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Abstract

Diebold and Rudebusch (1991) and Haubrich (1993) argue that, when income follows a frac-
tionally differenced process, the Deaton’s excessive smoothness paradox can be resolved. A key
to the success of their result relies on a valid test for fractional integration. However, most of the
tests in the literature are nested within fractional alternatives. This paper designs a new test for
a more general hypothesis that the true data generating process is indeed fractionally integrated.
The test is applied to the real disposable income per capita of the U.S. and the real quarterly GDP
data of the G7 industrial countries.
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1. Introduction

Introduced by Granger and Joyeux (1980), the fractionally integrated model has
found wide applications in various disciplines. The model has been applied to
asset pricing models (Ding et al., 1993), stock returns (Lo, 1991), interest rates
(Shea, 1991; Backus and Zin, 1993; Crato and Rothman, 1994) and inflation
rates (Hassler and Wolters, 1995). A fractionally integrated process is mainly
characterized by the di erencing parameter which governs the memory property
of the process. A positive value of the di erencing parameter implies that the
process has long memory. It has long been recognized that many macro-economic
time series display long memory property.
There has been a great stride forward in the estimation of the long memory

model in the past two decades (Geweke and Porter-Hudak, 1983; Li and McLeod,
1986; Sowell, 1992; Hurvich and Ray, 1995; Chong, 2006; Mayoral, 2006). Tests
for long memory have also been examined (Cheung, 1993; Wright, 1999; Chen
and Deo, 2004). For a comprehensive review of the literature in long memory
and fractional integration, one is referred to Baillie (1996), Henry and Za aroni
(2002) and Robinson (2003). Despite the extensive applications of the process, the
development of a test on whether the observations are generated by a fractionally
integrated process is heretofore in its infancy stage. In light of this, this paper
proposes a new test which can distinguish fractionally integrated processes from
other time series processes. We also derive the asymptotic distribution of the
test and simulate its finite-sample counterpart. The test is applied to the U.S.
per capita real disposable income and the quarterly real GDP data of the G7
industrial countries.
The remainder of this paper is organized as follows: Section 2 presents the

model. Section 3 suggests a new test for fractional integration and derives its
asymptotic properties. Section 4 examines the performance of the test in finite
samples. Section 5 provides empirical applications of the test and Section 6 con-
cludes the paper.

2. The Model

A time series process { } =1 is said to be generated from an ( )
process if

( ) (1 ) = ( ) = 1 2 (2.1)

1Hinich and Chong: A Class Test for Fractional Integration

Published by The Berkeley Electronic Press, 2007



where { } (0 2), is the lag operator, ( ) = 1 1 ,
( ) = 1 1 . If is not an integer, then the process is said to be
fractionally integrated.
The fractional di erence operator (1 ) is defined by its Maclaurin series

(1 ) =
X
=0

( )

( ) ( + 1)
(2.2)

where ( ) is the Euler gamma function defined as

( ) =

Z
0

1 exp ( ) for 0

( ) =
X
=0

( 1)

( + ) !
+

Z
1

1 exp ( ) for 0 6= 1 2 3

The process is stationary if 0 5. It can be represented by a ( )
process defined as

=
X
=0

( + )

( ) ( + 1)
( = 1 2 ) (2.3)

For simplicity, this paper discusses a pure ( ) process, i.e., an (0 0)
process. It is well established (Hosking, 1996) that for an ( ) process with
0 5 0 5,

=
Y
=1

+ 1
( = 1 2 ) (2.4)

and

0 5

µ
0

2 (1 2 )

(1 + 2 ) (1 + ) (1 )

¶
(2.5)

where is the autocorrelation and is the sample mean of { } =1.
Given the value of the di erencing parameter, the standardized spectral den-

sity is equal to
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( | ) =
1

2
|1 exp ( )| 2

=
1

2

¯̄̄
¯2 sin

µ
2

¶¯̄̄
¯ 2

(2.6)

and the standardized spectral distribution is

( | ) = 2

Z
0

1

2

³
2 sin

³
2

´´ 2

0 (2.7)

Suppose we run a regression of on 1 2 . Let

=

1

2
...
...
...
...

1

=

0 0 · · · 0

1 0 · · · 0

2 1 · · · 0
... 2 · · · 0
...

... · · ·
...

...
... · · · 1

...
... · · ·

...

1 2 · · ·

b ( ) = ³ b 1
b

2 · · · b
1
b ´0

= ( 0 )
1 0

Dividing each element in 0 and 0 by
P
=2

2
1 and take probability limit,

we have

b ( ) ( 1) 1 ( ) = ( )

where

( 1) =

1 1 · · · 1

1 1 · · · 2
...

...
. . .

...

1 2 · · · 1

(2.8)

is an × Toeplitz matrix,
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( )=
¡

1 2 · · · 1

¢0
(2.9)

( )=
¡

1 2 · · · 1

¢0
(2.10)

An ( ) process for 0 5 0 5 has a feature that, if it is approximated by
an ( )model via a regression, then the probability limits of the ’s coe cient
estimates are functions of and . Specifically, as ,

b (2) (1) 1 (2) =

µ
1

1 2

1 2
1

2
1 2

1 + 2
1

¶0
=

µ
2

2 2

¶0

b (3) (2) 1 (3) =

µ
3

3

3 (1 )

(3 ) (2 ) 3

¶0

b (4) (3) 1 (4) =

µ
4

4

6 (1 )

(4 ) (3 )

4 (1 )

(4 ) (3 ) 4

¶0
In general, we have

b µ ¶
( ) ( + 1)

( ) ( + 1)
(2.11)

3. The Test

Note that the estimated coe cients of 1 and converge in probability to

and respectively. Thus, if the true process is ( ) and if the sample

size is large enough, the first estimate will be about times the last one. As a
result, a test of whether the process follows an ( ) can be constructed based on

the elegant relationship between b 1 and b that

b
1

b 0 (3.1)

Towards this end, we can run ( 1) autoregressions (2) (3) ( ),
and define
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( ) = ( ( 1) ( ) ( )) ( ) 1 ( ( 1) ( ) ( ))0 (3.2)

where

( 1) =
³ b

2 1
b
3 1 · · · b

1

´

( ) =
³ b

2 2
b
3 3 · · · b ´

( ) =
¡
2 3 · · ·

¢

( ) =
£
( ( 1) ( ) ( ))0 ( ( 1) ( ) ( ))

¤
The elements of the matrix ( ) depend on 0 , which in turn depend on the

value of . We test

0 : ( )

against

1 : does not follow ( )

for 0 5 0 251.
If the null hypothesis is correct, then there exists a di erencing parameter

such that ( ) is (1). Otherwise, the test will diverge. To construct the

matrix ( ), note that for = 2 3 , the ( 1 1) element of ( )
can be written as

( ) 1 1

=
³b

1
b

1

´ ³b b
1

´ ³b
1
b ´

+
³b b ´

1As far as the estimation is concerned, we allow 0 5 0 5. However, for 0 25, the
distribution of ( ) will no longer be Chi-squared but something related to the Rosenblatt
distribution as found in Hosking (1996). For simplicity, we assume that 0 5 0 25 Tieslau
et al. (1996) and Chong (2000) also assume 0 5 0 25 in their studies.
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where

³b
1
b

1

´
= 1 ( )

³b ( ) ( )
´³b ( ) ( )

´0
1 ( )0

³b b
1

´
= 2 ( )

³b ( ) ( )
´³b ( ) ( )

´0
1 ( )0

³b
1
b ´

= 1 ( )
³b ( ) ( )

´³b ( ) ( )
´0

2 ( )0

³b b ´
= 2 ( )

³b ( ) ( )
´³b ( ) ( )

´0
2 ( )0

1 ( ) = (1 0 0 0)| {z }
terms

2 ( ) = (0 0 0 1)| {z }
terms

To evaluate
³b ( ) ( )

´³b ( ) ( )
´0
, note that since

b ( ) ( ) = b ( 1) b ( ) ( 1) ( )

= ( 1)
³b ( ) ( )

´
+
³b ( 1) ( 1)

´
( )

+
³b ( 1) ( 1)

´³b ( ) ( )
´

= ( 1)
³b ( ) ( )

´
+
³b ( 1) ( 1)

´
( ) +

¡
1
¢

we have

b ( ) ( ) = ( 1) 1 ( ) (3.3)

where
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( ) = (b ( ) ( ))
³b ( 1) ( 1)

´
( ) +

¡
1
¢

(3.4)

Hence,
³b ( ) ( )

´³b ( ) ( )
´0
is reduced to

( 1) 1 ( ( ) ( )0) ( 1) 1

To find ( ( ) ( )0, note that

lim ( ( ) ( )0)

= ( ) lim
³b ( 1) ( 1)

´
( ) (b ( ) ( ))0

lim (b ( ) ( )) ( )0 (b ( 1) ( 1))0

+ lim
³b ( 1) ( 1)

´
( ) ( )0 (b ( 1) ( 1))

where ( ) is an by matrix with the ( ) element being given by

=
X
=1

¡
+ + 2

¢ ¡
+ + 2

¢
(3.5)

Thus, the ( ) element of lim ( ( ) ( )0) is given by

lim ( ( ) ( )0)

=
P

=1 6= | |

P
=1 6= | |

+
P

=1 6=

P
=1 6=

³b ( 1) ( 1)
´

×
³b ( 1) ( 1)

´
=

P
=1 6= | |

P
=1 6= | |

+
P

=1 6=

P
=1 6= | | | |

Therefore, the elements of the matrix ( ) depend on the 0 and 0 , which
in turn depend on the value of . To make the test operational, we have to
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approximate ( ) by
³ b́ , where bis a consistent estimator for . The following

theorem states the asymptotic distribution of
³b ´

:

Theorem 1: Given a consistent estimator b for , the test statistic converges
in distribution to a Chi-square distribution with degrees of freedom ( 1) as

under the null hypothesis, i.e.,³b ´
2 ( 1) (3.6)

Proof. See the appendix.

The remaining problem is to select a consistent b. In principle, we can employ
any consistent estimator recently proposed in the literature. The estimators can
be parametric (Dahlaus, 1989; Sowell, 1992) or semiparametric (Robinson, 1995;
Velasco, 1999a, 1999b; Phillips and Shimotsu, 2004). In our case, since we have

already obtained b 1 and b , we can utilize this piece of information to estimate
. Note that for = 1 2 3

b
1

b
Thus, we have

b
1 =

b
1

+ b 1

(3.7)

b =
b

1 + b (3.8)

In fact, b is the estimator for the order partial autocorrelation2 of an

( ) process, and b 1 is just times b . We suggest a robust and consistent

estimator for by taking the median of these estimates. We arrange b 1, b ,

( = 1 2 3 ) in an ascending order. As b = b
1 for = 1, we have a total

2For the properties of bbased on the partial autocorrelation, one is referred to Chong (2000).
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of (2 1) estimates. For = 1 2 2 1, we denote the order statistic asb
( ), and define the median estimator of as

b= b
( ) (3.9)

Since the mappings in (3.7) and (3.8) are continuous, and all the estimators
are consistent, the median estimator is also consistent by the Sandwich Theorem.

4. Monte Carlo Experiments

Experiment 1. This experiment verifies Theorem 1 that ( ) is asymptoti-
cally Chi-square distributed under the null. Consider the following model:

(1 ) = = 1 2

= 50 100 200 500

(0 1)

= 0 4 0 3 0 2 0 1 0 0 1 0 2

Tables 1a to 1d report the critical value of the finite sample distribution of
( ) such that

Pr ( ( ) ) =

for = 50, 100, 200 and 500 respectively.
For each value of , and , we simulate the test statistic ( ) with

100000 replications. The critical values of the Chi-square distribution with de-
grees of freedom ( 1) are also tabulated for comparison. Observe that the
finite sample distribution is justifiably approximated by its limiting distribution.
The departure of the critical values of the the test in finite samples from their
asymptotic counterparts is small.

9Hinich and Chong: A Class Test for Fractional Integration

Published by The Berkeley Electronic Press, 2007



Table 1a: Critical values of ( ) such that Pr ( ( ) ) = T=50.

n=2

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
6 37 6 44 6 45 6 53 6 50 6 52 6 53
4 88 4 93 4 98 4 99 4 97 4 98 4 98
3 76 3 79 3 85 3 85 3 81 3 84 3 85
2 69 2 71 2 75 2 74 2 70 2 73 2 73

2 (1)
6 63
5 02
3 84
2 71

n=3

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
9 29 9 22 9 12 9 02 9 10 9 17 8 99
7 50 7 41 7 36 7 34 7 35 7 38 7 23
6 11 6 05 6 00 6 04 6 02 6 03 5 96
4 71 4 66 4 70 4 69 4 68 4 68 4 65

2 (2)
9 21
7 38
5 99
4 61

n=4

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
11 61 11 65 11 54 11 37 11 42 11 39 11 26
9 67 9 61 9 55 9 51 9 44 9 46 9 35
8 09 8 06 7 96 7 98 7 96 7 91 7 90
6 49 6 47 6 39 6 43 6 43 6 37 6 35

2 (3)
11 34
9 35
7 82
6 25

n=5

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
13 83 13 78 13 57 13 49 13 50 13 34 13 54
11 65 11 59 11 52 11 40 11 39 11 28 11 33
9 92 9 91 9 83 9 83 9 76 9 70 9 66
8 18 8 16 8 09 8 13 8 05 8 00 7 97

2 (4)
13 28
11 14
9 49
7 78

n=6

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
16 23 15 97 15 82 15 75 15 71 15 84 15 54
13 79 13 53 13 48 13 44 13 45 13 45 13 27
11 90 11 68 11 66 11 59 11 63 11 63 11 51
9 89 9 81 9 75 9 70 9 76 9 74 9 64

2 (5)
15 09
12 83
11 07
9 24

n=7

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
18 29 17 91 17 90 18 00 17 76 17 73 17 64
15 64 15 48 15 43 15 39 15 27 15 28 15 15
13 66 13 51 13 47 13 41 13 34 13 34 13 24
11 55 11 45 11 43 11 34 11 31 11 29 11 23

2 (6)
16 81
14 45
12 59
10 64
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Table 1b: Critical values of ( ) such that Pr ( ( ) ) =
T=100.

n=2

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
6 57 6 46 6 46 6 53 6 58 6 56 6 57
4 98 5 00 4 88 4 99 4 97 5 02 5 01
3 87 3 84 3 77 3 84 3 83 3 86 3 84
2 74 2 70 2 67 2 72 2 71 2 73 2 71

2 (1)
6 63
5 02
3 84
2 71

n=3

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
9 63 9 34 9 10 9 13 9 15 9 12 9 12
7 61 7 50 7 37 7 37 7 34 7 35 7 41
6 17 6 10 5 98 5 98 6 01 5 98 6 05
4 77 4 68 4 61 4 62 4 62 4 61 4 66

2 (2)
9 21
7 38
5 99
4 61

n=4

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
11 71 11 52 11 52 11 25 11 44 11 26 11 35
9 62 9 48 9 54 9 34 9 44 9 35 9 38
8 07 7 96 7 94 7 84 7 88 7 81 7 82
6 44 6 39 6 36 6 31 6 34 6 27 6 28

2 (3)
11 34
9 35
7 82
6 25

n=5

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
13 86 13 50 13 40 13 37 13 27 13 19 13 37
11 67 11 38 11 29 11 27 11 18 11 23 11 22
9 96 9 71 9 63 9 68 9 54 9 62 9 59
8 21 7 98 7 94 7 90 7 87 7 90 7 88

2 (4)
13 28
11 14
9 49
7 78

n=6

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
15 84 15 36 15 30 15 32 15 24 15 21 15 32
13 60 13 09 13 08 12 98 12 99 12 97 13 07
11 70 11 33 11 33 11 28 11 24 11 21 11 29
9 75 9 53 9 48 9 46 9 42 9 40 9 39

2 (5)
15 09
12 83
11 07
9 24

n=7

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
17 80 17 40 17 14 17 19 17 26 17 13 17 19
15 30 15 12 14 81 14 80 14 83 14 83 14 72
13 33 13 14 12 89 12 94 12 91 12 94 12 85
11 27 11 13 10 93 10 94 10 93 10 95 10 88

2 (6)
16 81
14 45
12 59
10 64
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Table 1c: Critical values of ( ) such that Pr ( ( ) ) =
T=200.

n=2

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
6 76 6 65 6 52 6 56 6 49 6 54 6 62
5 13 5 01 4 97 4 99 4 97 4 98 5 09
3 92 3 83 3 81 3 82 3 82 3 81 3 92
2 78 2 71 2 68 2 70 2 72 2 70 2 74

2 (1)
6 63
5 02
3 84
2 71

n=3

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
9 78 9 44 9 27 9 25 9 15 9 20 9 33
7 86 7 57 7 47 7 43 7 35 7 35 7 45
6 39 6 15 6 07 6 00 5 99 5 97 6 04
4 93 4 77 4 66 4 62 4 63 4 61 4 64

2 (2)
9 21
7 38
5 99
4 61

n=4

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
12 07 11 56 11 40 11 33 11 24 11 31 11 45
9 97 9 50 9 36 9 35 9 31 9 31 9 41
8 25 7 99 7 85 7 86 7 82 7 83 7 88
6 58 6 40 6 31 6 29 6 28 6 27 6 32

2 (3)
11 34
9 35
7 82
6 25

n=5

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
14 15 13 64 13 56 13 25 13 27 13 36 13 52
11 90 11 48 11 39 11 06 11 17 11 19 11 39
10 15 9 82 9 70 9 52 9 53 9 52 9 68
8 32 8 05 7 94 7 82 7 82 7 84 7 92

2 (4)
13 28
11 14
9 49
7 78

n=6

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
16 04 15 54 15 17 15 10 15 30 15 17 15 22
13 66 13 29 12 98 12 89 13 01 12 89 12 99
11 78 11 46 11 22 11 11 11 17 11 18 11 21
9 83 9 58 9 38 9 30 9 36 9 33 9 37

2 (5)
15 09
12 83
11 07
9 24

n=7

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2 2 (6)
18 12 17 40 17 15 16 94 17 01 16 79 17 15 16 81
15 43 14 97 14 68 14 61 14 54 14 44 14 70 14 45
13 46 13 02 12 83 12 75 12 65 12 67 12 83 12 59
11 36 11 03 10 85 10 80 10 74 10 75 10 86 10 64
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Table 1d: Critical values of ( ) such that Pr ( ( ) ) =
T=500.

n=2

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
6 68 6 67 6 58 6 54 6 64 6 63 6 68
4 94 5 16 4 97 5 00 5 03 5 02 5 04
3 83 3 97 3 82 3 83 3 85 3 86 3 84
2 72 2 83 2 70 2 70 2 71 2 71 2 69

2 (1)
6 63
5 02
3 84
2 71

n=3

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
9 33 9 10 9 20 9 15 9 31 9 24 9 24
7 58 7 46 7 52 7 36 7 52 7 41 7 62
6 07 5 98 5 88 5 98 6 08 6 03 6 20
4 65 4 56 4 56 4 59 4 65 4 63 4 74

2 (2)
9 21
7 38
5 99
4 61

n=4

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
11 54 11 39 11 24 11 33 11 25 11 37 11 38
9 50 9 40 9 41 9 32 9 37 9 37 9 33
8 03 7 83 7 74 7 83 7 86 7 90 7 85
6 34 6 25 6 19 6 26 6 28 6 33 6 23

2 (3)
11 34
9 35
7 82
6 25

n=5

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
13 43 13 18 13 13 13 26 13 20 13 27 13 25
11 30 11 07 11 11 11 20 11 11 11 17 11 12
9 63 9 47 9 35 9 59 9 49 9 53 9 45
8 04 7 84 7 74 7 85 7 80 7 81 7 88

2 (4)
13 28
11 14
9 49
7 78

n=6

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
15 32 15 12 15 28 15 14 15 15 15 07 15 19
13 08 12 88 12 88 12 93 12 93 12 88 12 98
11 20 11 14 11 13 11 15 11 13 11 09 11 12
9 35 9 34 9 22 9 30 9 25 9 26 9 27

2 (5)
15 09
12 83
11 07
9 24

n=7

99
975
95
9

= 4 = 3 = 2 = 1 = 0 = 1 = 2
17 13 17 08 16 65 16 90 16 89 16 76 17 05
14 70 14 69 14 30 14 57 14 54 14 50 14 49
12 81 12 74 12 49 12 68 12 66 12 64 12 57
10 82 10 56 10 62 10 70 10 69 10 72 10 74

2 (6)
16 81
14 45
12 59
10 64
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Experiment 2. The purpose of this experiment is to examine the power and
the size of the test for various and . We consider the following 12 models:

Model 1 : = 0 8 1 0 4 2 + ;

Model 2 : = 0 9 1 0 4 2 + ;

Model 3 : = 1 0 4 2 + ;

Model 4 : = 0 5 1 0 2 2 + 0 3 3 + 0 1 4 0 4 5 + ;

Model 5 : = 0 5 + 1;

Model 6 : = 0 5 1 0 5 2 + 0 2 1;

Model 7 : = ( 0 3) ;

Model 8 : = ( 0 2) ;

Model 9 : = ( 0 1) ;

Model 10 : = ;

Model 11 : = (0 1) ;

Model 12 : = (0 2)

(0 1) = 1 2

Note that Model 1 to Model 6 cannot be embedded in the family of fractionally
integrated processes. However, for Model 1, the first coe cient is twice the second
coe cient in Model 1. Thus, for Model 1, we do not expect to reject the null
hypothesis when using = 2 only. For Model 2 to Model 6, which are also models
under the alternative, we expect the null to be easily rejected. Model 7 to Model
12 are I( ) processes. We report the sizes of the test for these models. Table 2
reports the rejection rates of the test

Pr
³ ³b ´

2 ( 1)
´

for = 5%; = 50 100 200; = 2 3 4 5 6 7. The number of replications is
100000.

14 Studies in Nonlinear Dynamics & Econometrics Vol. 11 [2007], No. 2, Article 5

http://www.bepress.com/snde/vol11/iss2/art5



Table 2 : Pr
³ ³b ´

2 ( 1)
´
for = 5%

Model 1 Model 2 Model 3

\ 50 100 200 50 100 200 50 100 200
2 038 035 042 061 087 143 146 278 520
3 435 746 966 567 871 994 725 962 1 000
4 528 849 993 661 943 999 806 988 1 000
5 571 889 997 710 963 1 000 841 993 1 000
6 586 906 998 720 970 1 000 848 994 1 000
7 602 910 999 734 972 1 000 858 996 1 000

Model 4 Model 5 Model 6

\ 50 100 200 50 100 200 50 100 200
2 576 925 999 709 945 997 967 1 000 1 000
3 575 922 998 623 876 994 930 999 1 000
4 581 924 997 558 849 996 892 999 1 000
5 866 994 1 000 535 767 992 854 993 1 000
6 756 978 999 575 681 987 808 988 1 000
7 702 951 993 593 673 967 793 989 1 000

Model 7 Model 8 Model 9

\ 50 100 200 50 100 200 50 100 200
2 059 043 060 049 052 050 043 044 052
3 045 042 050 051 051 048 059 051 057
4 052 054 039 056 051 050 058 041 047
5 055 041 060 056 051 049 060 056 044
6 066 047 052 061 053 049 067 046 045
7 059 046 044 068 058 055 057 047 055

Model 10 Model 11 Model 12

\ 50 100 200 50 100 200 50 100 200
2 051 050 050 055 061 054 050 049 050
3 050 051 048 042 051 056 048 050 049
4 054 051 050 062 066 054 048 047 050
5 057 053 052 051 050 050 050 048 046
6 060 054 054 059 054 055 056 049 048
7 067 056 050 063 050 054 055 049 049
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The results are in line with our expectation. For Models 1 to 6, as the sample
size becomes large, the null hypothesis will eventually be rejected. Thus, the test
is consistent against a wide range of alternatives. For Models 7 to 12, the size of
the test is approximately equal to 5% when sample size is large.

5. Empirical Applications

Diebold and Rudebusch (1991) and Haubrich (1993) argue that, when income fol-
lows a fractionally di erenced process, the Deaton’s excessive smoothness paradox
can be resolved. In this section, we provide two empirical applications to examine
the Deaton’s paradox. All the data are obtained from the DataStream Interna-
tional. All variables are in constant dollars on a seasonally adjusted basis.
The first application is to test if the real disposable income per capita of the

U.S. is fractionally integrated. The sample period is from 1960:Q1 to 2005:Q4 for
quarterly data and from 1960 to 2005 for annual data.
We test if the real quarterly disposable income per capita and the real annual

disposable income per capita are fractionally integrated3. The results are reported
in Table 3a. From Table 3a, it is concluded that at the 5% significance level, we
cannot reject the null hypothesis that the annual and quarterly real disposable
income follow ( ) Our second application is on the quarterly real GDP of the
G7 industrial countries4. The sample period is from 1960:Q1 to 2005:Q45. Table
3b records the values of the test statistic with = 2 to 11 for the G7 countries.
In Table 3b, the estimated values of d are reported in parentheses6. Figures

with (*) and (**) are significant at the 1 % and 5% levels respectively. Note that
the estimated values of d are quite robust to the choice of . At the 1% significance
level, the null cannot be rejected for most of the G7 countries except France. The
null hypothesis is rejected for France at the 5% level for all n. In general, our
results suggest that most countries have a fractionally integrated GDP series.

3The test is performed on the drift-removed first di erence of the original real disposable
income data.

4The test is performed on the drift-removed first di erence of the original real GDP data.
5For France, the data period is from 1963Q1 to 2005Q4.
6If the median estimate falls outside (-0.5,0.25), another observed estimate which falls within

this range is used.
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Table 3a:
³b ´

based on the first di erence of the U.S. real disposable

income. The estimated values of d are reported in parentheses.

Data Period
1960 1 2005 4 1960 2005

2
1 5%

184 46³b 2´ 2 31
( 154)

1 80
( 213)

3 84³b 3´ 3 10
( 156)

2 92
( 184)

5 99³b 4´ 3 77
( 156)

3 02
( 191)

7 82³b 5´ 8 94
( 156)

3 23
( 191)

9 49³b 6´ 11 01
( 156)

4 67
( 191)

11 07³b 7´ 11 06
( 156)

11 26
( 191)

12 59

6. Concluding Remarks

Inspired by the findings of Diebold and Rudebusch (1991) and Haubrich (1993)
that the Deaton’s (1987) paradox can be resolved by allowing the income data
to be fractionally integrated, this paper develops a test which can distinguish
fractionally integrated processes from other time series processes. The asymptotic
distribution of the test statistic is derived. Our results provide the theoretical
ground for the works of Diebold and Rudebusch (1991) and Haubrich (1993). We
apply the test to the U.S. annual and quarterly per capita disposable income,
and to the real GDP data of the 7 industrial countries. It is concluded that
the U.S. real disposable income per capita is fractionally integrated. For the G7
countries, at the 5% level, we find that almost all G7 countries, except France,
have a fractionally integrated GDP series.
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Table 3b :
³b ´

and b³b 2´ ³b 3´ ³b 4´ ³b 5´ ³b 6´
1 62
( 248)

4 53
( 248)

4 54
( 248)

6 65
( 248)

6 64
( 248)

1 97
( 077)

7 59
( 077)

7 63
( 077)

7 64
( 077)

8 87
( 077)

2 00
( 157)

2 13
( 157)

8 06
( 157)

10 57
( 157)

10 83
( 157)

01
( 108)

6 44
( 108)

7 35
( 107)

7 35
( 107)

7 77
( 107)

29
( 169)

2 16
( 169)

5 27
( 169)

6 16
( 169)

9 23
( 169)

684
( 051)

723
( 051)

8 76
( 051)

9 00
( 051)

9 41
( 051)

5 34
( 239)

17 09
( 239)

17 08
( 238)

17 20
( 238)

18 14
( 237)

2
1 1% 6 63 9 21 11 34 13 28 15 09

2
1 5% 3 84 5 99 7 82 9 49 11 07³b 7´ ³b 8´ ³b 9´ ³b 10´ ³b 11´

7 56
( 248)

10 62
( 248)

16 08
( 248)

16 08
( 248)

16 75
( 248)

9 04
( 068)

16 31
( 037)

16 50
( 033)

16 54
( 032)

16 92
( 032)

10 83
( 157)

11 34
( 157)

11 78
( 157)

11 80
( 157)

22 20
( 157)

9 76
( 107)

11 81
( 104)

11 91
( 105)

13 21
( 105)

13 21
( 105)

9 35
( 173)

9 35
( 173)

9 58
( 176)

9 60
( 176)

9 61
( 176)

9 56
( 051)

13 26
( 051)

13 44
( 051)

14 43
( 049)

14 43
( 049)

18 12
( 232)

18 12
( 230)

18 95
( 229)

19 02
( 227)

21 55
( 227)

2
1 1% 16 81 18 48 20 09 21 67 23 21

2
1 5% 12 59 14 07 15 51 16 92 18 31
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Appendix: Proof of Theorem 1.

Note that since is stationary,

( 1) ( ) ( )

are asymptotically multivariate normal. We have

( 1) ( ) ( ) (0 ( ))

where ( ) is the variance-covariance matrix of ( 1) ( ) ( ). Since
( ) is positive definite, there exists a non-singular matrix P such that

( ) = 0

which gives

( ) 1 =
¡

1
¢0 1

and

1 ( )
¡

1
¢0
=

Define an ( 1)-element vector as

= 1 ( ( 1) ( ) ( ))

The variables are asymptotically multivariate normal since they are linear
combinations of the ( 1) ( ) ( )

( ) = 1 ( ( 1) ( ) ( )) = 10 = 0

( ) =
h

1 ( ( 1) ( ) ( )) ( ( 1) ( ) ( ))0
¡

1
¢0i

= 1 ( )
¡

1
¢0
=

Thus, ’s are asymptotically standardized normal variables and

0 2 ( 1)
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Now, use the fact that

0 = ( ( 1) ( ) ( ))0
¡

1
¢0 1 ( ( 1) ( ) ( ))

= ( ( 1) ( ) ( ))0 ( ) 1 ( ( 1) ( ) ( ))

= ( )

that the elements in ( ) are continuous in and that b , we have

³b ´
= ( ) + (1) 2 ( 1)
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