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Abstract

Diebold and Rudebusch (1991) and Haubrich (1993) argue that, when income follows a frac-
tionally differenced process, the Deaton’s excessive smoothness paradox can be resolved. A key
to the success of their result relies on a valid test for fractional integration. However, most of the
tests in the literature are nested within fractional alternatives. This paper designs a new test for
a more general hypothesis that the true data generating process is indeed fractionally integrated.
The test is applied to the real disposable income per capita of the U.S. and the real quarterly GDP
data of the G7 industrial countries.
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1. Introduction

Introduced by Granger and Joyeux (1980), the fractionally integrated model has
found wide applications in various disciplines. The model has been applied to
asset pricing models (Ding et al., 1993), stock returns (Lo, 1991), interest rates
(Shea, 1991; Backus and Zin, 1993; Crato and Rothman, 1994) and inflation
rates (Hassler and Wolters, 1995). A fractionally integrated process is mainly
characterized by the differencing parameter which governs the memory property
of the process. A positive value of the differencing parameter implies that the
process has long memory. It has long been recognized that many macro-economic
time series display long memory property.

There has been a great stride forward in the estimation of the long memory
model in the past two decades (Geweke and Porter-Hudak, 1983; Li and McLeod,
1986; Sowell, 1992; Hurvich and Ray, 1995; Chong, 2006; Mayoral, 2006). Tests
for long memory have also been examined (Cheung, 1993; Wright, 1999; Chen
and Deo, 2004). For a comprehensive review of the literature in long memory
and fractional integration, one is referred to Baillie (1996), Henry and Zaffaroni
(2002) and Robinson (2003). Despite the extensive applications of the process, the
development of a test on whether the observations are generated by a fractionally
integrated process is heretofore in its infancy stage. In light of this, this paper
proposes a new test which can distinguish fractionally integrated processes from
other time series processes. We also derive the asymptotic distribution of the
test and simulate its finite-sample counterpart. The test is applied to the U.S.
per capita real disposable income and the quarterly real GDP data of the G7
industrial countries.

The remainder of this paper is organized as follows: Section 2 presents the
model. Section 3 suggests a new test for fractional integration and derives its
asymptotic properties. Section 4 examines the performance of the test in finite
samples. Section 5 provides empirical applications of the test and Section 6 con-
cludes the paper.

2. The Model

A time series process {yt}thl is said to be generated from an ARFIMA (p,d, q)
process if

S(L)(1—L)Y'y =0(L)u, t=1,2,..T, (2.1)
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where {u;} ~ i.i.d. (0,0°), L is the lag operator, ¢ (L) =1 — ¢, L — ... — ¢, L7,
0(L)=1—-6,L—...—0,L% If d is not an integer, then the process is said to be
fractionally integrated.

The fractional difference operator (1 — L)d is defined by its Maclaurin series

(1-L) = I 2.2
jz L'(—=ad)T(j + 1) (22)
where I' (z) is the Euler gamma function defined as

[(z)= / Ztexp(—2)dz  for x >0,
0

Z (@1 k A / 7 lexp(—2)dz forx<0,x#—1,-2,-3,...

k=0

The process is stationary if d < 0.5. It can be represented by a M A (c0)
process defined as

= T(j+d)
Yo = Z #Ut—j, (t=1,2,..,7). (2.3)

For simplicity, this paper discusses a pure I(d) process, i.e., an ARFIMA(0,d,0)
process. It is well established (Hosking, 1996) that for an I (d) process with
—0.5<d<0.5,

%ZH% (j=1,2.). (2.4)
and
0.5—d— T (1 — 2d)
T y_)N<O’(1+2d)F(1+d)F(1—d)>’ (2:5)

where p; is the 4" autocorrelation and 7 is the sample mean of {yt}?zl.
Given the value of the differencing parameter, the standardized spectral den-
sity is equal to
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1
f(Ald) = 2—|1—exp(—M)\_2d —m<A<T
m
A\ |2
and the standardized spectral distribution is
A U\ —2d
F\d) = 2/0 o (2 sin (5)) dv, 0<A<T. (2.7)
Suppose we run a regression of y; on ¥y 1, Y2, .., Ys_n. Let
Y1 0 0 0
Y2 (1 0 0
: Y2 % 0
' Y2 0
Y = ) XTL = . . 9
W
Yr—1 :
yr Yyr—-1 Yr—2 - Yr-n

B (n) = ( Bng Bn,Q e Bn,n—l Bn,n )/ = (X;LXn)il X;Y,

T
Dividing each element in X! X,, and XY by > y? ; and take probability limit,
=2

we have
Bn)Lenm—1)"pn) =80,
where
1 pl pnfl
1 _
em-1=| " | =2 (2.8)
pn—l pn—? e 1

is an n X n Toeplitz matrix,
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p()=(p1 po = Pu1 Pn) (2.9)

16 (Tl> = ( /Bn,l ﬁn,Q e ﬁn,n—l Bn,n )I' (210)

An I (d) process for —0.5 < d < 0.5 has a feature that, if it is approximated by
an AR(n) model via a regression, then the probability limits of the AR’s coefficient
estimates are functions of d and n. Specifically, as T" — oo,

~ _ 1—py, P2—py \ 2d d '
L) p@2) = 2 LBy - =

B(3)£>¢>(2)1p(3)=( s _3di-d - d )

3-d 3-d)(2—d) 3—d

B(4)ﬁ><1><3>‘1p<4>:(4d 6d(l—d) _4d(1—d) d)

1-d 4-dB-d (@A—d@B-d 1-d

In general, we have

~ ) \T(—-—d)T(n—d—j+1)
5”J—’_<j> L(—-d)T(n—d+1)

(2.11)

3. The Test

Note that the estimated coefficients of 3, 1 and y;_,, converge in probability to

nd d d
an

n—d n—d

size is large enough, the first estimate will be about n times the last one. As a

result, a test of whether the process follows an I(d) can be constructed based on

the elegant relationship between Bml and (3, ,, that

respectively. Thus, if the true process is I (d) and if the sample

~

ﬁn,l - n/ﬁn,n A 0. (31)

Towards this end, we can run (n— 1) autoregressions AR(2), AR(3), ..., AR(n),
and define
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W(d,n) = (B (n,1) — B(n,n)A(n))Q (d)_1 (B (n,1) — B(n,n)A(n))", (3.2)

where
B(n,1) = < B2,1 33,1 Bn,l ) )
B(n,n) = ( 32,2 //3\3,3 Bnn ) )

A(n)=diag(2 3 -+ n),

Q(d)=E [(B(n,1) = B(n,n)A(n)) (B(n,1) = B(n,n) A (n))] .

The elements of the matrix Q (d) depend on ('s, which in turn depend on the
value of d. We test
Hy :y; ~ 1 (d)

against

H; : y; does not follow I (d)

for —0.5 < d < 0.25.

If the null hypothesis is correct, then there exists a differencing parameter d
such that W (d,n) is O, (1). Otherwise, the test will diverge. To construct the
matrix €2 (d), note that for [,m = 2,3,...,n, the (I —1,m — l)th element of 2 (d)
can be written as

Q (d)l—l,m—l
= Cov (BM, Bm1> — Cov (Bz,me,l) [ —Cov (BM, ﬁmm) m + Cov </Bl,l7§m,m> Im,

L As far as the estimation is concerned, we allow —0.5 < d < 0.5. However, for d > 0.25, the
distribution of W (d,n) will no longer be Chi-squared but something related to the Rosenblatt
distribution as found in Hosking (1996). For simplicity, we assume that —0.5 < d < 0.25. Tieslau
et al. (1996) and Chong (2000) also assume —0.5 < d < 0.25 in their studies.
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where

~

Cov (B B ) = LA E (BW) = BWD) (Bm) = B(m)) Ly (m)

~

Cov (BuysBa) = L2V B (BW) = BW)) (Bm) — B(m) Lo ()
Cov (s ) = A E (BO) = B1)) (Bm) —B(m)) Lz (m)'

Cov (Bui-Bum) = L2 (0 E (BD) =B D) (B(m) —B(m)) L (m)'

Ly (@) = (1 0..0 O),
1 terms

Ly(1)=(00..01).
1 terms

To evaluate £ (B -pB (l)) (,[Ai' (m)— 0B (m))/, note that since

Vol. 11 [2007], No. 2, Article 5

(m)=p(n) = Sn-1)Bm)-m—1)8(n)
= (-1 (Bm)-Bm)+(2m-1)-2m-1)B()
+(@m-1-em-1) (Bn)-Bm)
= 2= (B -BMm)+(2-1)=em—1))BMm)+0, (I,
we have
B(m) —B(n) = (m—1)" An)
where
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=
g
I
S

n=pm) = (B -1)=-@m-1))B8M)+0,(T).  (34)

Hence, E <B ()—p (Z)) (B (m) -0 (m))l is reduced to

D(I—1)""EAD)A M) (m—1)".
To find E(A (1) A (m)', note that

lim TE(A (1) A (m))

= Cm)= Jim TE (80 -1) =@ (1= 1)) B1) (B (m) - p(m))
~ im TE B (1)~ p (1)) B(m) (& (m —1) & (m — 1))

+ lim TE(CTJ(Z—1)—@([—1)),@(l)ﬁ(m)'@(m—1)—@(m—l)),

T—o00

where C' (I, m) is an [ by m matrix with the (7, j )th element ¢; ; being given by

o]

Cig =3 (Posi+ Poci = 20405) (Psyy + oy = 20P5) - (3.5)

s=1

Thus, the (i,7)" element of limy_., TE(A (1) A (m)') is given by

limy .. TE(A (1) A (m)’)w-

l m
= Cijj = Dhet ki PLhCli=hlg = Dkt ot B kCli—kli

l m =

+ s iy E(BU-D -2 -D)
X (q) (m—1)—®(m— 1)>kj BBk

l ’ m
= Cul - Zh:l,h;«éi BLnCli-nlj — Zk:l,k;ﬁj Bk Cli—kli
+ Zh:l,h;&i Z:L:l,k;éj C|i—h\7|k—j\ﬁl,h6m,k'

Therefore, the elements of the matrix Q (d) depend on the 3’'s and s, which
in turn depend on the value of d. To make the test operational, we have to
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approximate 2 (d) by € (3) , where d is a consistent estimator for d. The following
theorem states the asymptotic distribution of W <c/l\, n>:

Theorem 1: Given a consistent estimator d for d, the test statistic converges
in distribution to a Chi-square distribution with degrees of freedom (n —1) as
T — oo under the null hypothesis, i.e.,

w (c/l\, n) <2 (n—1). (3.6)
Proof. See the appendix.

The remaining problem is to select a consistent d. In principle, we can employ
any consistent estimator recently proposed in the literature. The estimators can
be parametric (Dahlaus, 1989; Sowell, 1992) or semiparametric (Robinson, 1995;
Velasco, 1999a, 1999b; Phillips and Shimotsu, 2004). In our case, since we have
already obtained 6 ;1 and 5
d. Note that for j =1,2,3,.

;j» we can utilize this piece of information to estimate

5 »pJd
ﬁj,l - dea
~ d
p
B]}j = j—— 7
Thus, we have
L (3.7)
]’ .
J “‘5]'71
3, =20 (3.8)
)

In fact, E . is the estimator for the j* order partial autocorrelation? of an
I (d) process, and 6] 1 is just j times ﬁ We suggest a robust and consistent

estimator for d by taking the median of these estimates. We arrange c@,l, d;;,
(j =1,2,3,...,n) in an ascending order. As d;; = d;; for j = 1, we have a total

2For the properties of d based on the partial autocorrelation, one is referred to Chong (2000).
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of (2n — 1) estimates. For i = 1,2,...,2n — 1, we denote the i'" order statistic as
d(;y, and define the median estimator of d as

d=dy). (3.9)

Since the mappings in (3.7) and (3.8) are continuous, and all the estimators
are consistent, the median estimator is also consistent by the Sandwich Theorem.

4. Monte Carlo Experiments

Experiment 1. This experiment verifies Theorem 1 that W (d,n) is asymptoti-
cally Chi-square distributed under the null. Consider the following model:

(1-L)Y'y =w, t=12.T
T = 50, 100, 200, 500
U ~ .Z\[(O7 ].) .

d=—0.4,-0.3,-0.2,—0.1,0,0.1,0.2.

Tables 1a to 1d report the critical value ¢ of the finite sample distribution of
W (d,n) such that

Pr (W (d,n) < c¢) = p,

for T' = 50, 100, 200 and 500 respectively.

For each value of T, d and n, we simulate the test statistic W (d,n) with
100000 replications. The critical values of the Chi-square distribution with de-
grees of freedom (n — 1) are also tabulated for comparison. Observe that the
finite sample distribution is justifiably approximated by its limiting distribution.
The departure of the critical values of the the test in finite samples from their
asymptotic counterparts is small.
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Table 1a: Critical values ¢ of W (d, n) such that Pr (W (d,n) < ¢) = p, T=>50.

n=2 p d=—-4 d=-3 d=-2 d=—-1 d=0 d=.1 d=2 Xx2(1)
99 637 644 645 653 650 652 653 6.63

975 488 493 498 499 497 498 498  5.02

95 376 379 385 385 381 384 385 384

9 269 271 275 274 270 273 273 271

n=3 p d=-4 d=-3 d=-2 d=—-1 d=0 d=.1 d=2 Xx2(2)
99 929 922 912 902 910 917 899 921

975 750 741 736 734 735 738 723 738

95 611 605 600 604 602 6.03 596 599

9 471 466 470 469 468 468 465 4.61

n=4 p d=-4 d=-3 d=-2 d=—-1 d=0 d=.1 d=2 x*(3)
99 1161  11.65 1154  11.37 1142 11.39 11.26 11.34

975 967 961 955 951 944 946 935 9.35

95 809 806 796 798 796 791 790 7.82

9 649 647 639 643 643 637 635 6.25

n=5 p d=-4 d=-3 d=-2 d=—-1 d=0 d=.1 d=2 Xx2(4)
99 1383  13.78 1357 1349 1350 13.34 1354 13.28

975 1165 1159 1152 1140 11.39 11.28 11.33 11.14

95 992 991 983 983 976 970 9.66 9.49

9 818 816 809 813 805 800 7.97 778

n=6 p d=-4 d=-3 d=-2 d=—-1 d=0 d=.1 d=2 Xx2(5)
99 1623 1597 1582 1575 1571 1584 1554 15.09

975 1379 1353 1348 1344 1345 1345 13.27 12.83

95 1190  11.68  11.66 1159 11.63 11.63 11.51 11.07

9 989 98 975 970 976 974 964 924

n=7 p d=-4 d=-3 d=-2 d=-1 d=0 d=.1 d=2 X2(6)
99 1829 1791 1790 1800 17.76 17.73 17.64 16.81

975 1564 1548 1543 1539 1527 1528 1515 14.45

95 13.66 1351 1347 1341 1334 1334 1324 1259

9 1155 1145 1143 1134 11.31 11.29 1123 10.64
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Table 1b: Critical values ¢ of W (d,n) such that Pr (W (d,n) <c¢) = p,
T—=100.

n=2 p d=-4d=-3 d=-2 d=—1 d=0 d=.1 d=2 (1)

99 6.57 6.46 6.46 6.53 6.58 6.56  6.57 6.63

975 4.98 5.00 4.88 4.99 497 502 501 5.02

.95 3.87 3.84 3.77 3.84 3.83 386 384 384

9 2.7 2.70 2.67 2.72 271 273 271 271

n=3 p d=-4 d=-3 d=-2 d=—1 d=0 d=.1 d=2 ¥°(2)

.99 9.63 9.34 9.10 9.13 9.15 9.12 9.12 9.21

975 761 7.50 7.37 7.37 734 735 741  7.38

.95 6.17 6.10 5.98 5.98 6.01 598 6.0 5.99

9 4.77 4.68 4.61 4.62 4.62 4.61 4.66 4.61

n=4 p d=-4d=-3 d=-2 d=-1 d=0 d=.1 d=2 x*(3)

99 1171 11.52 11.52 11.25 1144 11.26 11.35 11.34

975 9.62 9.48 9.54 9.34 9.44 935 938 9.35

.95 8.07 7.96 7.94 7.84 788 7.81 7.82 7.82

9 6.44 6.39 6.36 6.31 6.34 6.27 6.28 6.25

n=5 p d= -4 d=-3 d=-2 d=—1 d=0 d=.1 d=2 (4

99 13.86 13.50 13.40 13.37  13.27v 13.19 13.37 13.28

975 11.67 11.38 11.29 11.27 11.18 11.23 11.22 11.14

.95 9.96 9.71 9.63 9.68 954 9.62 959 949

9 8.21 7.98 7.94 7.90 787 790 788  T7.78

n=6 p d— -4 d=—3 d=—2 d=—-1 d=0 d=.1 d=2 x2(5)

99 1584 15.36 15.30 15.32 1524 15.21 15.32 15.09

975 13.60 13.09 13.08 1298 1299 1297 13.07 12.83

95 11.70 11.33 11.33 11.28  11.24 11.21 11.29 11.07

9 9.75 9.53 9.48 9.46 942 940 939 924

n=7 p d— -4 d=-3 d=-2 d=—-1 d=0 d=.1 d=2 x2(6)

99 17.80 17.40 17.14 1719 1726 17.13 17.19 16.81

975 15.30 15.12 14.81 14.80 14.83 14.83 14.72 14.45

95 13.33 13.14 12.89 1294 1291 1294 12.85 12.59

9 11.27 11.13 10.93 1094 1093 10.95 10.88 10.64
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Table 1c: Critical values ¢ of W (d,n) such that Pr(W (d,n) <c¢) = p,
T=200.

n=2 p d=-4 d=-3 d=-2 d=-1 d=0 d=.1 d=.2 x*(1)

.99 6.76 6.65 6.52 6.56 6.49 6.54 6.62 6.63

975 513 5.01 4.97 4.99 4.97  4.98 5.09  5.02

.95 3.92 3.83 3.81 3.82 3.82 3.81 3.92 384

.9 2.78 2.71 2.68 2.70 2.72  2.70 2.14 271

n=3 p d=-4 d=-3 d=-2 d=-1 d=0 d=.1 d=.2 x*(2)

.99 9.78 9.44 9.27 9.25 9.15 9.20 933 9.21

975 7.86 7.57 7.47 7.43 7.35 7.35 745  7.38

.95 6.39 6.15 6.07 6.00 599 597 6.04 5.99

.9 4.93 4.77 4.66 4.62 4.63 4.61 4.64 4.61

n=4 p d=-4d=-3 d=-2 d=-1 d=0 d=.1 d=2 x*(3)

.99 12.07 11.56 11.40 11.33  11.24 11.31 1145 11.34

975 9.97 9.50 9.36 9.35 9.31 9.31 9.41  9.35

.95 8.25 7.99 7.85 7.86 7.82 7.83 7.88  7.82

.9 6.58 6.40 6.31 6.29 6.28 6.27 6.32 6.25

n=5 p d=-4 d=-3 d=-2 d=-1 d=0 d=.1 d=.2 x*(4)

.99 14.15 13.64 13.56 13.25 13.27 13.36 13.52 13.28

975 11.90 11.48 11.39 11.06 11.17 11.19 11.39 11.14

.95 10.15 9.82 9.70 9.52 9.53 9.52 9.68 9.49

.9 8.32 8.05 7.94 7.82 7.82 7.84 792 7.78

n=6 p d=-4 d=-3 d=-2 d=-1 d=0 d=.1 d=.2 x*(5)

.99 16.04 15.54 15.17 15.10 1530 15.17 15.22 15.09

975 13.66 13.29 12.98 12.89 13.01 12.89 1299 12.83

.95 11.78 11.46 11.22 11.11 11.17 11.18 11.21 11.07

.9 9.83 9.58 9.38 9.30 9.36 9.33 9.37 924

n=7 p d=-4 d=-3 d=-2 d=-1 d=0 d=.1 d=.2 x*(6)

.99 18.12 17.40 17.15 16.94 17.01 16.79 17.15 16.81

975 1543 14.97 14.68 14.61 14.54 14.44 14.70 14.45

.95 13.46 13.02 12.83 12.75  12.65 12.67 1283 12.59

9 11.36 11.03 10.85 10.80 10.74 10.75 10.86 10.64
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Table 1d: Critical values ¢ of W (d,n) such that Pr (W (d,n) <c¢) = p,
T=500.

n=2 p d=-4d=-3 d=-2 d=—1 d=0 d=.1 d=2 (1)

99 6.68 6.67 6.58 6.54 6.64 6.63 6.68 6.63

975 4.94 5.16 4.97 5.00 5.03 5.02 504 5.02

.95 3.83 3.97 3.82 3.83 3.80 3.8 384 384

9 2.72 2.83 2.70 2.70 2.711 271 269 271

n=3 p d=-4 d=-3 d=-2 d=—1 d=0 d=.1 d=2 ¥°(2)

.99 9.33 9.10 9.20 9.15 931 924 924 921

975 7.58 7.46 7.52 7.36 752 741 7.62  7.38

.95 6.07 5.98 5.88 5.98 6.08 6.03 6.20 5.99

9 4.65 4.56 4.56 4.59 4.65 463 4.7 461

n=4 p d=-4d=-3 d=-2 d=-1 d=0 d=.1 d=2 x*(3)

99 1154 11.39 11.24 11.33  11.25 11.37 11.38 11.34

975 9.50 9.40 9.41 9.32 937 937 933 935

.95 8.03 7.83 7.74 7.83 78 790 7.8 7.82

9 6.34 6.25 6.19 6.26 6.28 6.33 6.23 6.25

n=5 p d= -4 d=-3 d=-2 d=—1 d=0 d=.1 d=2 (4

99 1343 13.18 13.13 13.26  13.20 13.27 13.25 13.28

975 11.30 11.07 11.11 11.20 11.11 11.17 11.12 11.14

.95 9.63 9.47 9.35 9.59 9.49 953 945 949

9 8.04 7.84 7.74 7.85 780 7.81 7.8 7.78

n=6 p d— -4 d=—3 d=—2 d=—-1 d=0 d=.1 d=2 x2(5)

99  15.32 15.12 15.28 15.14 15.15 15.07 15.19 15.09

975 13.08 12.88 12.88 1293 1293 1288 12.98 12.83

95 11.20 11.14 11.13 11.15  11.13 11.09 11.12 11.07

9 9.35 9.34 9.22 9.30 925 926 927 924

n=7 p d— -4 d=-3 d=-2 d=—-1 d=0 d=.1 d=2 x2(6)

99 1713 17.08 16.65 16.90 16.89 16.76 17.05 16.81

975 14.70 14.69 14.30 14.57 1454 1450 1449 14.45

95 1281 12.74 12.49 12.68 12.66 12.64 12.57 12.59

9 10.82 10.56 10.62 10.70  10.69 10.72 10.74 10.64
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Experiment 2. The purpose of this experiment is to examine the power and
the size of the test for various T" and n. We consider the following 12 models:

Model 1 : Y = —0.8y,_1 — 0.4y,_9 + uy;
Model 2 : Y = —0.9y, 1 — 0.4y, o + uy;
Model 3 : Y = =1 — 0.4y, o + wy;
Model 4 : Y = 0.5y, 1 — 0.2y, o+ 0.3y;_3 + 0.1y, 4 — 0.4y, _5 + wy;
Model 5 : Y = 0.5uy + uy_q;
Model 6 : v = 0.5y, — 0.5y o + up — 0.2 _1;
Model 7 : y =1(-0.3);
Model 8 : y=1(-0.2);
Model 9 : yy=1(=0.1);
Model 10 Yp = Usg;
Model 11 : y=1(0.1);
Model 12 : yy = 1(0.2).

u~N(@O1). t=12.T.

Note that Model 1 to Model 6 cannot be embedded in the family of fractionally
integrated processes. However, for Model 1, the first coefficient is twice the second
coefficient in Model 1. Thus, for Model 1, we do not expect to reject the null
hypothesis when using n = 2 only. For Model 2 to Model 6, which are also models
under the alternative, we expect the null to be easily rejected. Model 7 to Model
12 are I(d) processes. We report the sizes of the test for these models. Table 2
reports the rejection rates of the test

Pr (W <c?, n) > 2 (n — 1))
for a = 5%; T = 50,100, 200; n = 2,3,4,5,6,7. The number of replications is
100000.

http://www.bepress.com/snde/vol 11/iss2/art5
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Table 2 : Pr (W (cfi\, n) > X2 (n — 1)) for a = 5%.

Model 1 Model 2 Model 3
n\T 50 100 200 50 100 200 30 100 200
2 .038 .035 .042 .061 .087 143 146 278 .520
3 435 746 966 567 871 994 725 .962 1.000
4 528 .849 993 .661 .943 999  .806 .988 1.000
5 571 .889 997 710 963 1.000 .841 .993 1.000
6 .586 .906 998 .720 .970 1.000 .848 .994 1.000
7 .602 910 999 734 972 1.000 .858 .996 1.000
Model 4 Model 5 Model 6
n\T 50 100 200 50 100 200 50 100 200
2 576 .925 999  .709 .945 997 967 1.000 1.000
3 575 922 998  .623 .876 994,930 .999 1.000
4 .B81 .924 997 558 .849 996 .892 .999 1.000
5 .866 .994 1.000 .535 767 992 .854 993 1.000
6 .756 978 999 575 .681 987 .808 988 1.000
7 702 951 993  .593 .673 967 .793 .989 1.000
Model 7 Model 8 Model 9
n\T 50 100 200 50 100 200 50 100 200
2 .059 .043 .060 .049 .052 .050 .043 .044 .052
3 .045 .042 .050 .051 .051 .048 .059 .051 .057
4 .052 .054 .039 .056 .051 .050 .058 .041 .047
5 .055 .041 .060 .056 .051 .049 .060 .056 .044
6 .066 .047 .052 .061 .053 .049 .067 .046 .045
7 .059 .046 .044 .068 .058 .055 .057 .047 .055
Model 10 Model 11 Model 12
n\T 50 100 200 50 100 200 50 100 200
2 .051 .050 .050 .055 .061 .054 .050 .049 .050
3  .050 .051 .048 .042 .051 .056 .048 .050 .049
4 .054 .051 .050 .062 .066 .054 .048 .047 .050
5 .057 .053 .052 .051 .050 .050 .050 .048 .046
6 .060 .054 .054 .059 .054 .055 .056 .049 .048
7 .067 .056 .050 .063 .050 .054 .055 .049 .049

15
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The results are in line with our expectation. For Models 1 to 6, as the sample
size becomes large, the null hypothesis will eventually be rejected. Thus, the test
is consistent against a wide range of alternatives. For Models 7 to 12, the size of
the test is approximately equal to 5% when sample size is large.

5. Empirical Applications

Diebold and Rudebusch (1991) and Haubrich (1993) argue that, when income fol-
lows a fractionally differenced process, the Deaton’s excessive smoothness paradox
can be resolved. In this section, we provide two empirical applications to examine
the Deaton’s paradox. All the data are obtained from the DataStream Interna-
tional. All variables are in constant dollars on a seasonally adjusted basis.

The first application is to test if the real disposable income per capita of the
U.S. is fractionally integrated. The sample period is from 1960:Q1 to 2005:Q4 for
quarterly data and from 1960 to 2005 for annual data.

We test if the real quarterly disposable income per capita and the real annual
disposable income per capita are fractionally integrated®. The results are reported
in Table 3a. From Table 3a, it is concluded that at the 5% significance level, we
cannot reject the null hypothesis that the annual and quarterly real disposable
income follow 7 (d). Our second application is on the quarterly real GDP of the
G7 industrial countries?. The sample period is from 1960:Q1 to 2005:Q4°. Table
3b records the values of the test statistic with n = 2 to 11 for the G7 countries.

In Table 3b, the estimated values of d are reported in parentheses®. Figures
with (*) and (**) are significant at the 1 % and 5% levels respectively. Note that
the estimated values of d are quite robust to the choice of n. At the 1% significance
level, the null cannot be rejected for most of the G7 countries except France. The
null hypothesis is rejected for France at the 5% level for all n. In general, our
results suggest that most countries have a fractionally integrated GDP series.

3The test is performed on the drift-removed first difference of the original real disposable
income data.

4The test is performed on the drift-removed first difference of the original real GDP data.

SFor France, the data period is from 1963Q1 to 2005Q4.

OTf the median estimate falls outside (-0.5,0.25), another observed estimate which falls within
this range is used.

http://www.bepress.com/snde/vol 11/iss2/art5
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Table 3a: W (c?, n) based on the first difference of the U.S. real disposable

income. The estimated values of d are reported in parentheses.

Data Period 100"V o0 o005 oo
T 184 46

w(d2) Cis) (313) 3.84
w(43) (i56) Cisa) .99
o) b
W (@) (126) ion) 9.49
I S
o) he B

6. Concluding Remarks

Inspired by the findings of Diebold and Rudebusch (1991) and Haubrich (1993)
that the Deaton’s (1987) paradox can be resolved by allowing the income data
to be fractionally integrated, this paper develops a test which can distinguish
fractionally integrated processes from other time series processes. The asymptotic
distribution of the test statistic is derived. Our results provide the theoretical
ground for the works of Diebold and Rudebusch (1991) and Haubrich (1993). We
apply the test to the U.S. annual and quarterly per capita disposable income,
and to the real GDP data of the (G7 industrial countries. It is concluded that
the U.S. real disposable income per capita is fractionally integrated. For the G7
countries, at the 5% level, we find that almost all G7 countries, except France,
have a fractionally integrated GDP series.
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Table 3b : W (3, n) and d

Countries %4 (c?, 2) %4 (c?, 3) W (c?7 4) w (c?, 5) w (cj7 6)

- 1.62 453 4.54 6.65 6.64
(248)  (248)  (.248)  (.248)  (.248)
- 1.97 7.59 7.63 7.64 8.87
077y (077)  (077)  (077)  (.077)
Canada 2.00 2.13 8.06% 1057  10.83
(157)  (157)  (157)  (157)  (.157)
Japan 01 6.44* 7.35 7.35 7.77
(108)  (108)  (107)  (107)  (.107)
taly 29 2.16 5.27 6.16 9.23
(169)  (169)  (169)  (.169)  (.169)
Germany 684 723 8.76% 9.00 9.41
(—.051)  (=.051) (=.051) (—.051) (—.051)
P 5.34%  17.09°  17.08° 17201  18.14*
(—.239)  (—.239) (—.238) (—.238) (—.237)
11 6.63 9.21 11.34 13.28 15.09
21 3.84 5.99 7.82 9.49 11.07
W(J,?) W(J,g) W(ci,g) W(J,lo) W(J,ll)
s 7.56 062" 16.08%  16.08 16.75
(248)  (248)  (.248)  (.248) (.248)
- 9.04 1631 1650  16.54 16.92
(068)  (.037)  (.033)  (.032) (.032)
Comada 10.83 11.34 11.78 1180  22.20"
(157)  (157)  (157)  (.157) (.157)
Japan 9.76 11.81 11.91 13.21 13.21
(107)  (104)  (105)  (.105) (.105)
Italy 9.35 9.35 9.58 9.60 9.61
(173)  (173)  (176)  (.176) (.176)
Germany 9.56 13.26 13.44 14.43 14.43
(—.051)  (—.051) (—.051)  (—.049)  (—.049)
P 18.12¢ 1812 1895  19.02  21.55
(—.232)  (—.230) (—.220) (—.227)  (—.227)
o1 16.81 1848  20.09 21.67 23.21
X2 12.59 1407 1551 16.92 18.31
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Appendix: Proof of Theorem 1.
Note that since y; is stationary,

B(n,1) — B(n,n)A(n)

are asymptotically multivariate normal. We have

B(n,1) — B(n,n)A(n) % N(0,2(d)),

where 2 (d) is the variance-covariance matrix of B (n,1)— B (n,n) A (n). Since

Q2 (d) is positive definite, there exists a non-singular matrix P such that

Q(d) = PP,

which gives

and

PQd) (P =1

Define an (n — 1)-element 1 vector as

=P 1 (B(n,1)—B(n,n)AMn)).

The 1 variables are asymptotically multivariate normal since they are linear

combinations of the B (n,1) — B (n,n) A (n),

E ()= P'E(B(n,1)— B(n,n)A(n)) = P70 =0,

Var() = E[PH(B(0,1) = B ) Am) (B (n,1) = B () Aw) (P)]

= P'Qd) (P =1
Thus, 1’s are asymptotically standardized normal variables and

VLN (n—1).

19
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Now, use the fact that

Y = (B(n,1)= B(n,n)A(n)) (P7') P (B(n,1) — B(n,n) A(n))
= (B(n,1) = B(n,n) A(n)) Q(d)~" (B(n,1) = B(n,n) A (n))
= Wi(d,n),

that the elements in € (d) are continuous in d and that d L d, we have

W(c/l\,n) =W(d,n)+0p(1)i>x2(n—1).l
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