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ABSTRACT 

The purpose of this note is to analyse the capability of bandpass filters 

to extract a known periodicity.  The specific bandpass filters considered 

are a conventional Discrete Fourier Transform (DFT) filter and the filter 

recently proposed in Iacobucci-Noullez (2004, 2005). We employ 

simulation methods to investigate cycle extraction properties. We also 

examine the implications arising from the Gibbs Effect in practical 

settings typically confronting applied macroeconomists.   

 

Keywords: business cycles, bandpass filter, cycle extraction, Discrete 

Fourier Transform (DFT), Gibbs Effect. 



 3

1. INTRODUCTION 

There has been considerable attention paid to designing various filters 

to extract business cycle components from macroeconomic time series. 

In economics, some of the best-known filters are the Hodrick-Prescott 

(HP) and Baxter-King (BK) filters.1  In the economics literature less 

prominence has been given to the design and implementation of 

frequency domain filters based on DFT methods, including the capacity 

of the filters to successfully extract cyclical components. 

In this note, we investigate whether the filters can extract a known 

deterministic periodicity while requiring the filter to pass over another 

periodicity, deliberately designed to fall outside the passband.  This is a 

simple task that we would reasonably expect any filtering algorithm to be 

able to successfully accomplish.  

The above-mentioned deterministic periodic model provides the best 

methodological framework for demonstrating the key findings we wish to 

present in this note.  However, our results also hold for the more general 

model of a stationary stochastic periodic process whose innovations are 

additive Gaussian noise variates, as demonstrated in Hinich, Foster and 

Wild (2008)a, Section 5.2 

                                       
1 Hodrick and Prescott (1997) and Baxter and King (1999). Also see King and Rebelo 
(1993), Cogley and Nason (1995), Pedersen (2001) and Murray (2003).  
2 We assume that the data has been appropriately de-trended using an ‘appropriate’ de-
trending method. The filtering operation itself should not to be interpreted as a de-
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We also examine the role that the Gibbs Effect might play in practical 

attempts at business cycle extraction undertaken in an environment 

familiar to applied macroeconomists – i.e. single realizations of small to 

moderate length macroeconomic time series data.  Such situations are a 

long way from the mathematical environment that is assumed to 

underpin theoretical representations of the Gibbs Effect.   

In the next section, we outline the role that the DFT plays in designing 

bandpass filters. We also clarify the role that the Gibbs Effect might be 

expected to play in practical business cycle extraction exercises. In 

Section 3, we outline the simulation model. In Section 4, key results from 

the simulations will be presented. Finally, Section 5 contains concluding 

comments. 

2. DISCRETE FOURIER TRANSFORM AND BANDPASS FILTERS 

Suppose the bandpass filter is to be applied to a discrete-time data 

series ( )nx t  (i.e. published macroeconomic time series data) where nt nτ= , 

τ  is the sampling interval and ( )nx t  has finite length T Nτ= .3  In this 

situation, the appropriate Fourier Transform is the Discrete Fourier 

Transform (DFT). The DFT maps a sequence of N data points 

( ) ( ) ( ){ }0 , 1 , , 1x x x N −…  in the time domain to a set of N equally spaced 

                                                                                                                  
trending operation. The filters are to be applied to the transformed data after it has 

been de-trended. 
3 We can set the first observation index to zero and 1=τ . 
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amplitudes in the frequency domain at the frequency values =k
k

f
T
 

termed Fourier or harmonic frequencies. The (time to frequency) DFT is 

defined by 

( ) ( ) ( )
1

0

exp 2
N

x n k n

n

A k x t i f tπ
−

=

= −∑ .                                                                (1) 

The highest harmonic frequency index is [ ]/ 2 / 2N N=  if N is even and 

[ ] ( )/ 2 1 / 2N N= −  if N is odd. The Fourier Transform outlined in (1) differs 

from the ‘Discrete-Time Fourier Transform’ concept that conventionally 

underpins analysis of ideal filter response.4   

The inverse (frequency to time) DFT is  

( ) ( ) ( )
1

1

0

exp 2π
−

−

=

= ∑
N

n x k n

k

x t N A k i f t .                                                              (2)  

The complex amplitudes ( )xA k  contain all the information about the 

finite record of the time series. The fundamental limit to resolving 

amplitudes is T (or N ), the length of the record whose associated 

frequency 1

1
f

T
=  is called the fundamental frequency. It is impossible to 

                                       
4 The main point of difference between (1) and the ‘Discrete-Time Fourier Transform’ is 

that the latter involves a doubly infinite summation of filter input ( )ntx  [instead of the 

finite sum in (1)] which produces a continuous frequency response defined over the 

interval ( )ππ ,−  [instead of the discrete frequency set ( )
2

,0 N  associated with (1)]. The 

impulse response of the ‘Discrete-Time Fourier Transform’ for an ideal low pass filter is 

the ‘sinc’ function. 
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exactly compute the true values of ( )xA f  for frequencies less than the 

fundamental frequency and in between the higher harmonic frequencies. 

Amplitudes whose frequencies are not the Fourier frequencies can only 

be interpolated with error. 

Suppose we wish to analyze the periodic nature of the time series in the 

passband ( )
1 2
,k kf f . We want to filter out the Fourier amplitudes whose 

indices are less than 1k  and greater than 2k . This can be accomplished 

using the FFT by ‘zeroing out’ all the complex FFT values outside the 

passband – that is, by utilizing an ideal bandpass filter whose discrete-

frequency transfer function is ( ) = ≤ ≤ ≤ − ≤ −1 2 2 11 for  , -kH f k k k k k k  and 

zero otherwise. Then the filtered time series is 

( ) ( ) ( ) ( ) ( )
2 1

1 2

1
exp 2 exp 2

k N k

n x k k n x k k n

k k k N k

y t A f i f t A f i f t
N

π π
−

= = −

 
= + 

 
∑ ∑ . (3) 

The time domain representation of filter coefficients is the inverse 

Discrete Fourier Transform of the discrete-frequency transfer function. If 

we set 
1
0=kf  producing the ‘lowpass’ version of the ideal filter, the 

impulse response is the ‘Dirichlet’ kernel. 

In the literature, the ‘Discrete-Time Fourier Transform’ has been 

employed instead of the DFT whereas the latter is the appropriate 

concept for discrete-time finite length time series data. Because of this, 

the common practice has been to truncate the doubly infinite ideal filter 
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coefficient sequence retaining only a limited number of its central 

elements and then convolving this truncated filter with the data to 

bandpass the series in the time domain. This truncation process 

generates the Gibbs Effect - an undesirable effect producing a ripple 

effect whereby the gain of the filter’s frequency response fluctuates 

within both the stopband and passband, producing deviations from the 

desired ideal frequency response for continuous time filtering [see 

Papoulis (1962, pp.30-31), Kufner and Kadlec (1971, pp. 225-228), 

Bracewell (1978, 209-211), Priestley (1981, p.561)].  

The leakage effect does not directly apply for the use of the DFT to filter 

a finite sample of a time series and reflects unavoidable inherent 

limitations associated with the use of finite length discrete-time data 

confronting applied macroeconomists. The ideal frequency response can 

be synthesized at the discrete set of Fourier frequency amplitudes.  

However, this set of frequency amplitudes is the only frequency concept 

identifiable when using the DFT outlined in (1)-(2). It is not possible to 

synthesize a continuous frequency set in the interval ( )ππ ,− . Thus, it is 

not possible to identify or preserve all components in the (continuous) 

frequency interval ( )ππ ,−  when applying the DFT to ‘real world’ 

macroeconomic data. As a consequence, it is only possible to strictly 

define ‘stopband-passband’ cutoffs that coincide with Fourier frequencies 

and hence, are sub-multiples of both the sample size T  and fundamental 
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frequency 1f . Thus, the only observable frequencies are the Fourier 

frequencies themselves – the (discrete) set of frequencies at which it is 

possible to synthesize an ideal frequency response. 

To demonstrate the ideal frequency response of the DFT filter, we apply 

the DFT filter to a unit impulse sequence ( ) ( ) ( ) ( ){ }1,...,2,1,0 −Nxxxx  = 

{ }0,...,0,0,1 .  We adopt a sample size of 120 observations corresponding, for 

example, to 30 years of quarterly data and define the passband of (24,6) 

quarters.  In terms of frequency (inverted period), the passband is given 

by (1/24,1/6) = (0.042,0.167).  

The frequency response is depicted in Figure 1 and is derived by 

applying (1) to the unit impulse series and applying the ideal frequency 

response at the Fourier frequency amplitudes (defined by the ‘dot’ points 

in Figure 1). It is evident from inspection of Figure 1 that the ideal 

frequency response is synthesized at the Fourier frequency amplitudes – 

i.e. see the ‘DFT Filter’ response.5  It should be noted that the curves in 

Figure 1 are strictly defined only at the discrete Fourier frequencies 

themselves - it is not a continuous function of frequency.   

It is apparent that the ‘ripples’ associated with the Gibbs Effect are not 

observable – they would lie in the continuum between the ‘observable’ 

discrete set of Fourier frequency amplitudes.  Varying the sample size T  

                                       
5 It should be noted that in all figures reported in this note all results associated with 
the conventional DFT bandpass filter will be labeled ‘DFT Filter’. 
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(and fundamental frequency) by ‘zero padding’ or dropping data points 

will not change this basic result. 

Figure 1 about here. 

The application of the inverse DFT (2) to the discrete ideal frequency 

response outlined in Figure 1 is documented in Figure 2 – i.e. see the 

‘DFT Filter’ function. This ‘function’ is symmetrical about N/2, i.e. data 

point 60 in Figure 2. This function is strictly defined only at the discrete 

data points represented by the ‘dots’ in Figure 2 and depicts a discrete 

finite symmetrical set of (time-domain) filter coefficients. The finite length 

of this set of filter coefficients means that a truncation process has been 

automatically imposed on the sequence of filter coefficients. 

Figure 2 about here. 

In the literature (utilizing the ‘Discrete-Time Fourier Transform’) window 

methods have been conventionally applied to minimize the adverse 

affects of the Gibbs effect (see Priestley (1981, pp.561-562)). This 

approach has been recently ‘revived’ in Iacobucci-Noullez (2004, 2005) 

who proposed the use of a convolved windowed Bandpass DFT Filter 

Algorithm.6  This algorithm involves smoothing the ‘0-1’ transition at the 

‘stopband-passband’ cutoffs by using a taper that is linked to specific 

spectral windows.  In this note, we use the ‘Hamming’ spectral window 

                                       
6 It should be noted that in all figures reported in this note all results associated with 
the Iacobucci-Noullez convolved windowed bandpass DFT filter will be labeled 

‘IAC_Ham’. 
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recommended in Iacobucci and Noullez (2004, p.6).  This involves 

applying  

( ) ( ) ( )1 10.23* 0.54* 0.23* *x k k k xV k H H H A k− += + + .                                        (4)  

 In the above equation, ( )xA k  is derived from (1) and kH  is based upon 

the discrete ideal frequency response. The Filtering operation outlined in 

(3) can then be represented as 

 ( ) ( ) ( )
2 1

1 2

1
exp 2 exp 2

k N k

n k k

k k k N k

kn kn
y t V f i V f i

N N N
π π

−

= = −

    = +    
    

∑ ∑ɶ ,                        (5) 

where ( )kfV  is equal to ( )kVx  from (4) and where 
N

k
f k =  is the Fourier 

frequency corresponding to frequency index k.  

The frequency response function for the Iacobucci-Noullez filter is also 

displayed in Figure 1– i.e. see the ‘IAC_Ham’ response. The main point of 

difference is that the Iacobucci-Noullez filter has a smoother (tapered) 

transition from the stopband to passband region when compared with 

the conventional DFT frequency response.  However, this smoothing 

process also allows for the possibility of increased leakage from 

components in the stopband to the bandpass filtered data – this would 

occur if components in the stopband region are very close to the 

‘stopband-passband’ transition itself.   

In Figure 2, we also display the inverse DFT to the discrete ideal 

Iacobucci-Noullez filter frequency response outlined in Figure 1 – i.e. see 
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the ‘IAC_Ham’ function in Figure 2.  The main effect of tapering is to 

dampen out the filter coefficient fluctuations when compared with that 

associated with the conventional DFT filter.   

3. SIMULATION MODEL 

We wrote a FORTRAN 95 program to conduct the reported simulations. 

In general terms the artificial data model can be viewed as a periodic 

deterministic process. The ‘complete’ periodicity is defined as the sum of 

two periodicities.  The first is a low frequency periodicity that is designed 

to fall outside the passband while the second periodicity is designed to 

fall within the passband.7  Formally, define the low frequency periodicity 

as 

( ) ( )( )10*2sin* 11 += tfamptxl π ,                                                                 (6) 

and the ‘bandpass’ periodicity as 

( ) ( )( )4*2cos* 22 −= tfamptxb π ,                                                                 (7) 

where 1amp  and 2amp  are amplitude parameters and 1f  and 2f  are 

frequency parameters. In all simulations we set 0.51 =amp  and 0.12 =amp . 

The complete periodicity is represented by 

( ) ( ) ( )l bx t x t x t= + ,                                                                                (8)  

                                       
7 We adopt the same settings relating to sample size and passband that were outlined 
in relation to Figure 1 in the previous section.   
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where ( )lx t , ( )bx t  and ( )x t  are deterministic periodic processes. 

The following points should be recognized.  First, the true low frequency 

periodicity 025.01 =f  is perfectly synchronized with the amplitude at 

Fourier frequency 0.025 in the low frequency region of the stopband. 

Second, the main difference in parameter settings adopted in (7) for the 

true ‘bandpass’ periodicity reflects our desire to examine the implications 

of two particular circumstances.  The first corresponds to the situation 

where the true ‘bandpass’ periodicity is perfectly synchronized with a 

Fourier frequency amplitude in the passband (i.e. parameter 0667.02 =f ). 

The second circumstance is where the true ‘bandpass’ periodicity lies 

between two adjacent Fourier frequency amplitudes in the passband (i.e. 

parameter 0625.02 =f ).  Plots of the artificial data series generated by (8) 

for both ‘synchronized’ and ‘unsynchronized’ parameter settings in (7) 

are documented in Figure 3. 

Figure 3 about here. 

The data generated by model (6)-(8) represents the ‘input’ series ( )ntx  

that the time to frequency DFT in (1) is applied.  The specific data series 

generated by (7) for 
2f  parameter settings are the respective targets of 

the bandpass filtering operations of both types of DFT filters considered 

in this note.   
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4. SIMULATION RESULTS  

Our aim is to examine the comparative performance of both DFT filters 

in tracking (extracting) the target data series associated with (7) from 

data generated by model (6)-(8) and depicted in Figure 3. 

Figure 4 contains a plot of the results from application of both DFT 

filter algorithms to data generated by the simulation model when 

0667.02 =f  in (7) (i.e. the ‘synchronized’ case).  In this figure, the artificial 

data series associated with the true ‘bandpass’ periodicity determined by 

(7) (i.e. the ‘actual’ series) and the bandpass filtered data series from both 

DFT filters (i.e. the ‘DFT filter’ and ‘IAC_Ham’ series) are displayed 

together.  It is evident from inspection of this figure that both DFT filters 

produce data series that perfectly track the true target periodicity – they 

both completely extracted the deterministic cycle corresponding to the 

‘true’ synchronized ‘bandpass’ periodicity.  

Figure 4 about here. 

In order to confirm that the DFT filter operations have ignored the low 

frequency periodicity contained in (8) [generated by (6)], we plot the 

periodogram of the bandpass filtered data series.  The periodogram is 

calculated as the squared modulus of the complex variable ( )kAx  

determined from (1) for each Fourier frequency k  divided by the number 

of sample points .N  If the low frequency cycle has been removed from the 

filtered data series, then there should be no ‘power’ (i.e. no non-zero 
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value) at the low frequency ordinate (0.025) in the periodogram of the 

filtered data series. The periodograms of both DFT filtered data series are 

displayed in Figure 5. 

Examination of Figure 5 indicates that the low frequency component 

has been successfully eliminated from the filtered data series – there is 

no power corresponding to Fourier frequency ordinate 0.025.  In both 

cases, the only power corresponds to the spike at Fourier frequency 

0.0667 reflecting the perfect synchronization with the true ‘bandpass’ 

periodicity generated by (7).  Moreover, the exact correspondence 

between the two filtered data series can be seen by the fact that both 

filters display the exact same power at Fourier frequency 0.0667 in 

Figure 5. 

Figure 5 about here.  

We also investigated the ability of the two DFT filters to extract the true 

deterministic ’bandpass’ cycle when it was not synchronized with any 

Fourier frequency in the passband – i.e. parameter 0625.02 =f  in (7). Note 

that this setting was adopted so that the ‘true’ periodicity falls half way 

between the adjacent Fourier frequencies 0.0583 and 0.0667.  In Hinich, 

Foster and Wild (2008)b, it was demonstrated that in this case, the true 

periodicity would be ‘smeared’ or ‘spread’ between the adjacent Fourier 

frequency ordinates bordering the true periodicity. 
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Figure 6 contains a plot of the periodograms of the filtered data 

obtained from applying the DFT filters to the ‘unsynchronized’ data 

series.  The first thing to note from inspection of Figure 6 is that the 

spike associated with the ‘synchronized’ case outlined in Figure 5 at 

Fourier frequency 0.0667 has disappeared.  Instead, the true periodicity 

has been spread over the neighboring frequency ordinates 0.0583 and 

0.0667. Moreover, there is also some power spread to other adjacent 

Fourier frequency ordinates in the passband region, although at a 

diminishing rate. It is also apparent that the pattern of dispersion about 

the neighboring Fourier frequency amplitudes is both qualitatively and 

quantitatively similar for both DFT filters.  Thus, the tapering associated 

with the Iacobucci-Noullez filter does not affect the dispersion pattern. 

Figure 6 about here. 

The other major feature in Figure 6 is that the low frequency component 

has been successfully removed from the bandpass filtered data series – 

there is no power corresponding to Fourier frequency 0.025.  In fact, 

there is no power discernible outside of the passband – all ‘stopband’ 

components have been successfully eliminated from the filtered data 

series.   

A key question relates to the nature of possible distortions that the 

observed smearing of the true ‘bandpass’ periodicity by the DFT filters 

may exert on the ability of the filtered data series to replicate the true  
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‘bandpass’ periodicity.  The nature of the distortions can be discerned 

from Figure 7 that contains plots of the DFT filtered data series against 

the ‘unsynchronized’ true ‘bandpass’ periodicity. 

Figure 7 about here. 

It is evident from Figure 7 that, apart from some noticeable deviations 

at both endpoints, the filtered data series seems to track the true 

‘bandpass’ periodicity remarkably well. In fact, the main deviations 

apparent in Figure 7 principally reflect deviations between the true 

‘bandpass’ periodicity and both filtered data series considered together, 

particularly at the endpoints.  

5. CONCLUSIONS 

In this note, we examined the potential impact of the Gibbs Effect upon 

attempts to extract a business cycle from time series data. Our objective 

was to examine this issue from the perspective of applied 

macroeconomists – namely, situations involving a single realization of a 

small to moderate sized samples of macroeconomic data.  

We argued that the nature of the data confronting macroeconomists 

means that the appropriate Fourier Transform concept is the Discrete 

Fourier Transform. However, we also argued that the conventional 

theoretical results could be misleading in practice when using the DFT. 

Our general conclusion is that none of the problems associated with the 

Gibbs Effect will affect the filtering of a finite length data series using the 
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DFT. Essentially, the Gibbs Effect is not observable or identifiable at the 

frequency ordinates associated with the DFT. 

In order to look at the effect of smoothing procedures to combat the 

Gibbs effect, we assessed the comparative performance of the 

conventional DFT filter with the convolved windowed DFT filter proposed 

by Iacobucci-Noullez. The Hamming window is utilized, using 

simulations involving artificial data generated from a model of a 

deterministic periodic process. This data was designed to contain a low 

frequency periodicity designed to fall outside the passband while the 

second periodicity was designed to fall within the passband.  

The second periodicity was designed to be either synchronized with a 

Fourier frequency in the passband or to lie between two neighboring 

Fourier frequencies in the passband. In the first case, both types of DFT 

filters worked optimally. In the second case, however, the true periodicity 

was smeared between the Fourier frequencies bordering it, thus 

producing distortions between the true periodicity and the filtered data 

series, especially at the start and end points of the filtered data series.8  

More generally, the qualitative and quantitative similarity of the results 

obtained for both DFT filters across the range of simulations called into 

                                       
8 It should be noted that the simulation results reported in this note can be favorably 
compared with the results obtained for the Baxter-King and ‘bandpass’ version of the 

Hodrick-Prescott filter reported in Hinich, Foster and Wild (2008)b, Sections 5-7.  In the 
latter cases, the filters passed low frequency components from the ‘stopband’ region to 

the filtered data series that should not have been passed. 
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question the practical implications of the Gibbs Effect. If the Gibbs Effect 

had a significant practical role to play that was independent of the data 

generating process (as Fourier theory suggests), then we would expect 

the Iacobucci-Noullez filter to generate results that were different from 

those associated with the conventional DFT filter. This, however, did not 

occur.   

Finally, the results cited in this note were obtained for an underlying 

deterministic periodic data series generated by model (6)-(8), outlined in 

Section 3. However, in Hinich, Foster and Wild (2008)a, Section 5, we 

demonstrate that our broad conclusions continue to hold when the 

simulation model (6)-(8) is augmented by applying the same deterministic 

periodic structures in (6)-(7) but augmenting (8) to include additive 

stationary Gaussian noise innovations.  
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Figure 1.  Plot of Frequency Response of Selected DFT Bandpassed Filters for Unit Impulse - Sample 

Size = 120, Passband = (0.042,0.167)
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Figure 2.  Plot of Inverse DFT (Dirichlet Function) of Selected DFT Bandpass Filters for Unit Impulse - 

Sample Size=120, Passband = (0.042,0.167) 
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Figure 3.  Plots of Complete Deterministic Periodicity [Eq (6)-Eq(8)] - Sample Size = 120, For Eq (7): f2 

= 0.0625 (unsynchronized case) and f2= 0.0667 (synchronized case), respectively
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Figure 4.  Comparison of DFT Filtered Data Series From Deterministic Model [Eq (6)-Eq (8)] and 

Actual (Target) Synchronized Bandpass Periodicity Data [Eq (7): f2 = 0.0667] - Sample Size = 120
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Figure 5.  Plots of Periodograms of DFT Filtered Data Series Derived From Synchronized 

Deterministic Model [Eq (6)-Eq (8), Eq(7): f2=0.0667]:  DFT and IAC_Hamming Filters - Sample 

Size=120, Passband = (0.042,0.167)
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Figure 6.  Plots of Periodograms of DFT Filtered Data Series Derived From Unsynchronized 

Deterministic Model [Eq (6)-Eq (8),  Eq(7): f2=0.0625]:  DFT and IAC_Hamming Filters - Sample 

Size=120, Passband = (0.042,0.167)
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Figure 7.  Comparison of DFT Filtered Data Series From Deterministic Model [Eq (6)-Eq (8)] and 

Actual (Target) Unsynchronized Bandpass Periodicity Data [Eq (7): f2=0.0625] - Sample Size = 120
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