strongly rejected at the 

conventional 1% level of significance. This outcome reflects the strong evidence of both 

non-zero skewness and excess kurtosis listed in both tables. 
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The correlation, bicorrelation, tricorrelation and ARCH LM tests are large sample 

results based on the asymptotic normal distribution’s mean and variance. The validity of 

any asymptotic result for a finite sample is always an issue in statistics. In particular, the 

rate of convergence to normality depends on the size of the cumulants of the observed 

process. All data is finite since all measurements have an upper bound to their 

magnitudes.9 However, if the data is leptokurtic, as is typically the case for stock returns, 

exchange rate and energy spot prices, than the cumulants are large and the rate of 

convergence to normality is slow. Trimming the tails of the empirical distribution of the 

data is an effective statistical method to limit the size of the cumulants in order to get a 

more rapid convergence to the asymptotic (theoretical) distribution.  

In Wild et al (forthcoming), it was demonstrated in context of weekly NSW spot price 

rates of returns that trimming in the order of 10%-90% provides acceptable results in 

terms of the empirical distribution of the tests, closely tracking their desired theoretical 

distributions. In order to improve the finite sample approximation of the theoretical 

distribution of all four statistics considered in this article, the spot price returns data was 

subsequently trimmed using a ‘10%-90%’ scheme. This means that data values that either 

exceeded the 90% quantile or were less than the 10% quantile of the empirical 

distribution of the spot price returns data series were set to those two particular quantile 

values, respectively.  

                                                 
9 In the current context, a maximum spot price that can be bid by wholesale market participants is $10000/ 
MWh which corresponds to the Value of Lost Load (VOLL) price limit that is triggered in response to 
demand-supply imbalances that trigger load shedding (see AEMO (2009)). Thus, the range of the spot price 
data is finite ensuring that all moments are finite. 
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In the case of the load returns data, departures from Gaussianity were much less 

pronounced as indicated, in particular, by the much smaller excess kurtosis values listed 

in Table 1. So, for the load returns data, we employed ‘1%-99%’ trimming.  

The summary statistics of the ‘trimmed’ load and spot price returns data series are 

documented in Table 3 and Table 4 respectively. The effect of the trimming operations in 

reducing the scale of the data is clear. For example, in Table 4, the corresponding results 

for the spot price returns are now of the order of 15.2 to 18.5 percent in absolute terms 

which can be compared against the range of 480 to 610 percent originally cited in Table 

2. These reductions are also evident in the much smaller values of the sixth order 

cumulants listed in both Tables 3 and 4, compared with those listed in Tables 1 and 2. 

The skewness and excess kurtosis values cited in Tables 3 and 4 have also been reduced 

in magnitude (especially in the case of the spot price returns) in line with a movement in 

the empirical distributions functions towards the Gaussian ideal. However, in all cases, 

the trimmed data still ‘trips’ the Jarques-Bera Normality test, leading to strong rejections 

at the 1% level of significance. Furthermore, the volatility findings continue to hold with 

the trimmed spot price returns remaining more volatile. The other noticeable feature is 

that the mean of the spot price returns has increased in magnitude when compared with 

the results cited in Table 2. The practical implications of this are marginal however as the 

data is standardized before the tests are applied to the trimmed returns data series. 

Table 5 presents the results for the correlation [C], bicorrelation [H] and tricorrelation 

[H4] test statistics for the trimmed load returns data for a weekly sample frame of 336 

(half hourly) observations. In all results reported, bootstrapped threshold values were 

used because the sample properties of the test statistics for very small frame lengths do 
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not necessarily approximate theoretical thresholds, especially when the underlying 

sample data contains both significant non-zero skewness and excess kurtosis. Given the 

‘trimmed’ global sample of 185,162 returns for each respective series, a bootstrap sample 

frame was constructed by randomly sampling 336 observations from the larger global 

population and the various test statistic outcomes were calculated for that particular 

sample frame. This process was repeated 500,000 times and the results for each test 

statistic were stored in an array. All test statistics entail application of the chi-square 

distribution and for each bootstrap replication, the chi square levels variable associated 

with each test statistic was transformed to a uniform variate which means, for example, 

that the 10% significance threshold corresponds to 0.90, the 5% significance threshold is 

0.95, and the 1% significance threshold is 0.99.  The arrays containing the bootstrap 

‘confidence thresholds’ for each respective test statistic (containing 500,000 elements) 

from the bootstrap process was then sorted in ascending order and the bootstrap 

confidence threshold was calculated as the quantile value of the empirical distribution 

function of the various test statistics associated with a user specified ‘false alarm’ 

threshold value.  For example, if the user set the false alarm threshold value to 0.90, the 

bootstrap threshold value would be the 90% quantile of the empirical distribution 

function of the relevant test statistic determined from the bootstrap process.10   

The number of frame based rejections for each test statistic is calculated by summing 

the number of frames over which rejections were secured at the calculated bootstrap 

threshold when the tests are applied on a sequential frame by frame basis to the actual 

returns data. As such, the rejections rates determined from the actual returns are size 

                                                 
10 We used three particular user specified false alarm threshold values corresponding to 0.9, 0.95 and 0.99, 
giving 10%, 5% and 1% levels of significance. 
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adjusted with the empirical sizes being determined from the bootstrap method mentioned 

above. A frame based rejection is secured if, for an actual frame, the calculated threshold 

value exceeds the bootstrap determined false alarm threshold.11 The percentage of frame 

rejections for each test statistic is calculated as the total number of frame based rejections 

computed as a percentage of the total number of frames. 

The results for the weekly load returns data presented in Table 5 were determined after 

applying a ‘global AR(340)’ fit to the complete sample data.12 This operation was 

employed purely to remove second order serial dependence. The AR lag length of 340 

was chosen to exceed the weekly frame length of 336 observations. This regression can 

be viewed as essentially a type of weekly detrending operation and operates to remove 

the mean weekly periodicity from the underlying data series. The residuals from this 

global AR fit are then used to determine the bootstrap thresholds and underpin other 

empirical results obtained for the load returns data. To further eliminate second order 

serial dependence, an ‘AR(10)’ fit is applied on a frame by frame basis.  The success of 

these combined prewhitening operations is evidenced by the fact that no significant C 

frames were found (see Column 4 of Table 5) in contrast to the much greater number of 

H and H4 frames found to be significant – see Columns 5 and 6 of Table 5).  

Recall that, for the false alarm thresholds of 0.90, 0.95 and 0.99 respectively, we 

expect only 10%, 5% and 1% of the total number of frames to secure rejections that can 

be reasonably attributed to random chance. The fact that the actual number of rejections 

are significantly higher than 10%, 5% and 1% of the total number of frames for both the 

                                                 
11 We term such frames ‘significant’ frames with respect to the relevant test statistic.   
12 For the frame length of 336, the number of lags employed for the C and H statistics were determined to 
be 10 and the number of lags for the H4 test was determined to be 6.  The number of bicovariances and 
tricovariances used were determined to be 45 and 20 respectively. 
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H and H4 tests signify the existence of statistical significant third-order and fourth-order 

(nonlinear) serial dependence in the load returns data, supporting the presence of a 

nonlinear generating mechanism in weekly load dynamics. The fact that we do not secure 

rejections for all frames points to the higher order nonlinear serial dependence being 

somewhat episodic - there are frames where the null hypothesis of pure noise cannot be 

rejected. Similar interpretations can be given to all other test results cited in Table 5. It is 

also apparent from Table 5 that fourth-order nonlinear serial dependence seems to be a 

more prevalent feature in the data than third-order nonlinear serial dependence – the 

number of frame based rejections for the H4 test (column 6) generally exceeds the 

number of frame based rejections for the H test (column 5) at all three bootstrap false 

alarm thresholds reported.   

In Table 6, the results for the three portmanteau tests, and additionally the LM ARCH 

test, are presented for the spot price returns. In this case, no global prewhitening was 

undertaken (in contrast to the load returns) although the frame by frame based ‘AR(10)’ 

prewhitening fit continued to be employed, thus suggesting a different type of dynamic 

driving the mean periodicity of the spot price returns data. It is evident from Table 6 

(Column 4) that the prewhitening operation has been successful – no significant C frames 

are evident. However, there is a lot of evidence of significant H and H4 based frame 

rejections reported in Columns 5 and 6. The nature of the rejections indicates that both 

third- and fourth-order nonlinear serial dependence is much more prominent in the spot 

price returns data – the extent of the frame based H and H4 rejections are in the range of 

55%-98% for all States and all bootstrapped false alarm thresholds considered. This can 

be compared with the corresponding 20%-85% range for the load returns data displayed 
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in Table 5. Furthermore, relatively more H statistic rejections are reported in Table 6 

when compared to the corresponding H4 rejections, unlike in Table 5. The frame by 

frame LM ARCH tests signify the presence of pure ARCH/GARCH structure in the spot 

price returns data. However, the order of magnitude, while significant, is lower than that 

associated with H statistic based frame rejections, although it is often of a similar order of 

magnitude to the H4 statistic based frame rejections rates.  

The results associated with the ‘hard clipping’ transformation of the residuals from the 

frame by frame ‘AR(10)’ fits of the spot price returns are documented in Table 7. These 

are the same set of residuals that underpins the results in Table 6 except that the 

transformation in (13) was subsequently applied to the residuals, prior to applying the 

portmanteau tests, with the ARCH LM test being dropped. It is evident that the number 

of frame based rejections for the H and H4 statistics applied to the binary data sets are 

greater than the 10%, 5% and 1% rates associated with random chance, thus pointing to 

structures that cannot be modeled as pure ARCH/GARCH or stochastic volatility models. 

The relatively larger number H statistic rejections in Column 5 suggest that third-order 

nonlinear serial dependence is the most prominent type of nonlinear serial dependence. 

We also investigate the presence and nature of any nonlinear serial dependence 

evident in the dynamics of the daily load and spot price returns. This is accomplished by 

choosing an underlying frame length of a day (48 half hours). The resulting analysis 

proceeds as before with the frame length set to 48 instead of 336. The total number of 

frames under investigation increases from 551 to 3,857 for the daily returns data.13  

                                                 
13 For the frame length of 48, the number of lags employed for the C and H statistics were determined to be 
5 and the number of lags for the H4 test was determined to be 3.  The number of bicovariances and 
tricovariances used were determined to be 10 and 1 respectively. 
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The daily load returns results are reported in Table 8. Once again, we employ a ‘global 

AR(340)’ prewhitening fit to remove the mean weekly periodicity. In performing this 

operation, we also remove the mean daily periodicity because this periodicity is a 

harmonic of the weekly periodicity. We also adopt a frame-by-frame ‘AR(5)’ 

prewhitening fit. These combined prewhitening operations ensure that the number of 

significant C frames is very small – less than 0.05 of one percent of the total number of 

frames considered (see Column 4). This mirrors the results obtained in Table 5 in relation 

to the weekly data. As such, second-order (linear) serial dependence has been removed 

through the combined prewhitening process so any further rejections of the null 

hypothesis of pure white noise must be attributable to either H or H4 based rejections, 

indicating the presence of third- or fourth-order (nonlinear) serial dependence. As in the 

case of the weekly returns results in Table 5, there is evidence of nonlinear serial 

dependence but at a much lower order of magnitude - the frame based rejection for the H 

and H4 test statistics now occur at rates in the range of 2%-25% compared against the 

20%-85% range associated with the weekly load returns. Moreover, inspection of Table 8 

also indicates that third-order nonlinear serial dependence is slightly more prominent.   

The results for the daily spot price returns are reported in Table 9. We adopt the same 

prewhitening scheme that was adopted for the weekly spot price returns – no global 

prewhitening but a frame by frame based ‘AR(5)’ prewhitening fit – in order to remove 

second order (linear) serial dependence. Again, we get a very low number of significant 

C frames (Column 4) – less than 0.05 of one percent of the total number of frames. There 

is also evidence of the presence of nonlinear serial dependence – the number of 

significant H and H4 frames significantly exceeds the 10%, 5% and 1% rates that can be 
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reasonably attributed to random chance. The order of magnitude of the frame based 

rejections for H and H4 are in the range of 5%-35% which is smaller than the 

corresponding range in Table 6 of 55%-98%. Thus, the presence of nonlinear serial 

dependence is a less prominent feature of the daily spot price returns data. Inspection of 

the last column of Table 9 also indicates the presence of ‘marginally’ significant GARCH 

structure but at a level that is much lower compared to the weekly returns results.  

The results associated with the ‘hard clipped’ transformation applied to the residuals 

of the frame-by-frame based ‘AR(5)’ fits are reported in Table 10. It is apparent that we 

cannot secure rates of rejection that point to the presence of ‘non-GARCH’ alternatives at 

the accepted significance levels.   

Overall, the results suggest that nonlinear serial dependence plays a much less 

prominent role in explaining the evolution of daily load and spot price return dynamics 

when compared to weekly returns. The ARCH LM test results reported in Table 9 

indicate that GARCH effects play a much more marginal role in explaining nonlinearity 

evident in daily spot price returns. These conclusions are further reinforced by the hard 

clipping results reported in Table 10. Therefore, a definite type of ‘time scale’ effect 

appears to be in operation. Nonlinear serial dependence appears to play a much greater 

role in explaining dynamics in both load and spot price returns dynamics over a weekly 

time scale rather than a daily time scale. This backs up the results reported in Brooks and 

Hinich (1998) and Ammermann and Patterson (2003) in relation to the application of LM 

ARCH test on a frame-by-frame basis. Specifically, what we are seeing is that for very 

small frame lengths (i.e. of a day), there is increasingly longer periods of time during 

which there is no evidence of linear or non-linear serial dependence, including ARCH 
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effects, in spot price returns. Nonlinear serial dependence is very episodic at this 

particular time scale. However, as the frame length is aggregated (i.e. increased to a 

week), these episodic effects are assimilated into both linear and nonlinear structures with 

increased incidence of frame based rejections of H, H4 and ARCH LM tests.   

However, unlike the findings in Brooks and Hinich (1998) and Ammermann and 

Patterson (2003), the extent of aggregation from a day to a week is not large within the 

context of the overall sample being considered and the extent of the relatively large 

number of frame based rejections cited in Tables 5-7, in particular, do indicate the 

statistically significance presence of nonlinear serial dependence operating on a weekly 

time scale. This has not been observed in other studies utilizing the test methods 

employed here, for example, see Hinich and Patterson (1989, 2005), Brooks (1996), 

Brooks and Hinich (1998), Ammermann and Patterson (2003), Lim, Hinich and Liew 

(2003, 2004, 2005), Lim and Hinich (2005a, 2005b),  Bonilla, Romero-Meza and Hinich 

(2007) and Czamanski, Dormaar, Hinich and Serletis (2007). Interestingly, the extent and 

pattern of rejections documented here significantly exceed the rejection patterns 

documented in Czamanski, Dormaar, Hinich and Serletis (2007) in relation to the Alberta 

market.  

6 KEY IMPLICATIONS OF OUR FINDINGS FOR THE MODELING OF 

SPOT PRICE DYNAMICS AND GENERAL RISK MANAGEMENT 

CONSIDERATIONS WITHIN GROSS POOL PRIVATISED WHOLESALE 

ELECTRICITY MARKETS 

Risk management practices within privatised gross pool wholesale electricity markets 

have historically been based upon bi-lateral contracts between demand and supply side 
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participants. However, more recently, options based financial instruments have begun to 

penetrate the Australian market.14 The pricing of these particular instruments have been 

primarily based upon the options pricing model initiated by Black and Scholes (1973) 

and Merton (1973). A central feature of this type of model is the use of Geometric 

Brownian Motion (GBM) models to capture the time evolution of asset price rates of 

return. The discrete-time version of the GBM model is a Gaussian random walk.15 The 

first difference of this process can be modelled as a sequence of non-Gaussian, identically 

and independently distributed random variables with finite moments that are passed 

though a symmetric, absolutely summable band-limited filter. As such, this process is 

linear. 

Given the prevalence of observed price spikes in electricity markets, the GBM model 

was subsequently augmented to include additive jump processes modeled typically by 

Poisson processes that model the probability of a jump occurring. These models can be 

viewed as encompassing a smooth continuous sample path process [the diffusion (or 

GBM) part] and a much less persistent discontinuous jump component [see Merton 

(1976), Bunn and Karakatsani (2003) and Chan, Gray and van Campen (2008)].  

A key property of the diffusion component of a jump-diffusion model is that it is both 

Gaussian and linear.  Any departures are associated with the jump component. This, in 

turn, is associated with the presence of conditional variance dependence (alternatively 

called conditional heteroskedasticity or multiplicative non-linearity). One stylized fact 

that the conventional jump-diffusion models have had trouble modeling is the observed 

                                                 
14 The key energy derivative (futures) market in Australia is that operated by d-cypha Trade. Information 
about these products is located at: http://d-cyphatrade.com.au/. 
15 A detailed account outlining the derivation and use of GBM and its extensions can be found in Clewlow 
and Strickland (2000, Ch 2 and 3), Eydeland and Wolyniec (2003, Ch 11) and Geman (2005, Ch 3). 
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time variation in volatility. In many respects, the development and use of 

ARCH/GARCH and stochastic volatility models have represented attempts to devise 

statistical models that are able to accommodate time varying volatility in a statistically 

parsimonious way [see Leon and Rubia (2004), Higgs and Worthington (2005) and 

Solibakke (2006)]. However, a limitation of these models is the widespread tendency to 

equate non-linear serial dependence solely with conditional heteroskedasticity.  

A key aspect of both ARCH/GARCH and stochastic volatility modeling frameworks 

is that the time series is assumed to be a zero mean process. This implies that the mean of 

the source time series has to be removed, typically by recourse to linear time series 

models [e.g., see Worthington and Higgs (2003), Hadsell, Marathe and Shawky (2004), 

Leon and Rubia (2004), Garcia and Contreras (2005), Higgs and Worthington (2005), 

Solibakke (2006), Bowden and Payne (2008) and Higgs (2008)]. The residuals from this 

model then constitute the ‘zero mean’ process that underpins theoretical discussion of 

these ‘volatility’ models 

However, a potential problem emerges when the mean of the process is nonlinear. 

Erroneous conclusions of ‘nonlinearity-in-variance’ can emerge when the prime source of 

serial dependence in the residuals is nonlinear structure that could not be successfully 

extracted by conventional linear-based time series models. From a diagnostic testing 

perspective, ‘nonlinear-in-mean’ structure in the residuals would be detected using higher 

order analogues of conventional Portmanteau test for serial correlation such as the H and 

H4 test statistics utilized in this article.  

The use of trimming allows us to directly control for the affects of outliers (i.e. jumps) 

in the data. As such, we are focusing attention upon the inter-quartile range of the 
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empirical distribution function of the returns data that would be associated with the 

diffusion component of the jump-diffusion process, for example. While the mean (e.g. 

diffusion component) of the GBM framework used in the Black-Scholes-Merton option 

pricing framework is Gaussian and linear, our findings, on the other hand, indicate that 

the mean properties of the actual returns data are, in fact, additively non-linear – that is, 

‘non-linear in mean’.  

If linear models are used to remove the mean of the process, any ‘nonlinearity in 

mean’ structure will end up in the residuals of the fitted model and can subsequently 

‘trip’ ARCH tests.16 However, in this case, equating non-linear serial dependence with 

conditional heteroskedasticity is erroneous. Moreover, ‘volatility’ modeling that led to 

the acceptance of linear specifications (with conditionally heteroscedastic disturbances) 

would represent a misspecification of the actual process in statistical terms.  

Some of these problems have been recognized in the literature and this has led to 

attempts to employ linear operators, such as step or seasonal dummy variables17 or 

‘seasonal’ differencing operators18 to model deterministic and stochastic daily, weekly 

and seasonal patterns. However, these cannot account for the ‘higher-order’ nonlinear 

dependencies that we have observed in both the load and spot price returns data series. 

Furthermore, the bi-correlations and tri-correlations encompass third and four order 

moment products. As such, the order of magnitude implied in the nonlinear structure 

being detected by the H and H4 statistics is of a higher order than that being detected and 

                                                 
16 Ashley, Patterson and Hinich (1986) formally prove that if the data generating mechanism is nonlinear 
and a linear filter (i.e. time series model) is fitted to the nonlinear data, then the nonlinear structure will end 
up in the residuals of the fitted linear model. 
17 Consult Hadsell, Marathe and Shawky (2004), Chan, Gray and van Campen (2008), Higgs and 
Worthington (2008), Karakatsani and Bunn (2008) and Weron and Misiorek (2008). 
18 For example, see Bowden and Payne (2008), and Weron and Misiorek (2008). 
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modeled by GARCH and stochastic volatility processes which entail second order 

products implied in the squaring of fitted residuals.  

The existence of statistically significant bi-correlation and tri-correlation structure in 

the returns data also pose problems for focusing purely on the second order volatility 

measure encompassed in the conventional standard deviation based measure of volatility. 

Not only will the higher order structure significantly contribute to the time evolution of 

the returns data itself, but, in amplitude terms, can dominate the contribution of the 

conventional second order standard deviation measure emphasized in the broader finance 

literature. 

Finally, the testing procedure associated with the ‘hard clipping’ procedure outlined in 

equation (13) constitutes a direct test of the adequacy of symmetric ARCH/GARCH and 

stochastic volatility models. The results cited in Table 7 in relation to weekly spot price 

dynamics, in particular, indicate that these models cannot adequately capture the 

statistically significant non-linear dependence structure contained in the spot price returns 

data.  

Thus, it seems essential to discover as much as possible about the nature of any 

nonlinearity present in the time series data before techniques such as GARCH modeling 

are applied. These matters are of considerable importance in managing risk in electricity 

markets, particularly in option pricing. Only recently, we have observed the damage that 

has been done by incorrect option pricing based upon related applications of the Black, 

Scholes and Merton modeling methodology in financial markets that had questionable, if 

any, empirical basis. 
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7 CONCLUDING COMMENTS 

In this article, we have tested for the presence of nonlinear serial dependence in NEM 

State daily and weekly load and spot electricity price data. This task was accomplished 

by applying the portmanteau correlation, bicorrelation and tricorrelation tests introduced 

in Hinich (1996) to the time series of half hourly spot prices. These tests were used to 

detect epochs of transient serial dependence in a discrete-time pure white noise process. 

The test framework involves partitioning the time series data into non-overlapping frames 

and computing the portmanteau correlation, bicorrelation and tricorrelation test statistics 

for each frame to detect linear and nonlinear serial dependence respectively. Furthermore, 

the presence of pure ARCH and GARCH effects in the spot price returns were also 

investigated by applying the Engle LM ARCH test and, additionally, using a detection 

framework based upon converting a martingale difference process into a pure noise 

process and then testing for the presence of linear and nonlinear serial dependence.  

Nonlinear serial dependence was found to be present in both daily and weekly load 

and spot price returns data. However, a ‘time scale’ effect was found to be present.  

Specifically, nonlinear serial dependence was found to be a much more prominent feature 

in both the load and spot price returns dynamics over a weekly time scale rather than a 

daily time scale. At the daily time scale, we found increasingly long periods during which 

there is no evidence of linear or non-linear serial dependence, including ARCH effects in 

load or spot price dynamics, followed by episodes of nonlinear dependence of limited 

duration. GARCH effects appeared to be a more prominent in the weekly dynamics of 

spot price returns than was the case with the daily dynamics. At the weekly time scale, 

there is significant evidence of nonlinear serial dependence. This finding most likely 
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reflects the strong weekly periodicities found in both the load and spot price returns data 

which were identified in Foster et al (2008) using the RMP model. The finding of 

nonlinearity provides some added support for the proposition made in Hinich (2000) and 

Hinich and Wild (2001) that the generating mechanism for an RMP process is essentially 

nonlinear. The added finding of episodic nonlinearity is in line with the commonly 

accepted ‘stylised’ fact of strong mean reversion in spot electricity prices.  

The finding of nonlinearity has important implications for modeling weekly and daily 

load and spot price dynamics and, therefore, for risk management. Because of the 

prevalence of both third- and fourth-order nonlinear serial dependence in the data, time 

series models that are linear in construction or assume a pure noise input, such as GBM 

stochastic diffusion models, are problematic. Their dependence structure violates both 

normality and Markovian assumptions that underpin conventional GBM models. 

Furthermore, the trimming methodology used in this article, indicates that observed 

nonlinear serial dependence is being generated by more than just the presence of outliers. 

Strong evidence of third- and fourth-order nonlinear serial dependence was found in all 

of the ‘trimmed’ weekly spot price returns data. So, from a risk management perspective, 

particularly in the context of option pricing models, serious questions arise about the 

ability of jump diffusion models, in particular, to adequately capture nonlinearity. Errors 

in pricing, induced by the use of such models, could prove very costly to participants in a 

market that is characterized by high levels of price volatility. 
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Table 1.  Summary Statistics for Load Returns Data 

 

                                                    NSW              QLD             VIC                 SA 

No of Observations                   185162           185162        185162           185162   
Mean                                          0.0002            0.0002         0.0002            0.0001 
Maximum                                    36.80                42.3             40.2                32.5 
Minimum                                    -30.90              -38.5           -41.3               -49.4 
Std Dev                                          3.03               2.79             2.91                3.43 
Skewness                                       1.01               0.84             0.94                0.34 
Excess Kurtosis                             1.52               1.71             1.34                1.25 
6th Order Cumulant                       9.82              85.42           66.24              51.16 
JB Test Statistic                       49500.0         44300.0       41100.0          15600.0 
JB Normality P-Value               0.0000           0.0000         0.0000            0.0000 

 
 

Table 2.  Summary Statistics for Spot Price Returns Data 

 

                                                   NSW              QLD             VIC                 SA 

No of Observations                    185162           185162        185162           185162   
Mean                                          -0.0003           -0.0001       -0.0004           -0.0005 
Maximum                                     545.0              591.0           497.0               597.0 
Minimum                                    -572.0             -531.0          -488.0             -610.0 
Std Dev                                          18.9                25.7              20.1                26.2 
Skewness                                        0.42               0.25              0.31               -0.45 
Excess Kurtosis                            104.0               78.8              69.8                80.0 
6th Order Cumulant                   42740.5         15446.0        21020.3          17415.5 
JB Test Statistic                  84100000.0   47900000.0  37600000.0    49300000.0 
JB Normality P-Value                0.0000           0.0000          0.0000            0.0000 

 

 

Table 3.  Summary Statistics for ‘Trimmed’ Load Returns Data 

 

                                                    NSW              QLD             VIC                 SA 

No of Observations                   185162           185162        185162           185162   
Mean                                        -0.0006           -0.0003          -0.001            0.0004 
Maximum                                      2.12                1.98              2.30                3.32 
Minimum                                     -1.98              -1.95             -2.21              -3.32 
Std Dev                                          0.72               0.72              0.78                1.21 
Skewness                                       0.08               0.02              0.06                0.01 
Excess Kurtosis                             0.58               0.31              0.73                0.41 
6th Order Cumulant                      -3.62              -2.84            -3.85               -3.46 
JB Test Statistic                         2780.0             772.0          4270.0            1320.0 
JB Normality P-Value                0.0000          0.0000          0.0000             0.0000 
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Table 4.  Summary Statistics for ‘Trimmed’ Spot Price Returns Data 

 

                                                   NSW              QLD             VIC                 SA 

No of Observations                    185162           185162        185162           185162   
Mean                                           -0.316             -0.229          -0.287             -0.122 
Maximum                                       16.1                16.1             18.5                18.5 
Minimum                                      -15.2               -15.2            -16.9               -17.3 
Std Dev                                          9.22                 9.16             10.5                10.6 
Skewness                                       0.16                 0.15             0.20                 0.14 
Excess Kurtosis                            -0.69               -0.66            -0.73               -0.70 
6th Order Cumulant                        1.32                0.98              1.51                1.35 
JB Test Statistic                         4510.0            3980.0          5370.0             4360.0 
JB Normality P-Value               0.0000            0.0000          0.0000             0.0000 
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Table 5.  Frame Test Results for ‘Trimmed’ Weekly Spot Price (Returns) Data 
Specific Details: Removed ‘Weekly Mean’ By Global AR(340) ‘Prewhitening’ Fit; 

Applied Frame by Frame AR(10) ‘Prewhitening’ Fit to Remove Linear Dependence 

Scenario          Total Num        False Alarm             Significant              Significant                 Significant   

 / (State)           of Frames          Threshold                C Frames                H  Frames                  H4 Frames    
                                                                                           Num & (%)                 Num & (%)                   Num & (%)         

NSW                   551                   0.90                           0                             330                              442           
                                                                                            (0.00%)                     (59.89%)                          (80.22%)      

                            551                   0.95                           0                             271                              398          
                                                                                            (0.00%)                      (49.18%)                          (72.23%)   

                            551                   0.99                           0                              161                              281           
                                                                                            (0.00%)                      (29.22%)                          (51.00%)      

QLD                    551                   0.90                           0                             246                              364          
                                                                                           (0.00%)                      (44.65%)                           (66.06%)    

                            551                   0.95                           0                             189                              312         
                                                                                           (0.00%)                      (34.30%)                           (56.62%)    

                            551                   0.99                           0                             103                              220          
                                                                                           (0.00%)                      (18.69%)                           (39.93%)      

VIC                     551                   0.90                           0                             308                              446           
                                                                                           (0.00%)                      (55.90%)                           (84.57%)     

                            551                   0.95                           0                            244                               419           
                                                                                          (0.00%)                       (44.28%)                           (76.04%)     

                            551                   0.99                           0                            161                               313          
                                                                                          (0.00%)                       (29.22%)                           (56.81%)    

 SA                      551                   0.90                           0                            282                               377          
                                                                                          (0.00%)                       (51.18%)                           (68.42%)      

                            551                   0.95                           0                            214                               311         
                                                                                          (0.00%)                       (38.84%)                           (56.44%)     

                            551                  0.99                            0                            116                               188          
                                                                                           (0.00%)                      (21.05%)                           (34.12%)    
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Table 6.  Frame Test Results for ‘Trimmed’ Weekly Spot Price (Returns) Data  
Specific Details: No Global AR ‘Prewhitening’ Fit; 

Applied Frame by Frame AR(10) ‘Prewhitening’ Fit to Remove Linear Dependence 

Scenario  Total Num     False Alarm     Significant         Significant          Significant        Significant 

 / (State)   of Frames      Threshold        C Frames           H  Frames           H4 Frames         ARCH Frames 
                                                                       Num & (%)           Num & (%)            Num & (%)           Num & (%)      

NSW               551              0.90                    0                       530                       488                     461 
                                                                          (0.00%)                (96.19%)                  (88.57%)              (83.67%) 

                        551             0.95                    0                        519                       458                    430 
                                                                         (0.00%)                (94.19%)                   (83.12%)              (78.04%) 

                        551             0.99                    0                        464                       357                    352 
                                                                         (0.00%)                (84.21%)                   (64.79%)              (63.88%) 

QLD                551              0.90                   0                        519                        482                   509 
                                                                        (0.00%)                 (94.19%)                   (87.48%)              (92.38%) 

                        551              0.95                   0                        499                        444                   479 
                                                                        (0.00%)                 (90.56%)                   (80.58%)              (86.93%) 

                        551              0.99                   0                        430                       361                    417 
                                                                        (0.00%)                 (78.04%)                   (65.52%)              (75.68%) 

VIC                 551             0.90                   0                         544                       518                    500 
                                                                      (0.00%)                   (98.73%)                   (94.01%)              (90.74%) 

                         551             0.95                  0                         532                       494                     462 
                                                                      (0.00%)                   (96.55%)                   (89.66%)             (83.85%) 

                         551             0.99                  0                         512                       433                     386 
                                                                      (0.00%)                   (92.92%)                   (78.58%)             (70.05%) 

 SA                   551             0.90                   0                         502                       451                     476 
                                                                      (0.00%)                   (91.11%)                  (81.85%)              (86.39%) 

                         551             0.95                   0                        475                        409                     437 
                                                                      (0.00%)                   (86.21%)                  (74.23%)              (79.31%) 

                         551             0.99                   0                        409                        298                     355 
                                                                      (0.00%)                   (74.23%)                  (54.08%)               (64.43%) 
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Table 7.  Frame Test Results for ‘Trimmed’ Weekly Spot Price (Returns) Data  

Specific Details: No Global AR ‘Prewhitening’ Fit; 
Applied Frame by Frame AR(10) ‘Prewhitening’ Fit to Remove Linear Dependence 
Frame by frame Hard Clipping of Residuals 

Scenario          Total Num        False Alarm             Significant              Significant                 Significant   

 / (State)           of Frames          Threshold                C Frames                H  Frames                  H4 Frames    
                                                                                           Num & (%)                 Num & (%)                   Num & (%)         

NSW                   551                   0.90                           42                           324                              124           
                                                                                            (7.62%)                      (58.80%)                          (22.50%)      

                            551                   0.95                           26                           261                                75          
                                                                                            (4.72%)                      (47.37%)                          (13.61%)   

                            551                   0.99                           10                           139                                22           
                                                                                            (1.81%)                     (25.23%)                            (3.99%)      

QLD                    551                   0.90                           54                           259                                99          
                                                                                           (9.80%)                      (47.01%)                           (17.97%)    

                            551                   0.95                           33                           193                                56         
                                                                                           (5.99%)                      (35.03%)                           (10.16%)    

                            551                   0.99                           13                             96                                17          
                                                                                           (2.36%)                      (17.42%)                            (3.09%)      

VIC                     551                   0.90                           53                           387                               164           
                                                                                           (9.62%)                      (70.24%)                            (29.76%)     

                            551                   0.95                           34                          332                                108           
                                                                                           (6.17%)                      (60.25%)                            (19.60%)     

                            551                   0.99                             9                          212                                  35          
                                                                                           (1.63%)                      (38.48%)                             (6.35%)    

 SA                      551                   0.90                           50                          273                                  93          
                                                                                           (9.07%)                      (49.55%)                             (16.88%)      

                            551                   0.95                           26                          216                                  53         
                                                                                          (4.72%)                      (39.20%)                               (9.62%)     

                            551                  0.99                              9                          106                                  12          
                                                                                           (1.63%)                     (19.24%)                              (2.18%)    
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Table 8.  Frame Test Results for ‘Trimmed’ Daily Load Demand (Returns) Data  
Specific Details: Removed ‘Weekly Mean’ By Global AR(340) ‘Prewhitening’ Fit; 

Applied Frame by Frame AR(5) ‘Prewhitening’ Fit to Remove Linear Dependence 

Scenario          Total Num        False Alarm             Significant              Significant                 Significant   

 / (State)           of Frames          Threshold                C Frames                H  Frames                  H4 Frames    
                                                                                           Num & (%)                 Num & (%)                   Num & (%)         

NSW                   3857                  0.90                           0                             862                              694           
                                                                                             (0.00%)                     (22.35%)                          (17.99%)      

                            3857                  0.95                           0                            475                               409          
                                                                                            (0.00%)                      (12.32%)                          (10.60%)   

                            3857                  0.99                           0                            131                               107           
                                                                                            (0.00%)                       (3.40%)                            (2.77%)      

QLD                    3857                  0.90                          2                            783                               609          
                                                                                            (0.05%)                      (20.30%)                          (15.79%)    

                            3857                  0.95                          2                            446                               362         
                                                                                           (0.05%)                      (11.56%)                            (9.39%)    

                            3857                  0.99                          1                            103                                 98          
                                                                                           (0.03%)                       (2.67%)                             (2.54%)      

VIC                     3857                 0.90                           0                            696                               623           
                                                                                           (0.00%)                      (18.05%)                           (16.15%)     

                            3857                  0.95                          0                            364                               328           
                                                                                          (0.00%)                        (9.44%)                             (8.50%)     

                            3857                  0.99                          0                              73                                 83           
                                                                                          (0.00%)                        (1.89%)                             (2.15%)    

 SA                      3857                 0.90                           0                            957                               790          
                                                                                          (0.00%)                       (24.81%)                           (20.48%)      

                            3857                 0.95                           0                            558                               474         
                                                                                          (0.00%)                        (14.47%)                          (12.29%)     

                            3857                 0.99                           0                            157                               127          
                                                                                           (0.00%)                       (4.07%)                             (3.29%)    
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Table 9.  Frame Test Results for ‘Trimmed’ Daily Spot Price (Returns) Data  
Specific Details: No Global AR ‘Prewhitening’ Fit; 

Applied Frame by Frame AR(5) ‘Prewhitening’ Fit to Remove Linear Dependence 

Scenario  Total Num     False Alarm     Significant         Significant          Significant        Significant 

 / (State)   of Frames      Threshold        C Frames           H  Frames           H4 Frames         ARCH Frames 
                                                                       Num & (%)           Num & (%)            Num & (%)           Num & (%)      

NSW               3857            0.90                    2                      1189                       937                    646 
                                                                          (0.05%)                (30.83%)                  (24.29%)               (16.75%) 

                        3857           0.95                    2                        790                       583                      383 
                                                                         (0.05%)                (20.48%)                   (15.12%)                (9.93%) 

                        3857           0.99                    0                        284                       219                      126 
                                                                         (0.00%)                 (7.36%)                    (5.68%)                  (3.27%) 

QLD                3857           0.90                   0                       1347                       967                     729 
                                                                        (0.00%)                 (34.92%)                   (25.07%)               (18.90%) 

                        3857           0.95                   0                        902                        635                     452 
                                                                        (0.00%)                 (23.39%)                   (16.46%)               (11.72%) 

                        3857           0.99                   0                        363                        223                      158 
                                                                        (0.00%)                  (9.41%)                    (5.78%)                  (4.10%) 

VIC                 3857          0.90                   1                        1283                      1106                     655 
                                                                      (0.03%)                   (33.26%)                  (28.68%)                (16.98%) 

                         3857          0.95                  0                         859                        733                      392 
                                                                      (0.00%)                   (22.27%)                  (19.00%)                (10.16%) 

                         3857          0.99                   0                        348                        271                      111 
                                                                      (0.00%)                    (9.02%)                   (7.03%)                   (2.88%) 

 SA                   3857           0.90                  0                        1104                       934                      614 
                                                                      (0.00%)                   (28.62%)                  (24.22%)                (15.92%) 

                         3857           0.95                  0                          734                        580                     360 
                                                                      (0.00%)                   (19.03%)                  (15.04%)                 (9.33%) 

                         3857           0.99                   0                         281                        214                     130 
                                                                      (0.00%)                    (7.29%)                     (5.55%)                  (3.37%) 
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Table 10.  Frame Test Results for ‘Trimmed’ Daily Spot Price (Returns) Data  

Specific Details: No Global AR ‘Prewhitening’ Fit; 
Applied Frame by Frame AR(5) ‘Prewhitening’ Fit to Remove Linear Dependence 
Frame by frame Hard Clipping of Residuals 

Scenario          Total Num        False Alarm             Significant              Significant                 Significant   

 / (State)           of Frames          Threshold                C Frames                H  Frames                  H4 Frames    
                                                                                           Num & (%)                 Num & (%)                   Num & (%)         

NSW                   3857                 0.90                           134                          426                              307           
                                                                                            (3.47%)                      (11.04%)                            (7.96%)      

                            3857                  0.95                           78                          199                               166          
                                                                                            (2.02%)                       (5.16%)                            (4.30%)   

                            3857                  0.99                           27                            50                                 33           
                                                                                            (0.70%)                       (1.30%)                            (0.86%)      

QLD                    3857                  0.90                          177                          428                               342          
                                                                                            (4.59%)                      (11.10%)                           (8.87%)    

                            3857                  0.95                          108                          252                               173         
                                                                                            (2.80%)                       (6.53%)                             (4.49%)    

                            3857                  0.99                            37                            88                                 33          
                                                                                             (0.96%)                       (2.28%)                            (0.86%)      

VIC                     3857                 0.90                           107                          397                               315           
                                                                                             (2.77%)                      (10.29%)                           (8.17%)     

                            3857                 0.95                            44                          193                                155           
                                                                                            (1.14%)                       (5.00%)                             (4.02%)     

                            3857                 0.99                             6                             49                                  27          
                                                                                            (0.16%)                        (1.27%)                            (0.70%)    

 SA                      3857                0.90                          112                            361                               303          
                                                                                           (2.90%)                        (9.36%)                             (7.86%)      

                            3857                 0.95                           47                            169                               139         
                                                                                           (1.22%)                        (4.38%)                             (3.60%)     

                            3857                 0.99                           12                              28                                28          
                                                                                           (0.31%)                         (0.73%)                             (0.73%)    

 
 


